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ABSTRACT
In econometrics, as a rule, the same data set is used to select the model and,
conditional on the selected model, to forecast. However, one typically reports
the properties of the (conditional) forecast, ignoring the fact that its properties
are affected by the model selection (pretesting). This is wrong, and in this paper
we show that the error can be substantial. We obtain explicit expressions for
this error. To illustrate the theory we consider a regression approach to stock
market forecasting, and show that the standard predictions ignoring pretesting
are much less robust than naive econometrics might suggest. We also propose
a forecast procedure based on the ‘neutral Laplace estimator’, which leads to
an improvement over standard model selection procedures. Copyright © 2004
John Wiley & Sons, Ltd.
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INTRODUCTION

In econometrics we typically use the same data for both model selection and forecasting (and 
estimation). Standard statistical theory is therefore not directly applicable, because the properties 
of forecasts (and estimates) depend not only on the stochastic nature of the selected model, but also
on the way this model was selected.

The simplest example of this situation is the standard linear model y = Xb + g z + e, where we are
uncertain whether to include z or not. The usual procedure is to compute the t-statistic for g, and
then, depending on whether |t| is ‘large’ or ‘small’, decide to use the unrestricted or the restricted
(with g = 0) model. We then forecast yn+1 from the selected model. This forecast is a pretest fore-
cast, but we commonly report its properties as if forecasting had not been preceded by model selec-
tion. This is clearly wrong. We should correctly report the bias and variance (or mean squared error)
of the forecasts, taking full account of the fact that model selection and forecasting are an integrated
procedure. This paper attempts to do this, both in theory and practice.
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The theoretical contribution of the paper is the ‘equivalence theorem for forecasting’ (Theorem
1), where we present explicit expressions for the forecast bias and the mean squared forecast error,
taking full account of the effects of pretesting.

In order to investigate the effects of ignoring pretesting on forecasts in practice, we reconsider a
question from the finance literature, discussed by Pesaran and Timmermann (1994): can the annual
excess returns on common stocks for the Standard & Poor 500 index be predicted? The application
of linear regression in finance probably started with the capital asset pricing model. Black et al.
(1972) proposed a linear regression model to explain empirically observed asset returns. Fama and
MacBeth (1973) introduced a cross-section approach, and regressed the asset’s excess return on 
the intercept and the b’s of the CAPM model. Subsequent studies extended the set of explanatory
variables, see in particular Rozeff (1984), French et al. (1987), Fama and French (1989), Chen 
et al. (1986), Balvers et al. (1990), Fama and French (1992) and Cheng et al. (1990). Pesaran and
Timmermann (1994) demonstrated that a regression model preceded by model selection can actu-
ally predict movements of the Dow Jones and Standard & Poor 500 indexes with a sufficient degree
of accuracy. This result was enriched and reinforced in Pesaran and Timmermann (1995), where a
number of model selection criteria were employed. The problem of forecasting the market moves
was reconsidered in Granger and Pesaran (2000), where the authors argue that not a point stock value
but rather the probability of the fall in the stock market is the key element, and propose a way to
estimate this probability.

We find that pretesting matters a lot. Both the statistical and the financial conclusions are much
affected if pretesting is ignored. In addition, we ask whether an improvement over the standard 
(discontinuous) model selection procedures might be possible, and we show that this is indeed 
possible, based on so-called Laplace weights. Table I later suggests that model selection based on
Laplace weights leads to better forecasts, both from the statistical and from the financial point of
view.

In finance, pretesting is usually called ‘data-snooping’. Lo and MacKinlay (1990) noted that 
tests of financial asset pricing models may yield misleading inferences when properties of the 
data are used to construct the test statistics, that is, when pretesting has taken place. Foster et al.
(1997) worried about the distribution of R2 after pretesting. White (2000) developed a reality 
check bootstrap methodology which provides a step towards answering the question whether 
the superior performance of the preferred model is due to superior economic content or to luck. 
Sullivan et al. (1999) showed that White’s methodology can be applied in practice, and that pretest-
ing matters.

Our results differ from those of White in several important respects. Apart from some differences
in set-up, our Theorem 1 provides an (exact) finite-sample result and not an asymptotic result 
as in White. Secondly, we provide bounds for our pretest forecasts, thus allowing rather precise 
probability statements.

The paper is organized as follows. The next section contains the set-up and notation and reviews
some earlier results, which are required for the development of the theory. The main result is pre-
sented in the third section (Theorem 1), giving the bias, variance and mean squared forecast error
of the pretest forecast (in fact, of the WALS forecast, a generalization of the pretest forecast). In the
fourth section we apply the theory to the problem of forecasting stock market moves and show that
results ignoring pretesting are much less robust than naive econometrics would seem to imply. 
In the fifth section we present a continuous analogue of pretesting which can greatly improve the
properties of forecasts. Some conclusions are offered in the final section.
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SET-UP, NOTATION AND PRELIMINARY RESULTS

The set-up is the same as in Magnus and Durbin (1999) and Danilov and Magnus (2004), hereafter
DM04. We consider the standard linear regression model

(1)

where y (n ¥ 1) is the vector of observations, X (n ¥ k) and Z (n ¥ m) are matrices of nonrandom
regressors, e (n ¥ 1) is a random vector of unobservable disturbances, and b (k ¥ 1) and g (m ¥ 1)
are unknown nonrandom parameter vectors.1 We assume that k ≥ 1, m ≥ 1, n - k - m ≥ 1, that the
design matrix (X :Z) has full column rank k + m, and that the disturbances e1, e2, . . . , en are i.i.d.
N(0, s 2).2

The reason for distinguishing between X and Z is that X contains explanatory variables (‘focus’
regressors) that we want in the model on theoretical or other grounds, while Z contains additional
explanatory variables (‘auxiliary’ regressors) of which we are less certain. We define the matrices

and the normalized parameter vector q = (Z¢MZ)1/ 2g. The least-squares (LS) estimators of b and g
are bu = br - Q and = (Z¢MZ)-1/ 2 , where br = (X¢X)-1X¢y and = (Z¢MZ)-1/ 2Z¢My. The sub-
scripts ‘u’ and ‘r’ denote ‘unrestricted’ and ‘restricted’ (with g = 0) respectively. Notice that ~ N(q,
s 2Im) and that br and are independently distributed.

Let Si be an m ¥ ri selection matrix of rank ri (0 £ ri £ m), so that S¢i = (Iri
:O) or a column per-

mutation thereof. The equation S¢ig = 0 thus selects a subset of the g ’s to be equal to zero. Follow-
ing DM04, the LS estimators of b and g under the restriction S¢ig = 0 are then given by

where

is a symmetric idempotent m ¥ m matrix of rank m - ri. (If ri = 0 then Wi = Im.) The distribution of
b(i) is given by

(2)

There are 2m different models to consider, one for each subset of g1, . . . , gm set equal to zero. A
pretest estimator of b is obtained by first selecting one of these models (using t- or F-tests or other
model selection criteria), and then estimating b in the selected model. We shall assume throughout
that the model selection is based exclusively on the residuals from the restricted model, that is, on
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and Z
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1 We follow the notation proposed in Abadir and Magnus (2002).
2 In contrast to our estimation paper, we may allow k = 0 here, in which case X is absent. All subsequent results hold in that
case, but some care needs to be taken about the interpretation of the formulas.
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My. This assumption appears to be satisfied in all standard cases. (Note that the residuals in the ith
model can always be expressed as e(i) = DiMy for some idempotent matrix Di; see DM04, lemma
A1.) More generally, a WALS (weighted-average least-squares) estimator of b is defined as 
b = Sili b(i), where the weights satisfy

and the sum is taken over all 2m models. The pretest estimator is a special case of the WALS 
estimator when all li are 0 except one which is 1. The standard model selection procedures (such
as general-to-specific or specific-to-general) all fall in this class, so that they can be captured by an
appropriate choice of the li.

The WALS estimator of b can be written as b = br - QW , where W = SiliWi. Notice that W is
a random matrix, because the {li} are random. The equivalence theorem for estimation (DM04,
theorem 1) now says that

and hence that

showing that the properties of the complicated WALS (pretest) estimator b of b depend critically on
the properties of the less complicated estimator W of q. The distribution of W thus plays a central
role, both in the current paper and in our estimation paper, where the properties of W are discussed
in detail for the special case s 2 = 1. For example, figure 1 in DM04 presents the bias, variance and
mean squared error of W in the case m = 1, and section 6 provides an extensive discussion for 
the case m = 2. It turns out that MSE(W ) can be unbounded in some cases, in particular, in the 
specific-to-general procedure. However, if we ‘orthogonalize’ the auxiliary regressors such that
Z¢MZ = Im, then MSE(W ) remains bounded; this ‘orthogonalization’ has other advantages as well.

THE EQUIVALENCE THEOREM FOR FORECASTING

Suppose now that our interest is in forecasting rather than estimation. We assume that the data are
generated by (1), possibly with one or more of the gi equal to zero. Under the restriction S¢ig = 0, the
one-period-ahead LS forecast is given by

where
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and xn+1 and zn+1 denote next period’s values of the focus and auxiliary regressors, respectively. Since
the actual choice of model is uncertain and depends on the data and the model selection procedure,
the forecast could be based on any of the 2m available models (or a linear combination thereof).
Hence the WALS forecast takes the form

(3)

Since yn+1 = x¢n+1b + z¢n+1g + en+1, we obtain the forecast error (FE) as

The following properties of the forecast error can now be established.

Theorem 1 (Equivalence theorem for forecasting) The WALS forecast error has the following
expectation, variance and mean squared error:

Proof: The essential ingredient is that br and My are independent, because they are jointly normal
and uncorrelated since MX = O. This implies that br and W are independent, and hence that (br,
W , en+1) are all independent of each other. The results follow. �

The importance of Theorem 1 is twofold. First, it gives explicit expressions for the first two
moments of the forecast error, where we notice that these moments depend on q and s 2, but not on
b. Second, it helps us to find an optimal forecast, in the sense of minimizing the mean squared fore-
cast error. If we can find li’s such that W is an optimal estimator of q then the same li’s will provide
an optimal forecast. (These li’s are also the ones which provide the optimal WALS estimator of b.)
The question of finding an optimal estimator of q was studied in Magnus (2002), and led to the
‘neutral Laplace’ estimator. In a later section we shall apply the Laplace weights to forecasting, and
investigate the usefulness of this approach.

Theorem 1 thus gives the actual (true) moments of the forecast error, taking into account that
pretesting has occurred. In a typical applied paper, however, one does not take pretesting into
account. Consequently, the bias of the forecast (that is, the expectation of the forecast error) 
is reported to be zero, and the reported MSFE (variance), denoted , is given by
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where s2 denotes the pretest estimator of s 2, that is

The reported MSFE is a random variable, not only because s2 is random but also because W is
random. The matrix W takes the value Wi and s2 takes the value s2

(i), both with probability E(li). The
reported 95% prediction interval for yn+1 is

(5)

where the number 1.96 can of course be adjusted to take into account the degrees of freedom.
In contrast, if we take proper account of the effects of model selection, then the actual value 

of the forecast n+1 remains the same, but its moments are quite different. Let us define the two 
functions

(6)

and

(7)

Then, by Theorem 1

(8)

We consider two implications of this result, both of which will be employed in the next section.
First, since E( n+1 + y1(q)) = E(yn+1), we define the (theoretical) ‘bias-corrected’ forecast as n+1 +
y1(q), and obtain an estimated bias-corrected forecast by replacing q with . When the number of
observations n becomes large, then will not converge to q, because var( ) = s 2Im. Hence, is an
unbiased but not a consistent estimator of q. To protect ourselves against ‘large’ deviations of from
q, we shall also consider the conservative interval around the estimated bias-corrected forecast:

(9)

where

is a consistent estimator of s, the set H is an m-dimensional cube, defined by H( ) : = {q : | i

- qi| < ams, i = 1, . . . , m}, and am is determined such that, for standard normal u, (Pr (|u| < am))m =
0.95. In our application, m = 4 so that am = 2.49.

Second, an approximate (theoretical) 95% prediction interval for yn+1 is given by
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The interval is approximate because the distribution of FE is not normal. Furthermore, in contrast
to (5), the interval depends on q (and on s), which is unknown. We obtain an estimated prediction
interval by replacing q with and s with . Again, we protect ourselves against ‘large’ deviations
of from q by also considering the more conservative interval

(11)

where

and

Later we shall also need (conservative) prediction intervals for x¢n+1b + z¢n+1g (Eyn+1) and for y2(q) +
y 1

2(q ) + s 2 (the MSFE).

FORECASTING STOCK RETURNS

In order to investigate the effects of ignoring pretesting on forecasts in practice, we consider a 
question from the finance literature. We shall reconsider the question discussed by Pesaran and 
Timmermann (1994), hereafter PT94, and others: can the annual excess returns on common stocks
for the Standard & Poor 500 (SP 500) index be predicted? Our analysis is not meant as a criticism
of PT94. Since we do not have exactly the same data set, and our questions are different in some
details, we shall compare our own analysis when pretesting is not taken into account with our own
analysis when pretesting is taken into account.

The dependent variable in the linear regression is yt, the excess returns in year t. In analysing the
effect of pretesting we have to decide which regressors play a role, and which of these are focus
regressors and which are auxiliary. We selected four focus regressors (k = 4) and four auxiliary
regressors (m = 4). The focus regressors are:

constant term
PIt-2: annual inflation rate (lagged two periods)
DI3t-1: change in 3-month T-bill rate (lagged one period)
SPREADt-1: credit spread (lagged one period)

The auxiliary regressors are:

YSPt-1: dividend yield on SP 500 portfolio (lagged one period)
DIPt-1: annual change in industrial production (lagged one period)
PERt-1: price–earnings ratio (lagged one period)
DLEADt-2: annual change in leading business cycle indicator (lagged two periods)

C2 1 2
21 96ˆ, : max .

ˆ
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q q
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We could not acquire exactly the same data set as PT94, but we almost could. A full description and
all the data are given in an appendix. Our data set contains eight annual time series (plus a constant
term) over 46 years (1956–2001).

Employing a forward (specific-to-general) model selection procedure, only one of the four auxil-
iary regressors is selected, namely YSPt-1, and we obtain the following estimated model of the annual
excess returns over the period 1956–1991:

with R2 = 0.655, = 0.611 and DW = 2.54. The selected model is the same as the model selected
in PT94 (p. 339), estimated over the period 1954–1991.

A few words of explanation are in order. First, the forward pretest procedure (also called specific-
to-general) is defined by starting from the smallest model (the restricted model) with k explanatory
variables (the X-variables). We first estimate the m models with one additional regressor. If none of
the m t-statistics is significant, we choose the restricted model. If at least one of the t-statistics is
significant, we select the regressor whose t-statistic is the largest (in absolute value), and keep this
regressor in the model, whatever happens later in the procedure. Next, we estimate the m - 1 models
with two additional regressors, one of which is the one already selected. Proceeding in this way, we
always select a model in a well-defined and unambiguous manner. Notice however that in the final
model there is no guarantee that all t-statistics are significant.

Second, the t-statistics are computed in the traditional manner, that is, using an estimate of s 2

based on the submodel under consideration. In this way, we mimic precisely what happens in applied
work. The critical value, however, is always taken to be 1.96. This does not make any serious 
difference, and is more in line with the normality assumptions made in the approximations.

We now discuss the effect of pretesting on the forecasts. The forecasts discussed below are one-
period-ahead forecasts for the period 1992–2001, based on all information available at the moment
of forecasting. For example, the forecast for the year 2000 is based on the model selected and 
estimated using the 1956–1999 data. It is thus possible (and indeed it happens) that the forecast in
one year is based on a different model than in another year.

In Figure 1, the solid line gives the one-period-ahead forecasts n+1, while the small open circles
give the realized values yn+1, the observed excess returns. The forecasts are the same, whether we
take pretesting into account or not. The difference lies in the distribution of the forecasts. As a bench-
mark, the two dotted lines give the standard least-squares 95% prediction bounds (ignoring the effects
of pretesting) as given in (5). These are the prediction bounds, reported when—as is usually 
the case—pretesting is ignored. They are symmetric around n+1. We see that only 60% of the fore-
casts (six out of ten) lie in this standard prediction interval, which suggests that the bounds are too
tight. The graphs for the period 1986–1991 are based on the in-sample estimates obtained for the
full estimation period 1956–1991. The graphs for the period 1992–2001 are out-of-sample forecasts.
The dash-dotted line gives the estimated bias-corrected forecast n+1 + y1( ), based on (6) and
Theorem 1, while the dashed lines show the conservative 95% confidence bounds of the bias-
corrected forecast, given in (9), taking the inconsistency of into account.3 In doing the calcula-q̂

q̂ŷ

ŷ

ŷ

R 2

ˆ . . . . .
. . . . .

yt t t t t= - - - + +
( ) ( )
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( )
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( )

-
( )

-0 343 1 65 0 04 3 0 17 10 14
0 084 0 44

2
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1
2 17
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3 To obtain y1 (and y2) we need to calculate an m-dimensional integral. For m = 1 and m = 2 we do this exactly (by quad-
rature); for m ≥ 3 by Monte Carlo, based on 1000 replications. In each replication we generate a random sample according
to the regression model (1) with X and Z the observed regressors, and perform forward model selection. The simulated results
were tested for numerical stability.
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tions for the dash-dotted and the dashed lines, we estimate s 2 by the LS estimator in the unrestricted
model, that is,

(12)

which simplifies the calculations without affecting the results; see later.
At first glance the estimated bias is small, because the dash-dotted line is quite close to the solid

line. However, we have to take into account the inconsistency of . The more conservative dashed
bounds show that the bias can be large, at least in some years. In seven of the ten years the sign of
the bias-corrected forecast is uncertain, thus showing that taking into account the pretest bias may
matter a great deal.

In Figure 2, the solid line gives again the one-period-ahead forecasts, the small open circles are
the realized values yn+1, and the two dotted lines give the standard least-squares 95% prediction
bounds ignoring the effects of pretesting. The two dash-dotted lines now show the approximate 95%
prediction bounds of the pretest forecast, based on (10), while the dashed lines give the more con-
servative interval, based on (11). These intervals take account of both the bias and the variance.

q̂

s
n k m

u u u
2 1

=
- -

- -( )¢ - -( )y Xb Z y Xb Zˆ ˆg g
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Figure 1. Pretest forecasts n+1, bias-corrected forecasts and confidence boundsŷ
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Because of the bias effect, the intervals are not symmetric around n+1. Now 80% of the forecasts
lie in the approximate 95% prediction interval, and 90% in the more conservative interval. The year
1996 appears to be the most difficult to predict, partly because the market changed direction between
1995 and 1996. Although the pretest forecast is seriously biased in some years, and the standard
deviation is seriously underestimated, and therefore standard prediction intervals can be very mis-
leading for evaluating the accuracy of the forecast, it appears that the difference between the dotted
and the dash-dotted lines is not spectacularly large, on average only 1.3 times as wide. Hence, ignor-
ing the effects of pretesting on the prediction bounds of the forecast is not necessarily disastrous, at
least in our application.

Lack of sensitivity in one direction does not, however, imply lack of sensitivity in another direc-
tion. One can argue that it is not the excess return but rather the sign of the excess return which is
most relevant. Hence, as proposed by Granger and Pesaran (2000), we now study the forecast prob-
ability Pr(yn+1 > 0). Here the effect of ignoring pretesting will turn out to be rather more dramatic.

Since the error term is assumed to be normally distributed, we have

ŷ

1986 1988 1990 1992 1994 1996 1998 2000

–0.4

–0.6

–0.2

0

0.2

0.4

0.6

Figure 2. Pretest forecasts n+1 with three sets of prediction intervalsŷ
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(13)

where F(·) denotes the standard normal c.d.f. If the value of Pr(yn+1 > 0) is larger than 0.5, the investor
will conclude that the excess return is likely to be positive in the next period, and therefore will
invest in stocks, if risk neutrality is assumed. If, on the other hand, the value of Pr(yn+1 > 0) is smaller
than 0.5, the investor will conclude that excess return will be negative and will invest in bonds. Of
course, the probability Pr(yn+1 > 0) is not known and needs to be estimated.

The solid line in Figure 3 gives the estimated probability (yn+1 > 0) = F( n+1/su). Since
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Figure 3. Pretest forecast probabilities Pr(yn+1 > 0) with three sets of prediction intervals
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we see that (yn+1 > 0) exceeds 0.5 if and only if n+1 is positive, a fact confirmed by comparing
the solid line in Figure 3 with the solid line in either Figure 1 or 2. If we take no account of the
effects of pretesting, then a 95% prediction interval for the parameter (x¢n+1b + z¢n+1g )/s is given by

and hence

denotes the estimated prediction interval for Pr(yn+1 > 0) when pretesting is not taken into account:
the dotted lines in Figure 3. If, however, we do take account of pretesting, then

(14)

where y1 and y2 are defined in (6) and (7), so that an approximate 95% prediction interval for 
Pr(yn+1 > 0) is given by

(15)

This interval depends on q (and s) which is unknown. We obtain an estimated prediction interval
by replacing q and s by the estimates and su, leading to the dash-dotted lines.

Finally, as in the previous section, we obtain more conservative bounds (the dashed lines), taking
into account that , while unbiased, is inconsistent:

(16)

where

and

While the standard regression prediction intervals are already large, allowing only two years (1992,
2000) where a direction can be forecasted with any confidence, the pretest prediction intervals are
such that we cannot be confident in any year. This is true for the dash-dotted lines and, a forteriori,
for the more conservative dashed lines. The difference between the dotted and the dash-dotted lines
is twice as large as in Figure 2, on average 2.6 times as wide.
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We conclude that ignoring the effects of pretesting on the distribution of the forecast can lead to
a serious misrepresentation. The pretest forecast is biased and has a larger variance than is apparent
from the regression results. The one-period-ahead forecasts are much less precise than naive eco-
nometrics would lead us to believe. The effects of pretesting on forecasting are thus potentially
serious and should be analysed and incorporated in econometric analyses.

‘OPTIMAL’ FORECASTS USING LAPLACE WEIGHTS

We have seen that in evaluating the properties of forecasts, especially forecast probabilities, we need
to take the model selection aspect into account. So far, we have only considered the standard pretest
procedure, where we first select the ‘best’ model and then forecast on the basis of this selected model.
Such a procedure is discontinuous and hence inadmissible. Since we are not in the business of finding
the ‘best’ model, but rather of finding the ‘best’ forecast, we may wish to consider a (continuous)
weighted average of models instead of the (discontinuous) pretest model selection, somewhat in the
spirit of ‘thick modelling’ (see Granger and Jeon, 2001). But which weights should be taken? What
constitutes an optimal forecast depends on the forecast user. The Laplace weights, introduced by
Magnus (2002), are ‘optimal’ in the sense that they lead to estimates and forecasts with a low MSE
(MSFE). Low MS(F)E seems a reasonable criterion, although one might argue in our example that
an optimal forecast is one where wealth is maximized (as is the main concern in PT94), or the number
of correct sign predictions, or model stability (as argued by Paye and Timmermann, 2002). Let us
compare the standard pretest (forward) procedure with the restricted, unrestricted and Laplace 
procedures, keeping these different notions of optimality in mind.

The Laplace weights were introduced by Magnus (2002) for the case m = 1 in the estimation
context. When m = 1, there are only two possible models, the restricted (r) and the unrestricted (u),
and the forecast takes the simple form (see (3))

The proposed weight function l = l( ) is

where the prior p is the ‘neutral’ Laplace density

The neutrality of the prior guarantees that median (q) = 0 and median(q 2) = s 2. When m > 1 it is
not so clear how the weights should be taken. However, in the special case where Z¢MZ = Im, the
multi-dimensional problem separates into m one-dimensional problems, and we can use the Laplace
weights for each dimension separately; see DM04, theorem 2.

Let us consider the ‘orthogonalization’ Z¢MZ = Im in some more detail. Orthogonalization can
always be achieved by taking appropriate linear combinations of the m auxiliary regressors in Z
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(leaving the focus regressors unchanged). More specifically, let T1 be an orthogonal m ¥ m matrix
such that T¢1Z¢MZT1 = L (diagonal). Then, letting T = T1L-1/2, we have T¢Z¢MZT = Im. Now define
new auxiliary regressors Z* = ZT and z*n+1 = T ¢zn+1. Then, clearly, Z*¢MZ* = Im. As a consequence
of this transformation, zn+1, R(q) := MSE(W ) and MSFE will all change, but z¢n+1zn+1 will not change.
This follows because

so that

Then the fact that TT ¢ = (Z¢MZ)-1 implies that z*n+1¢z*n+1 = z ¢n+1zn+1. The only difference between

and

lies in the two expressions

At first sight, the difference between x2 and x*2, and hence between MSFE and MSFE*, may seem
trivial. This, however, is not so. First, while MSFE depends on the model selection procedure [for
example, forward (specific-to-general) or backward (general-to-specific)], MSFE* is independent of
the selection procedure. Second, while the eigenvalues of R(q) are not necessarily bounded, the
eigenvalues of R*(q) are always bounded, so that x*2 is always finite even when x2 is infinite.4 Third,
simple analytical expressions exist for the MSFE*, but not for MSFE. And finally, the ‘optimal’
WALS forecast can be applied quite easily in the case of MSFE*, but not in the case of MSFE.

We now compare the ‘forward’, ‘unrestricted’ and ‘Laplace’ procedures. The forward pretest 
procedure was already discussed and applied; it is the standard procedure used in applied work. The
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unrestricted (true) model is the one where all auxiliary regressors are included. The Laplace proce-
dure first transforms the auxiliary regressors Z so that they become ‘orthogonal’ (in the sense that
Z¢MZ = Im). The Laplace weights li determine how much weight is attached to each auxiliary regres-
sor, essentially depending on the relevant t-statistic. The Laplace procedure can thus be viewed as
a continuous version of the discrete (and hence inadmissible) pretest procedure.

In Figure 4 we plot the point forecasts for the three procedures. The solid line and the small open
circles in Figure 4 correspond to the forward procedure and are the same as in Figures 1 and 2. But
now we plot the forecasts for two other procedures, unrestricted and Laplace, as well. None of the
three procedures predict particularly well. The Laplace forecasts and the unrestricted forecasts move
closely together. In particular, their sign is always the same in our application. For each of the three
procedures six out of ten predictions have the correct sign. Thus, the point forecasts themselves do
not give much indication of which procedure is best.

In Figure 5 we plot the forecast probabilities for the three procedures. The solid line is the same
as in Figure 3. The triangles depict the direction of the market: down in 1995 and 2001, up in the
other eight years. For example, in 1992, all three procedures predicted correctly that the market
would go up. In 1996 and 1998 the market went up, but all three procedures predicted that it would
go down. In 2001, the Laplace and unrestricted procedures correctly predicted the crash, but the
forward procedure did not.
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Figure 4. Point forecasts for three model selection procedures
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Further insight into the relative performance of the three procedures is obtained from Table I. A
‘+’ indicates that the market is predicted to go up and a ‘-’ that it goes down. The best procedure is
the one where each prediction is correct. Each procedure predicts 60% correctly. The Laplace pro-
cedure is best in the sense that it has the lowest MSFE. The forward procedure has the highest mean
return (expected profit), but also the highest standard deviation (volatility). The Sharpe index—com-
bining the mean and the standard deviation of the return—is highest for the Laplace and unrestricted
procedures. Hence, they provide higher expected profit for the same level of volatility. We conclude
that the Laplace procedure performs well, both in terms of MSFE and in terms of Sharpe index.
However, the amount of improvement is relatively small.

As a final comparison between the three procedures, let us consider the MSFE of the WALS 
estimator, given in Theorem 1:

This expression depends on q (and s 2), which is unknown. Following the same approach as before,
we obtain a 95% bound for the MSFE as
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Figure 5. Forecast probabilities for three procedures
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where

In Figure 6 we compare the bounds of the MSFE for the forward, pretest and Laplace procedures.
Figure 6 shows rather more convincingly the dangers of the forward procedure and the superior-

ity of the Laplace procedure. The MSFE bound of the Laplace forecast is very much lower than for
the pretest forecast, and uniformly so. Moreover, if we compare the bounds with their theoretical
minimum s 2 (x¢n+1(X¢X)-1xn+1 + 1), then the difference between the procedures becomes even more
pronounced. We also observe that the MSFE bounds vary significantly over time.

Based on these results we conclude, be it tentatively, that—if our focus is forecasting rather than
model selection—better forecasts can be generated using the Laplace weights than using the tradi-
tional pretest forecasts.

CONCLUDING REMARKS

On the basis of our theoretical and empirical results, we conclude that taking explicit account of
pretesting in assessing the properties of one-period-ahead forecasts is essential in econometrics, if
we wish to be credible to policy makers and others.

We all know that we use the same data for model selection and forecasting (and estimation), that
therefore pretesting takes place, and hence that the properties of forecasts (and estimators) 
are affected. This paper shows that it is possible to take pretesting into proper account, and that it
matters.
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Table I. Performance of three model selection procedures

Year Model selection procedure Best

Forward Laplace Unrestricted

1992 + + + +
1993 + - - +
1994 + + + +
1995 - - - -
1996 - - - +
1997 - + + +
1998 - - - +
1999 + - - +
2000 + + + +
2001 + - - -
MSFE (%) 3.35 3.33 4.01
Mean return (%) 10.64 9.87 9.87 18.38
S.d. of return (%) 9.49 8.12 8.12 12.01
Sharpe’s index 0.603 0.609 0.609 1.121
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In addition, we show that an alternative exists to the (discontinuous, hence inadmissible) tradi-
tional pretest procedure, based on Laplace weights. These weights have good theoretical properties,
and they appear to behave well in practice too.

Finally, let us consider the effect of estimating s 2. So far we derived the prediction intervals on
the assumption that s 2 is known, and only at the final stage did we substitute s 2 by its estimate (12),
based on the unrestricted model.

We now want to treat s 2 ‘properly’, that is, we estimate it by the LS estimate of the selected 
submodel

and we take its distribution into account when selecting the model. There is no theoretical problem
in doing the calculations, because the estimator for s 2 will depend on My, so that Theorem 1 still
applies, but they are much more complicated and time-consuming.

In Figure 7 we recalculate the MSFE bounds of Figure 6, but now taking the estimation of s 2 into
proper account. As the plots show, the difference between Figures 6 and 7 is very small. This con-
firms the conclusion in Danilov (2002) that all qualitative (and most quantitative) results are not
affected when we ignore the obvious fact that s 2 is not known.
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DATA APPENDIX

We attempted to use the same data as in PT94 (Pesaran and Timmermann, 1994), but could not quite
do so for four reasons. First, the data set used by PT94 is not available now. We had access to the
data used by PT95 (Pesaran and Timmermann, 1995); not, however, to the original data, but the data
recently updated by the authors. We could not obtain all the data for 1954 and 1955, because
SPREAD and YSP are not available in 1953 and 1954. Second, our data set extends to the year 2001,
so that we had to employ a slightly different regressor instead of the term premium, namely SPREAD
instead of TERM, since the 6-month commercial paper rate is no longer published by the Federal
Reserve. Third, we had no access to the CRSP (Center for Research in Security Prices) tapes, in par-
ticular not to the Fama–Bliss risk-free rates files, that were used by Pesaran and Timmermann. There-
fore an alternative source had to be used. Finally, various business cycle indicators employed in
PT94 are in fact composite indices, subject to revisions and renormalizations. The indices that agree
with the Citybase definition (used in PT94) end in November 1995, and a slightly different defini-
tion was employed afterwards. In this appendix we describe briefly how the data are constructed.
Tables AI and AII provide the full data set employed.
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Figure 7. Upper bounds of MSFE, s 2 estimated ‘properly’
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Dependent variable
The dependent variable yt denotes the excess return in year t, and is defined by

where

NRSP
PSP PSP DIVSP

PSP
t

t t t

t

=
- +- -

-

1 1

1

yt t t= - -NRSP I12 1

Table AIa. Dependent variable and focus regressors, 1956–1991

Year yt PIt-2 DI3t-1 SPREADt-1

1956 0.2281 0.0022 0.12 0.13
1957 0.0365 0.0022 0.17 0.43
1958 -0.0572 0.0275 0.26 0.26
1959 0.3504 0.0366 -2.05 1.68
1960 0.0054 0.0221 0.09 0.36
1961 0.0997 -0.0020 -0.01 0.91
1962 0.1191 0.0083 0.16 0.44
1963 -0.0403 -0.0002 0.45 0.32
1964 0.1679 0.0032 0.21 0.25
1965 0.1311 -0.0035 0.02 0.33
1966 0.0511 0.0037 0.32 0.14
1967 -0.0858 0.0175 0.57 0.20
1968 0.0526 0.0308 -0.71 0.99
1969 0.0953 0.0122 0.32 0.59
1970 -0.2049 0.0286 0.71 -0.05
1971 0.0847 0.0359 0.87 0.28
1972 0.0730 0.0341 -1.69 0.93
1973 0.1054 0.0297 -0.96 0.61
1974 -0.2000 0.0306 0.92 -0.12
1975 -0.2344 0.0876 0.12 0.50
1976 0.2972 0.1425 -2.12 1.65
1977 -0.0034 0.1024 -0.78 0.43
1978 -0.1354 0.0430 -0.17 -0.08
1979 0.1058 0.0630 0.24 0.27
1980 0.1011 0.0753 0.54 0.81
1981 0.0726 0.1054 -0.12 -0.04
1982 -0.1544 0.1263 1.88 -0.10
1983 0.1283 0.0885 -0.23 0.04
1984 0.0863 0.0393 0.20 -0.14
1985 0.0500 0.0160 0.38 0.19
1986 0.1346 0.0207 -0.96 -0.24
1987 0.2575 0.0086 -0.22 0.55
1988 -0.0890 -0.0134 0.40 -0.01
1989 0.1278 0.0203 0.37 0.98
1990 0.0546 0.0247 1.03 0.39
1991 0.0011 0.0500 -0.03 0.16
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denotes the annual rate of return on the SP 500 index, and I12t-1 denotes the 12-month T-bill rate on
the last trading day of January in the year t - 1.

The variable I12 is obtained from PT95, up to the year 1992. Later years are obtained 
from the H15 Federal Reserve Statistical Release, section Weekly Releases, Selected Interest Rates,
Historical data, Treasury bills, Secondary market, 1-year, Business.5

The variable PSP denotes the nominal price index for the SP 500 portfolio at the close of 
the last trading day of January. Sources: PT95 (for the years 1955–1992) and DataStream (from 31
December 1964 up to 2001). We used the PT95 data set updated from DataStream where necessary.

DIVSP denotes the average nominal dividends per share for the SP 500 portfolio paid during the
calendar year. It is constructed as DIVSP = PSP ¥ YSP, where YSP is defined below.

Focus regressors
The first focus regressor is the constant term. In addition, we have three other focus regressors. The
second is PI, the annual inflation rate, computed as PIt = log(PPIAVt / PPIAVt-1), where PPIAV
denotes the annual average of the producer price index (PPI, finished goods). Source: website of the
US Department of Labor, Bureau of Labor Statistics, Series: Producer Price Index by Finished Goods
(April 1947 to present).6

The third is DI3, the change in the 3-month T-bill rate, defined as the difference between the 
3-month T-bill rate in January (I3:JAN) and the 3-month T-bill rate in October (I3:OCT) of the 
previous year, both measured at the last trading day of the month. Source: H15 Federal Reserve 
Statistical Release, section Weekly Releases, Selected Interest Rates, Historical data, Treasury bills,
Secondary market, 3-month, Business.7

The fourth focus regressor is SPREAD, the credit spread, defined as the difference between the
3-month financial paper rate (IF3:JAN) and I3:JAN. PT94 employ the term premium, that is the dif-
ference between the 6-month commercial paper rate and the 3-month T-bill rate in January. Since
the 6-month commercial paper rate does not exist after 1997, we use the 3-month financial paper
rate instead. The 3-month financial paper rate data consist of two files, before September 1997 and
after. Sources: H15 Federal Reserve Statistical Release, section Weekly Releases, Selected Interest
Rates, Historical data, Finance paper placed directly (historical), 3-month, Monthly (1955–1997),

5 See http://www.federalreserve.gov/releases/h15/data/b/tbsm1y.txt
6 Available online at http://www.bls.gov/
7 See http://www.federalreserve.gov/Releases/h15/data/b/tbsm3m.txt

Table AIb. Dependent variable and focus regressors, 1992–2001

Year yt PIt-2 DI3t-1 SPREADt-1

1992 0.1580 0.0481 -0.92 0.73
1993 0.0616 0.0214 -0.98 0.15
1994 0.0852 0.0122 -0.06 0.42
1995 -0.0269 0.0124 -0.07 0.15
1996 0.3045 0.0063 0.80 0.27
1997 0.2181 0.0190 -0.41 0.34
1998 0.2147 0.0258 -0.01 0.30
1999 0.2703 0.0041 -0.01 0.38
2000 0.0323 -0.0088 0.14 0.44
2001 -0.0360 0.0180 0.56 0.28
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Table AIIa. Auxiliary regressors, 1956–1991

Year YSPt-1 DIPt-1 PERt-1 DLEADt-2

1956 0.0510 136.2792 -0.0583 0.9986
1957 0.0398 148.1861 0.1204 1.0655
1958 0.0382 157.7279 0.0423 0.9949
1959 0.0391 155.4372 0.0141 0.9678
1960 0.0387 190.3797 -0.0670 1.0000
1961 0.0311 208.2837 0.1129 1.0492
1962 0.0348 202.3910 0.0223 0.9823
1963 0.0300 258.8171 0.0066 1.0232
1964 0.0333 212.3313 0.0800 1.0189
1965 0.0318 216.9554 0.0595 1.0235
1966 0.0297 223.2941 0.0652 1.0266
1967 0.0298 215.8158 0.0947 1.0247
1968 0.0333 185.6376 0.0848 1.0034
1969 0.0320 206.3934 0.0214 0.9931
1970 0.0307 210.8557 0.0541 1.0219
1971 0.0318 186.6205 0.0454 1.0045
1972 0.0382 198.8993 -0.0335 0.9573
1973 0.0318 222.2841 0.0136 1.0329
1974 0.0285 222.3302 0.0925 1.0477
1975 0.0301 161.8866 0.0781 1.0108
1976 0.0428 106.8587 -0.0151 0.9431
1977 0.0435 142.4935 -0.0916 0.9659
1978 0.0376 130.9383 0.0876 1.0695
1979 0.0446 105.7509 0.0783 1.0165
1980 0.0516 101.5938 0.0570 1.0108
1981 0.0526 91.4693 0.0327 0.9871
1982 0.0510 101.5335 -0.0280 0.9620
1983 0.0499 96.4215 0.0162 1.0023
1984 0.0575 115.2959 -0.0552 0.9809
1985 0.0440 148.3745 0.0366 1.0746
1986 0.0457 124.5979 0.0857 1.0182
1987 0.0419 155.8990 0.0163 1.0000
1988 0.0345 209.0400 0.0112 1.0252
1989 0.0303 204.4862 0.0453 1.0235
1990 0.0349 150.9822 0.0444 1.0010
1991 0.0326 164.9125 0.0178 0.9960

and H15 Federal Reserve Statistical Release, section Weekly Releases, Selected Interest Rates, 
Historical data, Commercial paper (Financial), 3-month, Monthly (1997–2002).8

Auxiliary regressors
We consider four auxiliary regressors. First, YSP, the dividend yield on the SP 500 portfolio, is
defined as YSPt = DIVSPt-1 / PSPt. Sources: PT95, datafile (1955–1992) and DataStream (from
January 1965 to present).

Second, DIP, the annual change in industrial production, is computed as DIPt = log(IPAVt /
IPAVt-1), where IPAV is the 12-month average of the industrial production index (IP). Source: On-

8 See http://www.federalreserve.gov/Releases/h15/data/m/hfp3m.txt for the historical data and . . . /fp3m.txt for the recent
data.
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line database of the Federal Reserve Bank of St. Louis.9 The data are monthly, seasonally adjusted,
and range from January 1940 to August 2001. The data series is an index, base year 1992.

Third, PER, the price–earnings ratio for the SP 500 index, is the ratio of the price of stock to the
earnings of companies per unit of stock. We have two sources for these variables, one from PT95,
the other from DataStream. (Note that PT95 give the earnings–price ratio, rather than the price–
earnings ratio.) DataStream use the annualized price–earnings ratio.

Finally, DLEAD denotes the annual change in the leading business cycle indicator, and is defined
as DLEADt = log(LEADt / LEADt-1). Here, LEAD is the 12-month average of a composite of 11
leading business cycle indicators. The leading indicator LEAD is taken from the data set BCIH-
01.dat (composite indexes), distributed together with BCI Data Manager (January 1948 to Novem-
ber 1995).10 For more recent data we extend the series as follows. We take the ‘updated series’ from
the Economagic website.11 This series is, however, calculated using a slightly different definition and
base year. Therefore, we regress the old series on the updated series over the period where they
overlap (R2 = 0.99), and use the intercept and slope estimates and the values of the updated series
to predict the missing years of the old series.
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