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Abstract In this paper, a generalized fractional-order
SEIR model is proposed, denoted by SEIQRP model,
which divided the population into susceptible, exposed,
infectious, quarantined, recovered and insusceptible
individuals and has a basic guiding significance for the
prediction of the possible outbreak of infectious dis-
eases like the coronavirus disease in 2019 (COVID-
19) and other insect diseases in the future. Firstly,
some qualitative properties of the model are analyzed.
The basic reproduction number R0 is derived. When
R0 < 1, the disease-free equilibrium point is unique
and locally asymptotically stable. When R0 > 1, the
endemic equilibrium point is also unique. Further-
more, some conditions are established to ensure the
local asymptotic stability of disease-free and endemic
equilibrium points. The trend of COVID-19 spread
in the USA is predicted. Considering the influence
of the individual behavior and government mitigation
measurement, a modified SEIQRP model is proposed,
defined as SEIQRPD model, which is divided the pop-
ulation into susceptible, exposed, infectious, quaran-
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tined, recovered, insusceptible and dead individuals.
According to the real data of the USA, it is found that
our improved model has a better prediction ability for
the epidemic trend in the next two weeks. Hence, the
epidemic trend of the USA in the next two weeks is
investigated, and the peak of isolated cases is predicted.
The modified SEIQRP model successfully capture the
development process of COVID-19, which provides an
important reference for understanding the trend of the
outbreak.
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1 Introduction

The outbreak of the coronavirus disease (COVID-19)
in 2019 occurred in Wuhan, China, at the end of 2019.
This is a severe respiratory syndrome caused by the
novel coronavirus of zoonotic origin [1]. The Chi-
nese government has implemented many measures,
including the establishment of specializedhospitals and
restrictions on travel, to reduce the spread. ByApril 20,
2020, the outbreak in China has been basically con-
trolled. However, the outbreak is still rampant all over
the world. At present, the USA, Italy, Spain and other
countries are still in the rising stage of the outbreak. It
has posed a great threat to the public health and safety
of the world.
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At present, many countries have adopted mitiga-
tion measures to restrict travel and public gatherings,
which have a serious impact on the economy. There-
fore, it is very important to predict the development
trend of this epidemic and estimate the peak of the
isolated cases. The epidemic model is a basic tool to
research the dynamic behaviors of disease and pre-
dict the spreading trend of disease. Establishing a rea-
sonable epidemic model can effectively characterize
the development process of the disease. Ricardo [2]
researched a fractional SEIR model with treatment and
given some sufficient conditions to ensure the local
stability of equilibrium points. Yang and Xu [3] con-
sidered a fractional-order SEIR model with general
incidence rate and established the local and uniform
asymptotic stability of equilibria. However, these stud-
ies remain at the theoretical stage and do not use real
data to analyze the trend of specific epidemics. In the
outbreak of COVID-19, three types of data are usu-
ally available: isolated cases, recovered cases and death
cases. The traditional fractional SEIR model cannot
describe the trend of isolated individuals and dead indi-
viduals caused by diseases. Hence, it difficult for the
traditional SEIR model to use the information con-
tained in isolated cases and death cases. Therefore, a
generalized SEIR epidemic model is proposed in this
paper and is defined as SEIQRP model. Some qualita-
tive properties of this model are first analyzed, includ-
ing the existence and uniqueness of the disease-free and
the endemic equilibrium points. Then, conditions are
also established to ensure the local asymptotic stability
of both disease-free and endemic equilibrium points.

So far, many scholars have researched COVID-19
from different perspectives [1,4–8]. In [9], the epi-
demics trend of COVID-19 in China was predicted
under public health interventions. In [10], the basic
reproduction number of COVID-19 in China was esti-
mated and the data-driven analysis was performed in
the early phase of the outbreak. Peng [11] proposed
a generalized SEIR model to analyze the spread of
COVID-19 inChina. Themodel can describe the trends
of isolated individuals, recovered individuals and dead
individuals, and make full use of the information con-
tained in the real data. However, the model does not
take into account the infectivity of patients in the incu-
bation period. As we all know, one of the important
reasons that COVID-19 can cause a global outbreak is
that the epidemic has a long incubation period. Hence,
considering the infectivity of the patients in the incu-

bation period is in line with the actual situation. In
order to predict the cumulative number of confirmed
cases and combine the actual measures taken by the
government on the outbreak of COVID-19, we further
put forward an improved SEIQRP model, denoted by
SEIQRPD model. At present, we can obtain the epi-
demic data of COVID-19 outbreak in the USA before
April 20, 2020. We use these data and the improved
model to predict the epidemic trend of the USA in the
next twoweeks, and estimate the peak of isolated cases.
Firstly, the data before April 5 were selected to iden-
tify the model parameters, and the prediction ability
of the improved model with the epidemiological data
from April 6 to April 20 is verified. Then, the cumula-
tive number of confirmed cases and isolated cases are
predicted in the next two weeks. The peak of isolated
cases is thus predicted.

In recent years, with the continuous development
of fractional calculus theory, fractional-order system
modeling approaches have been applied in various
engineering and non-engineering fields [12–14]. Com-
pared with the short memory of the integer deriva-
tive, the fractional derivative has the information of the
whole time interval or long memory. It is more accu-
rate to describe the biological behavior of population
by using fractional differential equation.

The rest of this manuscript is structured as below.
In Sect. 2.1, the fractional SEIQRP model and the
modified SEIQRP model is proposed. Some qualita-
tive properties of the SEIQRP model are discussed in
Sect. 2.2. In Sect. 2.3, the prediction ability of the mod-
ified SEIQRP model is verified by using real data. The
disease development in the USA in the next two weeks
after April 21, 2020, is predicted. Finally, conclusion
and some future works are discussed in Sect. 3.

2 Preliminaries and model derivation

2.1 Preliminaries

In this section, some useful lemmas and definitions will
be given to analyze some results of this paper.

Definition 1 [15] The Caputo fractional-order deriva-
tive is given below

C
0 D

α
t f (t) =

{
1

Γ (n−α)

∫ t
0

f (n)(ξ)

(t−ξ)1+α−n dξ, n − 1 < α < n,

dn
dtn f (t), α = n,

where n is the smallest positive integer not less than α.
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Definition 2 [15,16] The Mittag–Leffler function is
given below

Eα(z) =
∞∑
k=0

zk

Γ (kα + 1)
,

where n − 1 ≤ α ≤ n.

Consider the following n-dimensional fractional-order
differential equation system

C
0 D

α
t X (t) = AX (t), x(0) = x0, (1)

where α ∈ (0, 1), X (t) = (x1(t), x2(t), . . . , xn(t))T is
an n-dimensional state vector and A is an n×n constant
matrix.

Lemma 1 [17] For the corresponding linear time-
invariant system (1), the following results are true:

(i) The zero solution is asymptotically stable, if and
only if all eigenvalues s j ( j = 1, 2, . . . , n) of A satisfy
| arg(s j )| > απ

2 .
(ii)The zero solution is stable, if and only if all eigen-

values s j of A satisfy | arg(s j )| ≥ απ
2 and eigenvalues

with | arg(s j )| = απ
2 have the same algebraic multi-

plicity and geometric multiplicity.

2.2 SEIQRP model

The outbreak of COVID-19 has had a great impact on
the economic growth of any country and daily life of
any human. In order to control and prevent the possible
outbreak of infectious diseases like the COVID-19 or
other insect diseases in the future, it is very important to
establish an appropriate model. The transmission dia-
gram of the generalized SEIR model proposed in this
paper is shown in Fig. 1. We divide the total popu-
lation into six distinct epidemic classes: susceptible,
exposed, infectious, quarantined, recovered and insus-
ceptible. We will represent the number of individuals
at time t in the above classes by S(t), E(t), I (t), Q(t),
R(t) and P(t), respectively. The specific explanations
of the above six categories are as follows:

• Susceptible S(t): the number of uninfected individ-
uals at the time t .

• Exposed E(t): the number of infected individuals
at the time t , but still in incubation period (without
clinical symptoms and low infectivity).

Fig. 1 Transmission diagram for the model involving six popu-
lation classes

• Infectious I (t): the number of infected individuals
at the time t (with obvious clinical symptoms).

• Quarantined Q(t): the number of individuals who
have been diagnosed and isolated at the time t .

• Recovered R(t): the number of recovered individ-
uals at the time t .

• Insusceptible P(t): the number of susceptible indi-
viduals who are not exposed to the external envi-
ronment at the time t .

The incidence rate plays a very important role in the
epidemic, which can describe the evolution of infec-
tious disease. According to the spread of different dis-
eases in different regions, there are many forms of inci-
dence rate [18–20]. We expect to establish a general-
ized incidence rate, which can contain most of these
specific forms. Further, in order to match the dimen-
sions of fractional-order model with respect to time
t , Diethelm[21] pointed out that both the left-hand and
the right-hand sides of fractional-order epidemicmodel
must have the same dimensions. Inspired by the work
of[3,21,22], the fractional-order SEIQRP model with
general incidence rate is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t S(t) = Λ − βα

1 f1(S(t))g1(I (t))

− βα
2 f2(S(t))g2(E(t)) − μαS(t) − ραS(t),

C
0 D

α
t E(t) = βα

1 f1(S(t))g1(I (t)) + βα
2 f2(S(t))g2(E(t))

− εαE(t) − μαE(t),
C
0 D

α
t I (t) = εαE(t) − (δα + μα)I (t),

C
0 D

α
t Q(t) = δα I (t) − (λα + κα + μα)Q(t),

C
0 D

α
t R(t) = λαQ(t) − μαR(t),

C
0 D

α
t P(t) = ραS(t) − μαP(t),

(2)
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where α ∈ (0, 1), Λ is the inflow number of suscep-
tible individuals, β1 and β2 denote the infection rates
of the infected individuals and the exposed individuals,
respectively, ρ is the protection rate and ε represents
the incubation rate. δ is the rate at which symptomatic
infections are diagnosed and quarantined. λ and κ rep-
resent the cure rate of isolated individuals and the death
rate caused by the disease, respectively, μ is the natu-
ral mortality, and the incidence rates β1 f1(S)g1(I ) and
β2 f2(S)g2(E) are used to describe the transmission of
diseases, which satisfy the following conditions [23]:

(i) f1(0) = f2(0) = g1(0) = g2(0) = 0,
(ii) f1(S) > 0, f2(S) > 0, g1(I ) > 0, g2(E) > 0,

for any S, E , I > 0,
(iii) f ′

1(S) > 0, f ′
2(S) > 0, g′

1(I ) > 0, g′
2(E) > 0,

for any S, E , I > 0,
(iv) g′

1(I ) − g1(I )
I ≤ 0, g′

2(E) − g2(E)
E ≤ 0, for any

E , I > 0.

2.3 Modified SEIQRP model

In the following, we will combine the actual situa-
tion and government mitigation policy to improve the
SEIQRP model (2). Firstly, during the outbreak of
COVID-19, we need to make reasonable assumptions
according to the actual mitigation policies and circum-
stances.

• During the COVID-19 outbreak, population mobil-
ity is strictly controlled by many countries. In par-
ticular, the policy of city closure was implemented
in Hubei Province, China. Therefore, the impact of
migration will not be considered in the improved
model.

• For the prediction of this short-term virus trans-
mission, the impact of natural mortality will not be
considered. It is assumed that novel coronavirus is
the only cause of death during the outbreak.

• In order to predict the trend of cumulative con-
firmed cases, it is necessary to simulate the num-
ber of death cases. Therefore, a new class D(t) to
the SEIQRP model will be added in the modified
model, which denotes the number of death cases at
time t .

• The time-varying cure rate,mortality rate and infec-
tion ratewill be applied to the improvedmodel. This
can better simulate the impact of the improvement
of medical conditions and government control on
individuals in reality.

Based on the above assumptions and analysis, the fol-
lowing improved model for COVID-19 is proposed.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t S(t) = −βα

1 (t) f1(S(t))g1(I (t))

− βα
2 f2(S(t))g2(E(t)) − ραS(t),

C
0 D

α
t E(t) = βα

1 (t) f1(S(t))g1(I (t))

+ βα
2 f2(S(t))g2(E(t)) − εαE(t),

C
0 D

α
t I (t) = εαE(t) − δα I (t),

C
0 D

α
t Q(t) = δα I (t) − (λα(t) + κα(t))Q(t),

C
0 D

α
t R(t) = λα(t)Q(t),

C
0 D

α
t P(t) = ραS(t),

C
0 D

α
t D(t) = κα(t)Q(t),

(3)

where β1(t) = σ1 exp (−σ2t), λ(t) = λ1(1 −
exp (λ2t)) and κ(t) = κ1 exp (−κ2t). The parameters
σ1, σ2, λ1, λ2, κ1 and κ2 are all positive, where σ is
used to simulate the intensity of government control. It
should be emphasized that the protection rate ρ for sus-
ceptible individuals also reflects the intensity of gov-
ernment control.

3 Qualitative analysis of the SEIQRP model

3.1 The existence and uniqueness of equilibrium point

Obviously, the right-hand side of system (2) satisfies
the local Lipschitz condition; then, there exists a unique
solution of system (2) [15,24].

Theorem 1 The solutions of system (2) are nonneg-
ative, and the closed set � = {(S, E, I, Q, R, P) ∈
R
6+ : 0 ≤ S+ E + I + Q + R + D ≤ Λ

μα } is a positive
invariant set of system (2).

Proof In order to investigate the non-negativity of solu-
tions of system (2), we consider the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t S1(t) = −βα

1 f1(S(t))g1(I (t)) − βα
2 f2(S(t))g2(E(t))

− μαS(t) − ραS(t),
C
0 D

α
t E1(t) = βα

1 f1(S(t))g1(I (t)) + βα
2 f2(S(t))g2(E(t))

− εαE(t) − μαE(t),
C
0 D

α
t I1(t) = εαE(t) − (δα + μα)I (t),

C
0 D

α
t Q1(t) = δα I (t) − (λα + κα + μα)Q(t),

C
0 D

α
t R1(t) = λαQ(t) − μαR(t),

C
0 D

α
t P1(t) = ραS(t) − μαP(t),

(4)
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where the initial conditions are S10 = 0, E10 = 0,
I10 = 0, Q10 = 0, R10 = 0 and P10 = 0.
(0, 0, 0, 0, 0, 0) is the unique solution of the above sys-
tem. According to the fractional-order comparison the-
orem [25], one can deduce that the solutions of system
(2) satisfy S(t) ≥ 0, E(t) ≥ 0, I (t) ≥ 0, Q(t) ≥ 0,
R(t) ≥ 0 and P(t) ≥ 0. By adding six equations of
system (2), one can deduce

C
0 D

α
t N (t) = Λ − μαN (t) − καQ(t)

≤ Λ − μαN (t).

By applying the fractional-order comparison theorem,
one has

N (t) ≤ (− Λ

μα
+ N (0))Eα(−μαtα) + Λ

μα
.

When N (0) ≤ Λ
μα , since Eα(−μαtα) ≥ 0, we have

S(t) + E(t) + I (t) + Q(t) + R(t) + P(t) ≤ Λ

μα
.

Thus, we can draw the result of Theorem 1.

System (2) has an obvious disease-free equilibrium
point M0 = (S0, 0, 0, 0, 0, P0), where

S0 = Λ

μα + ρα
, P0 = ραΛ

μα(μα + ρα)
.

In order to obtain the endemic equilibrium point of
system (2), we set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ − βα
1 f1(S(t))g1(I (t)) − βα

2 f2(S(t))g2(E(t))

− μαS(t) − ραS(t) = 0,

βα
1 f1(S(t))g1(I (t)) + βα

2 f2(S(t))g2(E(t))

− εαE(t) − μαE(t) = 0,

εαE(t) − (δα + μα)I (t) = 0,

δα I (t) − (λα + κα + μα)Q(t) = 0,

λαQ(t) − μαR(t) = 0,

ραS(t) − μαP(t) = 0,

(5)

which implies

S = Λ − (εα + μα)E

μα + ρα
, I = εαE

σα + μα
.

Combining the above equations and the second
equation of (5), one has

(μα + εα)E = βα
1 f1

(
Λ − (μα + εα)E

μα + ρα

)
g1

(
εαE

μα + δα

)

+ βα
2 f2

(
Λ − (μα + εα)E

μα + ρα

)
g2(E).

(6)

Define

ϕ(E) = βα
1 f1

(
Λ − (μα + εα)E

μα + ρα

)
g1

(
εαE

μα + δα

)

+ βα
2 f2

(
Λ − (μα + εα)E

μα + ρα

)
g2(E) − (μα + εα)E .

(7)

Note that ϕ(0) = 0 and ϕ( Λ
μα+εα ) = −Λ < 0. In

order to show that ϕ(E) = 0 has at least one positive
root in the interval (0, Λ

μα+εα ], we need to prove that
ϕ′(0) > 0. Hence,

ϕ′(E) = − (μα + εα)βα
1

μα + ρα
f ′
1

(
Λ − (μα + εα)E

μα + ρα

)
g1

(
εαE

μα + δα

)

+ εαβα
1

μα + δα
f1

(
Λ − (μα + εα)E

μα + ρα

)
g′
1

(
εαE

μα + δα

)

− (μα + εα)βα
2

μα + ρα
f ′
2

(
Λ − (μα + εα)E

μα + ρα

)
g2(E)

+ βα
2 f2

(
Λ − (μα + εα)E

μα + ρα

)
g′
2(E) − (μα + εα).

(8)

Therefore, we have

ϕ′(0) = εαβα
1

μα + δα
f1(S0)g

′
1(0) + βα

2 f2(S0)g
′
2(0) − (μα + εα)

= (μα + εα)(R0 − 1),

where the basic reproduction number is given by

R0 = εαβα
1

(μα + εα)(μα + δα)
f1(S0)g

′
1(0)

+ βα
2

μα + εα
f2(S0)g

′
2(0).

(9)

If R0 > 1, system (2) has at least one endemic equilib-
rium point M∗ = (S∗, E∗, I∗, Q∗, R∗, P∗), where

S∗ = Λ − (μα + εα)E∗
μα + ρα

, I∗ = εαE∗
μα + δα

,

Q∗ = δα I∗
μα + λα + κα

, R∗ = λαQ∗
μα

, P∗ = ραS∗
μα

.

In the following section, we show that endemic equi-
librium point M∗ is unique. According to the above
analysis and hypothesis (i)–(iii), one has
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ϕ′(E∗) = − (μα + εα)βα
1

μα + ρα
f ′
1(S∗)g1(I∗) + εαβα

1
μα + δα

f1(S∗)g′
1(I∗)

− (μα + εα)βα
2

μα + ρα
f ′
2(S∗)g2(E∗) + βα

2 f2(S∗)g′
2(E∗)

− (μα + εα)

= − (μα + εα)βα
1

μα + ρα
f ′
1(S∗)g1(I∗)

− (μα + εα)βα
2

μα + ρα
f ′
2(S∗)g2(E∗)

+ εαβα
1

μα + δα
f1(S∗)g′

1(I∗) − εαβα
1 f1(S∗)g1(I∗)

(μα + δα)I∗

+ βα
2 f2(S∗)g′

2(E∗) − βα
2 f2(S∗)g2(E∗)

E∗

= − (μα + εα)βα
1

μα + ρα
f ′
1(S∗)g1(I∗)

− (μα + εα)βα
2

μα + ρα
f ′
2(S∗)g2(E∗)

+ εαβα
1

μα + δα
f1(S∗)[g′

1(I∗) − g1(I∗)

I∗
]

+ βα
2 f2(S∗)[g′

2(E∗) − g2(E∗)

E∗
].

(10)

By hypothesis (iv), this implies ϕ′(E∗) < 0. If
there is another endemic equilibrium point M∗∗, then
ϕ′(E∗∗) ≥ 0 holds, which contradicts the previous dis-
cussion. Hence, system (2) has a unique endemic equi-
librium point M∗ when R0 > 1. Based on the above
analysis, the following results can be obtained.

Theorem 2 System (2) has a unique disease-free equi-
librium point M0, if R0 < 1. System (2) has a unique
endemic equilibrium point M∗, if R0 > 1.

3.2 Stability analysis

In this section, the local asymptotic stability of disease-
free equilibrium point M0 and endemic equilibrium
point M∗ for system (2) is discussed.

Theorem 3 With regard to system (2), the disease-free
equilibrium point M0 is locally asymptotic stability,
if R� < 1; the disease-free equilibrium point M0 is
unstable, if R� > 1.

Proof The Jacobianmatrix of system (2) at the disease-
free equilibrium point M0 is

JM0 =
[
J11 J12
J21 J22

]
,

where

J11 =
⎡
⎣−μα − ρα −h2 −h1

0 h2 − μα − εα h1
0 εα −μα − δα

⎤
⎦ ,

J12 =
⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ , J21 =

⎡
⎣ 0 0 δα

0 0 0
ρα 0 0

⎤
⎦ ,

J22 =
⎡
⎣−μα − κα − λα 0 0

λα −μα 0
0 0 −μα

⎤
⎦ ,

where h1 = βα
1 f1(S0)g′

1(0) and h1 = βα
2 f2(S0)g′

2(0).
The corresponding characteristic equation is

H(s) = |sE − JM0 |
= (s + μα)2(s + μα + ρα)(s + μα + λα + κα)H1(s),

(11)

where

H1(s) = s2 + (δα + 2μα + εα − βα
2 f2(S0)g

′
2(0))s

+ (μα + δα)(μα + εα)

− βα
2 (μα + δα) f2(S0)g

′
2(0) − εαβα

1 f1(S0)g
′
1(0).

(12)

The characteristic equation H(s) = 0 has four obvious
negative characteristic roots,which are denotedby s1 =
s2 = −μα , s3 = −μα − ρα and s4 = −μα − λα − κα ,
respectively. The discriminant of H1(s) in quadratic
form is

� = [δα + 2μα + εα − βα
2 f2(S0)g

′
2(0)]2

− 4[(μα + δα)(μα + εα)

− βα
2 (μα + δα) f2(S0)g

′
2(0) − εαβα

1 f1(S0)g
′
1(0)]

= (δα − εα + βα
2 f2(S0)g

′
2(0))

2 + 4εαβα
1 f1(S0)g

′
1(0)

> 0.

This implies that the other two eigenvalues s5 and s6 of
characteristic equation H(s) = 0 are real roots. Hence,

s5 + s6 = −(δα + 2μα + εα − βα
2 f2(S0)g

′
2(0)),

s5s6 = (μα + δα)(μα + εα)(1 − R0).

If R0 < 1, then one can obtain s5+s6 < 0 and s5s6 > 0,
which imply s5 < 0 and s6 < 0. If R0 > 1, one has
s5s6 < 0, which imply s5 > 0 or s6 > 0. It follows
from Lemma 1 that the proof is completed.
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Further, we will show the locally asymptotic stability
of the endemic equilibrium point M∗ of system (2).
Similarly, the corresponding Jacobianmatrix of system
(2) at M∗ is

JM∗ =
[
J1 J2
J3 J4

]
,

where

J1 =
⎡
⎣−l3 − l4 − μα − ρα −l2 −l1

l3 + l4 l2 − εα − μα l1
0 εα −δα − μα

⎤
⎦ ,

J2 =
⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ , J3 =

⎡
⎣ 0 0 δα

0 0 0
ρα 0 0

⎤
⎦ ,

J4 =
⎡
⎣−μα − λα − κα 0 0

λα −μα 0
0 0 −μα

⎤
⎦ ,

with

l1 = βα
1 f1(S∗)g′

1(I∗), l2 = βα
2 f2(S∗)g′

2(E∗),
l3 = βα

1 f ′
1(S∗)g1(I∗), l4 = βα

2 f ′
2(S∗)g2(E∗).

Hence, the corresponding characteristic equation is

L(s) = |sE − JM∗ |
= (s + μα)2(s + μα + λα + κα)L1(s),

(13)

where

L1(s) = s3 + a1s
2 + a2s + a3,

with

a1 = εα + 3μα + δα + ρα − l2 + l3 + l4,

a2 = (μα + εα − l2)(2μ
α + δα + ρα) + (μα + δα)(μα + ρα)

+(2μα + δα + εα)(l3 + l4) − εαl1,

a3 = (μα + δα)(μα + ρα)(μα + εα − l2)

+(μα + δα)(μα + εα)(l3 + l4) − εα(μα + ρα)l1.

By the corresponding results in [26,27], let

D1(L1(s)) =

∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 0
0 1 a1 a2 a3
3 2la1 a2 0 0
0 3 2a1 a2 0
0 0 3 2a1 a2

∣∣∣∣∣∣∣∣∣∣
= 18a1a2a3 + a21a

2
2 − 4a31a3 − 4a32 − 27a23 .

(14)

Then, the following result can be obtained.

Theorem 4 With regard to system (2), assume that
R0 > 1,

(i) If D1(L1(s)) > 0, a1 > 0, a3 > 0 and a1a2 > a3,
then the endemic equilibrium point M∗ is locally
asymptotically stable.

(ii) If D1(L1(s)) < 0, a1 > 0, a2 > 0 and a3 > 0,
then the endemic equilibrium point M∗ is locally
asymptotically stable for α ∈ (0, 2

3 ).
(iii) If D1(L1(s)) < 0, a1 < 0 and a2 < 0, then

the endemic equilibrium point M∗ is unstable for
α ∈ ( 23 , 1).

(iv) If D1(L1(s)) < 0, a1 > 0, a2 > 0 and a1a2 = a3,
then for α ∈ (0, 1), the endemic equilibrium point
M∗ is locally asymptotically stable.

Proof Based on the previous discussion, the charac-
teristic equation L(s) = 0 has three obvious negative
roots s1 = s2 = −μα and s3 = −μα − λα − κα . In
order to investigate the stability of equilibrium point
M∗, we only need to discuss the range of the root of
L1(s) = 0, denoted by s4, s5 and s6.

(i) By the results in [27], if D1(L1(s)) > 0, then
s4, s5 and s6 are real roots. Further, by Routh–Hurwitz
criterion, the necessary and sufficient conditions for
si (i = 4, 5, 6) to lie in the left half plane are

a1 > 0, a3 > 0, a1a2 > a3.

That is to say, under the above conditions, the roots of
L1(s) = 0 satisfy

| arg(si )| >
π

2
>

απ

2
(i = 4, 5, 6).

Therefore, M∗ is locally asymptotically stable and (i)
holds

(ii) By the results in [27], if D1(L1(s)) < 0, then
L1(s) = 0 has a real root and a pair of conjugate com-
plex roots, denoted by s4, m + ni and m − ni , respec-
tively. Thus, one has

L1(s) = s3 + a1s
2 + a2s + a3

= (s − s4)(s − m − ni)(s − m + ni).

By calculation,

a1 = −s4 − 2m, a2 = 2s4m + m2 + n2, a3 = −s4(m
2 + n2).

The conditions a1 > 0, a2 > 0 and a3 > 0 imply that

−s1 > 2m, m2 + n2 > −2s4m, s4 < 0.

Further, one has

m2 + m2 tan2 θ > −2s4m > 4m2.
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That is to say tan2 θ > 3, which implies

θ = | arg(s)| >
π

3
.

Therefore, in order to ensure the establishment of
| arg(s)| > απ

2 , we must have α < 2
3 . Thus, (ii) holds.

The proof of conclusions (iii) and (iv) is similar to
that of conclusion (ii); hence, we omit it.

4 Numerical simulations

4.1 Data sources

The data used in this paper are from the Johns Hopkins
University Center for Systems Science and Engineer-
ing (https://github.com/CSSEGISandData/COVID-19).
the Johns Hopkins University publishes data of accu-
mulated and newly confirmed cases, recovered cases
and death cases of COVID-19 from January 22, 2020.

4.2 Analysis of the SEIQRP model

In the following discussion, the standard incidence rate
[28] is used to describe the transmission of COVID-19
and is given by

βα
1 f1(S)g1(I ) = βα

1 SI

N
, βα

2 f2(S)g2(E) = βα
2 SE

N
,

where N represents the total population of the region
at the initial time. Hence,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t S(t) = Λ − βα

1 S(t)I (t)

N
− βα

2 S(t)E(t)

N
− μαS(t) − ραS(t),

C
0 D

α
t E(t) = βα

1 S(t)I (t)

N
+ βα

2 S(t)E(t)

N
− εαE(t) − μαE(t),

C
0 D

α
t I (t) = εαE(t) − (δα + μα)I (t),

C
0 D

α
t Q(t) = δα I (t) − (λα + κα + μα)Q(t),

C
0 D

α
t R(t) = λαQ(t) − μαR(t),

C
0 D

α
t P(t) = ραS(t) − μαP(t).

(15)

The effectiveness ofmodel (15) in describing the spread
of COVID-19 is illustrated by selecting the confirmed,
cured and death cases in the USA. According to the
real data provided by the Johns Hopkins University,
the outbreak in the USA has not been brought under
full control. The data of confirmed cases, recovered

cases and death cases are selected from January 22,
2020, to April 20, 2020. Assuming that the confirmed
individuals will be isolated, then

I solated = Con f irmed − Recovered − Death.

(16)

This hypothesis is in line with the actual situation.
Hence, we can obtain the real data of isolated cases. Let
eQ = Qr − Qm , eR = Rr − Rm and eD = Dr − Dm ,
where Qr , Rr and Dr denote the real data of iso-
lated cases, recovered cases and death cases, respec-
tively, Qm , Rm and Dm represent the measured value
of isolated cases, recovered cases and death cases,
respectively. Here, we consider a minimization objec-
tive function as:

Jmin =
T∑
i=1

(e2Q(i) + e2R(i) + e2D(i)),

where T is the number of real data of isolated cases
available. The internal function lsqcurvefit of MAT-
LAB is used to minimize the above objective func-
tion value. Similar methods are adopted for sub-
sequent parameter identification. Through the frac-
tional predictor–corrector method [29,30] and the least
squares fitting [31], we can identify the parameters of
the model (15) through the real data, which is given
in Table 1. For more detail with respect to fractional
predictor–corrector algorithm, one can refer to [29,30].

Based on the parameters in Table 1, we can make a
simple prediction of isolated cases and recovered cases
in the USA, which is shown in Fig. 2. We need to
emphasize that the peak here represents the number

Table 1 Summary table of the parameter identification for
model (15) after using least squares fitting to real data from Jan-
uary 22, 2020, to April 20, 2020

Notation Parameter identification

α 0.7937

Λ 433994

β1 0.2209

β2 0.7392

μ 5.2129 × 10−7

ρ 0.1224

ε 0.2467

δ 0.1031

λ 0.0024

κ 1.2932 × 10−5
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Fig. 2 Number of isolated cases predicted and recovered cases
predicted by the model (15) for the USA

of isolated cases rather than the cumulative number of
confirmed cases.

Using the parameters in Table 1, it can be calculated
by using (9) that R0 = 0.0289 < 1. By the conclu-
sion in Theorem 3, the disease-free equilibrium point is
local asymptotic stable. The SEIQRPmodel has a basic
guiding significance for predicting and fitting spread-
ing dynamics of COVID-19. However, the prediction
of thismodel for COVID-19 is relatively rough; we still
need to improve model (15) according to actual mitiga-
tion policies and research objectives. According to the
analysis in Sect. 2.1, we choose the SEIQRPD model
to predict the trend of the epidemic in the USA under
reasonable assumptions.

4.3 The SEIQRPD model for the prediction of
COVID-19

Similarly, the standard incidence rate is used to describe
the transmission of COVID-19, and the fractional
SEIQRPD model can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t S(t) = −βα

1 (t)S(t)I (t)

N
− βα

2 S(t)E(t)

N
− ραS(t),

C
0 D

α
t E(t) = βα

1 (t)S(t)I (t)

N
+ βα

2 S(t)E(t)

N
− εαE(t),

C
0 D

α
t I (t) = εαE(t) − δα I (t),

C
0 D

α
t Q(t) = δα I (t) − (λα(t) + κα(t))Q(t),

C
0 D

α
t R(t) = λα(t)Q(t),

C
0 D

α
t P(t) = ραS(t),

C
0 D

α
t D(t) = κα(t)Q(t).

(17)

It should be emphasized that the numerical proper-
ties of model (17) are mainly studied. Different from
the analysis ofmodel (2) andmodel (15), the fractional-
order α of model (3) and model (17) is not required to
be within (0, 1). Therefore, in the parameter identifica-
tion of model (17), the search range of parameter α is
considered as (0, 2). When α = 1, the fractional-order
SEIQRPD model is similar to the integer-order model
used in [24]. According to the data provided by Johns
Hopkins University, by April 20, 2020, the outbreak in
China has been basically controlled. Inmany provinces
of China, the number of new cases per day is increasing
in single digits. This means that the data in China con-
tain more information about the spreading dynamics of
COVID-19. Therefore, the data in Hubei, Guangdong,

Table 2 Summary of
parameter identification of
model (17) (data used from
January 22, 2020, to April
20, 2020)

Notation Hubei Guangdong Hunan Zhejiang

α 1.0771 1.0315 1.0133 1.0688

σ1 0.6295 1.2773 0.7255 1.9997

σ2 5.59 × 10−4 0.4525 0.1139 1.2108

β2 0.2863 0.2675 0.3352 0.3226

ρ 0.1494 0.0581 0.0464 0.0052

ε 0.2781 0.3558 0.4649 0.4986

δ 0.2598 0.3838 0.6756 0.4097

λ1 0.5118 0.7336 0.987 0.9997

λ2 0.0033 0.0036 0.0038 0.0032

κ1 0.0031 0.0013 2.94 × 10−4 1.51 × 10−4

κ2 4.18 × 10−4 0.0911 4.09 × 10−14 4.12 × 10−14
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Fig. 3 Fitting effect of the improved model (17) on the outbreak
in Hubei, Guangdong, Hunan and Zhejiang

Hunan and Zhejiang are selected to research the fitting
effect of the model (17). According to the real data of
these four regions inChina, the parameters of themodel
(17) are identified, and the results are shown in Table
2. The model (17) successfully capture the trend of the
outbreak, which is shown in Fig. 3.

According to Definition 1, when α = 1, the
fractional-order system (17) becomes integer-order
system. Tables 5 and 6, respectively, show the pre-
diction results of cumulative confirmed cases and iso-
lated cases by the integer-order system corresponding
to model (17). By comparing Table 3 with Tables 5 and
4 with Table 6, we can find that the fractional system
(17) has better prediction effect than its corresponding
integer system.

At present, we can obtain the epidemic data of the
USA fromJanuary 22, 2020, toApril 20, 2020.Weneed
to preprocess the data to remove the data smaller than
0.5% of the current highest number of confirmed cases.
In order to test the prediction ability of the SEIQRPD
model (17) for the development process of the epidemic
in the USA, we select the data before April 5 to identify
the parameters of the SEIQRPD model (17). Further-
more, in order to illustrate the ability of the SEIQRPD
model (17) in predicting the outbreak, we compared the
real data and fitted data after April 5, which is given in
Tables 3, 4 and Fig. 4. According to the results in Tables
3 and 4, it can be found that the real values of cur-
rent isolated cases and cumulative confirmed cases fall
within the range of 94–106% of the predicted values.
This shows that the SEIQRPD model (17) can effec-
tively predict the data in the next two weeks.

The data before April 20, 2020, are selected to iden-
tify the parameters of the improved model (17), and the
results are shown in Table 7. The cumulative number of
confirmed cases and the number of isolated cases after
two weeks are predicted, which is given in Table 8.

The isolated cases in the USA will peak on June 18,
2020, with the peak of 1.0431×106, which is shown in
Fig. 5. We must point out that the peak forecast here is
only based on the data before April 20, 2020. It is only
a rough estimate from the point of view of numerical
simulation.Thepeakvaluewill be greatly influencedby
the policy and environment. The change of policy and
environment makes the prediction of peak value very
difficult. For the peak prediction, we will do further
research in the future work.
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Table 3 Summary of real
and predicted data for the
cumulative confirmed cases
in the USA from April 6,
2020, to April 20, 2020

Data Cumulative confirmed cases Relative error (%)

Reported Predicted

6, April 366,667 370,997 1.18

7, April 397,505 404,778 1.83

8, April 429,052 438,986 2.32

9, April 462,780 473,397 2.29

10, April 496,535 507,790 2.27

11, April 526,396 541,952 2.96

12, April 555,313 575,680 3.67

13, April 580,619 608,786 4.85

14, April 607,670 641,099 5.5

15, April 636,350 672,464 5.68

16, April 667,592 702,748 5.27

17, April 699,706 731,837 4.59

18, April 732,197 759,637 3.75

19, April 759,086 786,076 3.56

20, April 784,326 811,103 3.41

Average 3.54

Table 4 Summary of real
and predicted data for the
isolated cases in the USA
from April 6, 2020, to April
20, 2020

Data Isolated cases Relative error (%)

Reported Predicted

6, April 336,303 340,153 1.14

7, April 362,948 368,742 1.6

8, April 390,798 397,193 1.64

9, April 420,826 425,264 1.05

10, April 449,159 452,719 0.79

11, April 474,664 479,335 0.98

12, April 500,306 504,905 0.92

13, April 513,609 529,239 3.04

14, April 534,076 552,168 3.39

15, April 555,929 573,547 3.17

16, April 579,973 593,252 2.29

17, April 604,388 611,186 1.12

18, April 628,693 627,274 0.23

19, April 648,088 641,467 1.02

20, April 669,903 653,736 2.41

Average 1.65
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Table 5 Summary of real
and predicted data for the
cumulative confirmed cases
in the USA from April 6,
2020, to April 20, 2020,
when α = 1

Data Cumulative confirmed cases Relative error (%)

Reported Predicted

6, April 366,667 372,660 1.63

7, April 397,505 408,046 2.65

8, April 429,052 444,475 3.59

9, April 462,780 481,813 4.11

10, April 496,535 519,923 4.71

11, April 526,396 558,665 6.13

12, April 555,313 597,901 7.67

13, April 580,619 637,494 9.8

14, April 607,670 677,308 11.46

15, April 636,350 717,213 12.71

16, April 667,592 757,082 13.4

17, April 699,706 796793 13.88

18, April 732,197 836,231 14.21

19, April 759,086 875,287 15.31

20, April 784,326 913,861 16.52

Average 9.19

Table 6 Summary of real
and predicted data for the
isolated cases in the USA
from April 6, 2020, to April
20, 2020, when α = 1

Data Isolated cases Relative error (%)

Reported Predicted

6, April 336,303 341,929 1.67

7, April 362,948 372,162 2.54

8, April 390,798 402,864 3.09

9, April 420,826 433,871 3.1

10, April 449,159 465,022 3.53

11, April 474,664 496,156 4.53

12, April 500,306 527,114 5.36

13, April 513,609 557,741 8.59

14, April 534,076 587,888 10.08

15, April 555,929 617,412 11.06

16, April 579,973 646,178 11.42

17, April 604,388 674,059 11.53

18, April 628,693 700,937 11.49

19, April 648,088 726,706 12.13

20, April 669,903 751,268 12.15

Average 7.48
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Fig. 4 Based on the data of the USA from January 22 to April 5,
2020, to verify the accuracy of the forecast for the next 15 days

Table 7 Summary table of the parameter identification for
model (17) (data used from January 22, 2020, to April 20, 2020)

Notation Parameter identification

α 0.9806

σ1 0.9339

σ2 0.1958

β2 0.2654

ρ 4.8484 × 10−6

ε 0.2881

δ 0.4115

λ1 0.0076

λ2 0.2096

κ1 0.0079

κ2 0.0345

5 Conclusion

We first propose the fractional SEIQRP model with
generalized incidence rates. Some qualitative proper-
ties of the SEIQRP model are discussed. In order to
predict COVID-19 effectively,we propose an improved
SEIQRPDmodel according to the actual mitigation sit-
uation. According to the data of the USA before April
5, 2020, the trend of the outbreak in theUSA fromApril
6 to April 20 is successfully predicted as compared to
the real records. Then, using the data before April 20,
2020, we forecast the trend of the outbreak in the USA
in the next two weeks and estimate the peak of isolated
cases and the date of the peak.

The improvedSEIQRPmodel proposed in this paper
successfully captures the trend of COVID-19. The

Table 8 Summary of predicted data for the USA from April 21,
2020, to May 5, 2020

Data Cumulative confirmed cases Isolated cases
Predicted Predicted

21, April 804,417 684,573

22, April 829,428 702,336

23, April 853,882 719,428

24, April 877,785 735,862

25, April 901,144 751,654

26, April 923,967 766,819

27, April 946,265 781,374

28, April 968,047 795,334

29, April 989,322 808,715

30, April 1,010,102 821,533

1, May 1,030,397 833,805

2, May 1,050,217 845,546

3, May 1,069,574 856,771

4, May 1,088,477 867,495

5, May 1,106,937 877,733
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Fig. 5 Based on the data of the USA from January 22 to April
20, 2020, to verify the accuracy of the forecast for the next 15
days

long-term prediction needs to adjust the model appro-
priately according to the change of policy and medical
level. We will discuss in the future work.
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