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ABSTRACT

Recent work by Diether, Malloy, and Scherbina (2002) has established a negative rela-

tionship between stock returns and the dispersion of analysts’ earnings forecasts. I offer

a simple explanation for this phenomenon based on the interpretation of dispersion as a

proxy for unpriced information risk arising when asset values are unobservable. The re-

lationship then follows from a general options-pricing result: For a levered firm, expected

returns should always decrease with the level of idiosyncratic asset risk. This story is

formalized with a straightforward model. Reasonable parameter values produce large

effects, and the theory’s main empirical prediction is supported in cross-sectional tests.



In an intriguing recent article, Diether, Malloy, and Scherbina (2002) (hereafter DMS)

document a new anomaly in the cross-section of returns: Firms with more uncertain

earnings (as measured by the dispersion of analysts’ forecasts) do worse. The finding

is important in that it directly links asset returns with a quantitative measure of an

economic primitive – information about fundamentals – but the sign of the relationship

is apparently wrong. Rather than discounting uncertainty, investors appear to be paying

a premium for it. This would seem to pose a formidable challenge to usual notions of

efficiently functioning markets.

This article argues that the challenge can be met. In fact, a simple, standard asset

pricing model implies the DMS effect even when there is no cross-sectional relationship

between dispersion of beliefs and fundamental risk. The logic relies on two elements.

First, when fundamentals are unobservable, dispersion may proxy for idiosyncratic pa-

rameter risk. Second, for a levered firm, expected equity returns will in general decrease

with the level of idiosyncratic asset risk due to convexity. I formalize this in a straight-

forward way. The story has some direct and distinguishing testable implications, which

I take to the data. The empirical evidence is remarkably supportive.

The theory offered here contrasts sharply with the explanation suggested by DMS.

They view the negative relationship between forecast dispersion and subsequent returns

as supportive of a story in which costly arbitrage leads to mispricing when agents have

differing beliefs. With short-sales constraints, the argument goes, the most optimistic

investors will bid prices up too high (assuming they don’t adjust for the winner’s curse).

Hence the more views differ, the more stocks may become overpriced.1

This intuition may well be valid. Short-sales constraints, heterogeneous information,

and investor biases are certainly important features of real markets that undoubtedly

affect price formation. However, this paper demonstrates that they need not be necessary

to explain the return puzzle.
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My model does not invoke any market frictions or irrationality. This does not make

its description incompatible with the DMS story: Both could be contributing to the

effect. Instead, it illustrates an alternative economic mechanism that may be important

in its own right.2 Moreover, the frictionless approach makes it possible to develop a formal

model whose parameters can be calibrated or estimated, and whose dynamic implications

can be rigorously quantified. Most importantly, the model provides falsifiable predictions

which are, in fact, verified.

Taken together, the model and the tests illustrate the power of classical building blocks

(in this case, the theory of unobserved state variables and the contingent claims analysis

of capital structure), when combined, to deliver rich implications about patterns in asset

returns. In this, the paper extends the line of research including Berk, Green, and Naik

(1999), Berk and Green (2002), Johnson (2002), Carlson, Fisher, and Giammarino (2002),

Gomes, Kogan, and Zhang (2002), and Brennan, Wang, and Xia (2002), which seeks

ways to account for the main features of the cross-section without invoking systematic

mispricing.

The approach here is not without its limitations, however. First, the paper addresses

one anomaly in isolation. Since a simple one-state-variable model suffices for my purposes,

I avoid embellishments that might increase the scope for capturing additional dimensions

of the data. Second, I do not explicitly model information production/acquisition or capi-

tal structure choice, which are both clearly endogenous aspects of the problem. Although

my empirical work will try to take that endogeneity into account, the model is only a

partial-equilibrium account of return determination. Finally, in the same way, the theory

is partial-equilibrium in taking the fundamental discount factor process of the economy

as given, and the tests offer no new ways of identifying that process. Although the paper

is able to show the linkage between the return patterns and risk exposures, it makes little

or no contribution to our understanding of the nature of that risk.
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The outline of the paper is as follows. The next section presents a brief discussion

of the background literature and the connection between forecast dispersion, risk, and

uncertainty. Section II introduces the asset pricing model, derives the main dynamic

quantities, and provides some numerical illustrations. The primary testable implications

are then derived, and these are tested in Section III. The concluding section summarizes

the contribution and considers some further implications.

I . Forecast Dispersion

Since 1983, IBES corporation has been recording the earnings forecasts of Wall Street

analysts for a large cross-section of U.S. stocks. Each observation in this data set is the

issuance of of a new forecast (a point estimate) by an individual analyst for a particular

stock’s operating earnings for a particular reporting period (for example, the “current”

fiscal year). At any given date, one can readily compute the cross-analyst standard devia-

tion of all outstanding forecasts pertaining to a single stock and horizon. Comparing this

measure of disagreement across stocks (after suitably normalizing for scale differences),

one finds substantial variation. This section considers what is really being measured and

how the difference across firms should be interpreted.

The first point to note is that what is not being measured is a subjective assessment of

earnings uncertainty. That is, we have no data on how confident any of the forecasters is

about his/her point estimate. In theory, a group of forecasters could all agree about the

mean of the distribution while each being hugely uncertain. Conversely, they could all

place enormous confidence in their own estimates while differing wildly from each other.

Despite this possibility, it is common practice through out the social sciences to

view the variation across a survey of respondents’ assessments of an unknown quantity

as a proxy for the true uncertainty in their environment. The intuitive basis of this
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interpretation is clear enough: An observer of the survey with no other information

about the quantity (or about the respondents) might well view each estimate as being

as good as the next, and so treat them as separate noisy signals of the true value. In

aggregating this information, this observer would then construct a posterior distribution

whose variance would be directly proportional to the variance across signals.

While it seems quite natural, this multiple-signal interpretation raises a number of

questions. Do the reported assessments in fact represent all relevent sources of informa-

tion available to agents? If so, why do the forecasters not themselves aggregate their

joint information? Are they, in fact, reporting unbiased views subject to random pertur-

bations, or are the estimates, and indeed, the level of dispersion itself a function of their

incentives?

The latter issue may be especially important in dealing with IBES data. Not only are

analysts’ forecasts known to be biased by conflicts of interest, but their choice of whether

to conform to or deviate from consensus might well be influenced by career concerns.

This realization highlights the need for a more complete understanding of exactly how

forecast differences arise. On the other hand, since the focus of this paper is on differences

in dispersion across stocks, issues of bias may matter somewhat less.

Moreover, there is, in fact, empirical support for viewing disagreement as a proxy for

uncertainty. Measures of respondents’ uncertainty are explicitly elicited by the NBER-

ASA survey of economic forecasters. This permits a direct comparison with dispersion of

the same agents’ forecast means. Zarnowitz and Lambros (1987) find a significant posi-

tive association between the two for forecasts of GNP and the GNP deflator. Bomberger

(1996) compares the dispersion of inflation forecasts from the Livingston survey to sub-

sequent realized variance of forecast errors and also finds a strong positive relationship.

These studies focus on the time-series interaction between uncertainty and dispersion,

and their subjects are presumably disinterested. So caution is warranted in extrapolating
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to the current setting. Still, the findings do suggest that the intuition linking the two

concepts is on solid ground. This paper will build on that foundation, taking that linkage

as a maintained hypothesis.3

In the next section I will formalize the multiple-signal model. When dispersion arises

from separate sources of information about an unobservable fundamental process, it

becomes natural to distinguish between two components of the total uncertainty facing

investors. The stochastic evolution of the underlying value itself is primitive to the

economy in that it is independent of the informational environment. This variability

might be called fundamental risk. In contrast, the uncertainty about the current value

of that process is purely determined by the information setting. I call this parameter

risk. Forecast dispersion, under the above interpretation, proxies only for this second

component.

Why should firms differ in their degree of parameter risk? At least two distinct

factors are involved. First, some businesses are inherently harder to assess than others.

Second, firms, being themselves the source of most of the relevant information, can choose

how much of it to provide. In both respects, parameter risk clearly goes well beyond

uncertainty about current accounting earnings. But even on this one dimension, firms

range from predictable, simple, and transparent to unfamiliar, complex, and opaque.

While substantial cross-sectional variation in parameter risk is thus to be expected,

from the point of view of financial theory, there is no obvious reason why agents should

care about it. Almost by definition, the noisiness of signals has no direct connection to

the riskiness of a firm’s cash flow. Nor would it seem likely to have a systematic, non-

diversifiable character. This is an empirical question, and here the results of Diether,

Malloy, and Scherbina (2002) are directly relevant. In fact, their findings would appear

to suggest that parameter risk is “priced” – but that investors prefer to bear more of it,

not less. The model developed below will show that this may be misleading, however. I
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will not assume any hedging role for parameter risk, and will regard it as idiosyncratic,

in a sense to be made precise.

To summarize, the paper’s stance is that analyst forecast disagreement is likely to be

a manifestation of nonsystematic risk relating to the unobservability of a firm’s underly-

ing value. Having distinguished between fundamental and parameter risk, and between

priced and unpriced risk, I should draw one further distinction between the exogenous

risks facing investors and the risk characteristics that emerge endogenously in the prices

of traded claims. It is not yet clear, for example, whether one should expect firms with

high forecast dispersion to therefore have high stock price volatility. Determining that re-

lationship and deducing the connection between dispersion and expected returns requires

a full valuation model, which is the subject of the next section.

II . The Model

The model I will use embeds a simple valuation framework in an environment of

partial information. I first describe that environment, and then deduce the dynamics of

asset prices. Finally I present some numerical illustrations that verify that reasonable

parameter values produce reasonable effects.

A. Information

Consider a single firm whose true value is an unobservable diffusion process. (The

meaning of true value will be defined below.) There are N distinct signals of this process

available to investors, which intuitively correspond to the output of separate research

analysts. Formally, let the value process be Vt and the nth signal be U
(n)
t . Then the

specification I assume is
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dVt/Vt = ε dt + σV dW V
t

U
(n)
t = Vt eη

(n)
t

where ε, the expected earnings rate per unit V , is known, and η
(n)
t , the nth noise process,

is unobservable. Let ε̄ ≡ (ε− 1
2
σ2

V ). Then, in logs,

dvt = ε̄ dt + σV dW V
t (1)

du
(n)
t = dvt + dη

(n)
t (2)

dη
(n)
t = −κ η

(n)
t dt + ση dW η(n)

t . (3)

Here investors observe the (log) level of fundamentals corrupted by stationary noise

processes, or equivalently, they see N cointegrated signals of the true level that they

care about.4 Since Vt and U
(n)
t are levels, dvt can be thought of as the instantaneous

earnings over dt and du
(n)
t as the nth analyst’s time-t estimate of this earnings rate.

(While I sometimes refer to these estimates as “forecasts”, in fact, analyst estimates for

the “current” fiscal period do pertain to a contemporaneous time interval.) How exactly

analysts arrive at these numbers is not modeled here.

Agents, of course, will aggregate the information in all the signals in making inferences

about V . For present purposes there is not much insight to be gained by keeping track

of N of them. But the point to note is that when there are multiple analysts, the

parameter ση will control the dispersion observed across their forecasts. (That dispersion

will actually equal ση in the special case that the N processes W η(n)

t are independent.)
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In thinking about a cross-section of firms then, the interpretation I have in mind is that

this is the dimension along which they differ. More realistically, the correlation structure

across signals and the mean reversion parameter κ would also be expected to differ. And

these too contribute to the total parameter risk (as will be shown below). So, even within

this model, forecast dispersion is not a perfect proxy for information quality. But, having

made the connection explicit, I will now drop the superscript and analyze the case of a

single scalar signal Ut that can be thought of, without loss of generality, as the aggregate

information available to investors.

Investors will also be assumed to know the variances and covariances of all the pro-

cesses. Most importantly, they know the true fundamental volatility σV , even though

the observation process Ut may be more or less volatile than Vt. In real life, perhaps,

companies might try to smooth earnings by arranging for a negative correlation between

W η
t and W V

t (that is, issuing positive disinformation dW η when the true shock dW V is

negative and vice versa). But this will not fool investors about true risks, and hence this

correlation ends up having no interesting effects. Where it simplifies the exposition, I

will set it to zero, which is thus also essentially without loss of generality.

In addition to the signal, investors can also observe the aggregate state of the economy

as summarized by the stochastic discount factor process Λt that obeys

dΛt/Λt = −r dt + σΛ dWΛ
t ,

where r is the (known, constant) risk-free rate. This process conveys some information

about the unobservable earnings because earnings have a systematic component: dW V

is correlated with dWΛ.

It also streamlines some of the formulas if the signal noise dW η is not correlated

with dWΛ, meaning that η is entirely unsystematic. And, although I stated above that it
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would be important for the argument that parameter risk be unpriced, it turns out in the

current model not to be necessary to restrict the Λ-η correlation to achieve the desired

result. I will return to this below. Again, the intuition is just that, when investors know

the true riskiness of the true value, they don’t get confused if there is some systematic

component of the distortion in their news sources.

That completes the description of the informational setting. Investors have two Gaus-

sian sources of information (the processes ut and log Λt) about a third Gaussian process.

Standard filtering results (e.g., Liptser and Shiryaev (1977), Theorem 12.7.) can now be

applied to deduce their posterior beliefs about vt given the history of these signals and

given their prior beliefs. If their prior distribution is Gaussian, then their posterior distri-

bution will always be Gaussian as well, and so can be summarized by the posterior mean

and variance, denoted m̃t and ω̃t. The latter evolves deterministically and converges to

a steady-state value ω̃. The former is a stochastic process that evolves according to

dm̃t = ε̄ dt + h̃t dW̃t, (4)

where W̃t is a scalar Brownian motion process summarizing the information in U and Λ

about V , and h̃t is another deterministic process that converges to σV in the steady state.

(Explicit expressions for ω̃t, h̃t, and W̃t are given in the Appendix.) Since the theory

developed here has nothing much to say about prior information, I will assume from

now on that enough time has elapsed for ω̃t and h̃t to have converged to their long-run

values. In that case, investors’ beliefs are summarized by the single state variable m̃t,

the conditional expectation of vt = log Vt.

Below I will also use the fact that time-t beliefs about future values vT for any

T ≥ t are also Gaussian. Indeed, since Ẽt[vT ] = Ẽt[ẼT [vT ]] = Ẽt[m̃T ] and similarly

Ẽt[v
2
T ] == Ẽt[ω̃ + m2

T ] (where Ẽt denotes expectation with respect to investors’ time-t
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information), conditional beliefs at t about vT are distributed as

N
(
m̃t + ε̄ τ, ω̃ + σ2

V τ
)
, (5)

where τ ≡ (T − t). This follows from (4) and the assumption that h̃t has converged to

σV .

The only other quantities that will be needed are the correlations under the investors’

information set between the exogenous processes dWU
t and dWΛ

t and the innovations

process dW̃t. If dW V
t has correlation ρV Λ with dWΛ

t and correlation ρV U with dWU
t , 5

then the important result is that dW̃t inherits these same correlations. In particular, this

means dm̃t has the same amount of systematic risk, ρV Λ σV , as does the fundamental

value process dVt. This fact does not require that the noise dηt be orthogonal to either

dVt or dΛt.

B. Asset Prices and Expected Returns

The process Vt described above as “fundamental value” is neither fundamental nor

valuable until it is given economic content by connecting it to some cash flows. The most

straightforward way to do this is to imagine that VT is paid off to the owners of V at

some future date T (via a liquidation or takeover, for example). This means introducing

a somewhat artificial new parameter, but has the virtue of yielding closed-form solutions

for all the quantities of interest.

Moreover, with a finite horizon it becomes just as straightforward to value levered

claims to the payoff VT and risky debt secured by VT along the lines of the classic Merton

(1974) model. It turns out this is not merely a gratuitous generalization. The presence

of debt has crucial implications for the relationship between parameter risk and expected

returns.
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To start, though, consider the price St of an unlevered claim to VT . By the definition

of the stochastic discount factor, this is

Ẽt[VT ΛT ]/Λt.

Given investors’ time-t information, VT is conditionally log-normal according to equation

(5) above. Since ΛT is also log-normal, the above expectation evaluates to

St = e−r τ · em̃t+
1
2
ω̃ · e(ε+ρV ΛσV σΛ) τ . (6)

In a recent article, Pástor and Veronesi (2003) use a similar model of parameter risk

to derive an expression analogous to (6). As they point out, the presence of parameter

risk serves to raise stock prices, as can be seen here from the presence of the ω̃ term.

However, this is entirely a static effect. It has no impact at all on expected returns, which

can be seen by applying Itô’s lemma to (6) and using the characterization of dm̃t in (4)

to get

dSt/St = (r + π) dt + σV dW̃t, (7)

where π ≡ −ρV ΛσV σΛ is the risk premium.

In this model, since investors’ information about v is summarized by its conditional

expectation m̃ that inherits v’s covariances, the risk premium and volatility of S are just

those that stem from fundamentals. Parameter risk affects neither.

Interestingly, this conclusion is not driven by the assumption that the noise process

η is idiosyncratic. Both (6) and (7) are correct in the general case. Instead, what is

important is how the parameter risk generated by η is resolved. Here it is resolved all at

once when VT is paid out (and hence revealed). This will result in ST jumping to VT at

the final instant (and note that (7) is valid only for t < T prior to the jump). But the
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key observation is that the jump is necessarily unpriced because of the assumption that

the stochastic discount factor is a diffusion.

Notice that here the time T is actually playing two distinct roles: It is the time

when both cash flows are realized and parameter uncertainty is resolved. A natural

generalization would envision separation of these roles, with periodic reporting (perhaps

noisy) of V at some sequence of dates, and cash flows (dividends) at another sequence.

In this case, the stock price would follow a jump-diffusion and the degree of parameter

risk would certainly contribute to the time-series variability of returns. There would still

be no expected return effect, however, unless marginal utility could also jump at the

reporting dates.6

Now consider a levered firm. Let K be the face amount of zero-coupon debt secured

by VT payable at T . Evaluating the price of the residual equity claim, Pt, by direct

integration yields the familiar form

Pt = St Φ(d1)− e−r τ K Φ(d1), (8)

where Φ( ) is the cumulative normal distribution function,

d1 =
log(St/e

−r τ K) + σ̃2/2

σ̃
,

d2 =
log(St/e

−r τ K)− σ̃2/2

σ̃
,

and

σ̃2 = ω̃ + σ2
V τ.

This is of course exactly the Merton (1974) model, except for one thing. The variance

that matters, σ̃2, is not just the cumulative time-series variability of V (or S) but includes
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the parameter risk as well.7

Again applying Itô’s lemma, the dynamics of Pt are

dPt/Pt = (r + π δ St/Pt) dt + (σV δ St/Pt) dW̃t, (9)

where δ ≡ Φ′(d1) = ∂P/∂S as usual.

When the firm has debt, its expected excess return changes in an important way.

The risk premium π of the equivalent unlevered firm8 is amplified by a gearing factor

δ St/Pt reflecting the effective exposure to V (or S) per dollar of P . While this is a well-

known result from elementary options pricing, perhaps less well known is the fact that

this multiplier is decreasing in volatility.9 This has the startling implication that raising

the uncertainty about the underlying asset value of a levered firm while holding the asset

risk premium constant – that is, adding idiosyncratic risk – lowers its expected returns.

More unpriced risk raises the option value of the claim, which lowers its exposure to

priced risk.

This observation is the heart of the paper. And it shows that the central hypothesis

that explains the dispersion anomaly in returns is that dispersion is a measure of idiosyn-

cratic risk. The information story I proposed is one way of delineating why it might be

such a measure. But any other way of achieving that linkage will also account for the

findings of Diether, Malloy, and Scherbina (2002).

Here unobservability of fundamentals (quantified by ω̃) raises uncertainty about the

final payoff without raising the risk premium. Notice, again, that what is required to

make this work is that the resolution of the uncertainty (via the terminal cash flow)

is nonsystematic. How the uncertainty arises does not matter. This is why η can be

arbitrarily correlated with Λ without affecting the results. In the previous section, I

indicated that having idiosyncratic parameter risk was in some sense essential to the
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argument. I can now be more precise: It is the parameter risk component of cash-flows

that must be idiosyncratic to deliver the expected return effect.

The result that the risk premium amplification term declines with ω̃ will be illus-

trated below, and its sensitivity to parameter values explored. But before turning to the

computations, there is one crucial feature of this result that is already apparent: The

effect vanishes if the firm has no debt. When K = 0 then P = S, and from (7), ω̃ has no

effect on expected returns. More generally, as K increases (for fixed m̃ or S), P becomes

more option-like and its sensitivity to uncertainty rises, which means the dampening

effect of dispersion on priced risk will be stronger. (This will also be illustrated below.)

Here, then, is the major empirical implication of the theory. If the story is right, the

effect reported by DMS should increase with leverage. Other things being equal, firms

with less debt should exhibit less sensitivity of expected returns to forecast dispersion.

Testing this assertion is the subject of Section III. Notice, for now, that there is nothing

analogous to this effect in the behavioral short-sales-constraint story. So this prediction

sharply distinguishes the two explanations.

C. Magnitude of the Effects

To explore the magnitude of the expected return effects in the model, I first compute

the risk premium term δ St/Pt in (9) for various values of the firm-level parameters.

Throughout I fix the risk-free rate at r = 0.04 and the volatility of the pricing kernel at

σΛ = 0.5.

In Figure 1 the value of the unlevered claim to V is fixed10 at S = 100 and the

volatility of fundamentals is σV = 0.2. I choose the correlation ρV Λ to imply a risk

premium for the unlevered firm of 0.05. The four panels of the graph show the levered

risk premium for different values of the time horizon T as the level of debt K and the

14



amount of parameter uncertainty ω̃1/2 vary.

Figure 1 about here.

With any of these horizons, the model effects are large. For fixed values of ω̃, ex-

pected excess returns rise steeply with leverage, as one would expect. The unexpected

relationship is along the other axis. For a fixed debt level of 60 (say), an increase in

uncertainty about log V from 20% to 70% lowers expected returns by between 2% and

8%, depending on T . DMS report a return differential of about 80 basis points a month

between the first and fifth quintile portfolios formed according to dispersion ranking.

The theory here can easily generate differences of this magnitude. That a fully rational

model with unexceptional parameter values can produce a strongly negative relationship

between risk (of a particular type) and reward is remarkable.

The plots also vividly illustrate the main testable implication mentioned above: The

effect of parameter uncertainty declines with debt. For an unlevered firm there is no ω̃

sensitivity at all, implying that dispersion of beliefs should not affect expected returns.

For firms closer to nominal insolvency, on the other hand, the effect can be extreme.

The empirical work in the next section will thus focus on the sign of the cross second

derivative.

One question the figure cannot address is what the range of values of parameter

uncertainty is likely to be in practice. This matters because if reasonable information

parameters cannot produce much variation in ω̃, then it is unlikely that the model’s

effects are responsible for the variation in expected returns in the data. Likewise it might

be impossible to detect the hypothesized leverage interaction, unless in reality, firms do

exhibit wide enough variation in parameter uncertainty.

Under the model, the steady-state posterior standard deviation ω̃1/2 is determined
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by three factors. First, the informativeness of the joint observation (dU, dΛ) is governed

by their correlations with dV . Second, these signals are redundant, and so are less

informative together, to the extent that they are correlated with each other. Third, the

level of the signal U is informative about V because the two are cointegrated (unlike

V and Λ). The parameter governing the strength of this relation is κ, which can be

interpreted as the decay rate of the error innovations dη. Equivalently, the half-life of

these shocks is log 2/κ. So if κ is large, U never wanders very far from V and inferences

about fundamental value are easier to make.

To make things simple, I now will assume that η is uncorrelated with Λ and V . As

discussed in Subsection II.A above, there is essentially no loss in generality in doing

this, and it boils the covariance structure down to a single parameter ρV U = σV /σU or

equivalently ρηU = ση/σU =
√

1− ρ2
V U . Fixing the fundamental volatility σV at 0.2 as

before, these correlations are then determined by the error volatility ση, which is a more

intuitive quantity. Figure 2 plots the long-run level of uncertainty ω̃1/2 as a function

of ση and the error half-life log 2/κ. Recall that ση is the variable that would directly

correspond to dispersion of analyst estimates under the multiple signal interpretation. In

the IBES data, it is not at all unusual to see analyst disagreements of over 50% or to see

complete consensus (dispersion equal to zero). So the range of ση plotted seems realistic.

For the other axis, one could perhaps interpret this half-life as the average length of

time that analysts (and others) can be persistently wrong about a company’s underlying

financial picture. For the most transparent and forthcoming firms, this might be only

a few months (e.g., between quarterly reports). At the other end of the spectrum, it is

not at all hard (these days) to find examples of companies that have successfully misled

investors for years.

Figure 2 about here.
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As the figure shows, these ranges of parameters imply a long-run level of uncertainty

about fundamental value of between 0 and 70% or so, which confirms that reasonable

assumptions about information can produce a broad range along this dimension. In this

context, I am reminded of Fischer Black’s (1986) dictum that the stock market in general

is probably “efficient” to within a factor of two. Interpreting this as a statement about

the standard deviation of beliefs about fundamental values, a factor of two corresponds

on a log scale to ω̃1/2 ≈ 0.7, which again suggests that the model is implying plausible

levels of uncertainty.

This section has established that when firms have risky debt in their capital structure,

their stock returns should be expected to decline as uncertainty about fundamentals

increases. Furthermore, when that uncertainty is generated by a noisy-signal model with

reasonable parameter values, the magnitude of the effects are easily large (and variable)

enough to account for the patterns in the data. I now ask whether the theory can go

beyond the anomalous patterns it was designed to explain and survive the test of its own

new predictions.

III . Empirical Evidence

Suppose dispersion of analysts’ beliefs is not systematically related across stocks to

the fundamental systematic risk of underlying assets. In terms of the model’s notation,

this means that ρ
(i)
V Λ σ

(i)
V does not covary with σ(i)

η or ω̃(i) as i ranges across firms. In

that case, the theory developed in the previous section for a single firm also implies that

variation in dispersion across firms will, holding other things equal, also be associated

with variation in expected returns because of the presence of debt in most firms’ capital

structure. For this to be a valid explanation of the findings of Diether, Malloy, and

Scherbina (2002), it must be that the strength of this association increases in leverage. I
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now test this proposition empirically.

I follow the cross-sectional literature by implementing this test using standard Fama

and MacBeth (1973) regressions. The main hypothesis then boils down to the assertion

that the coefficient on an interaction term (i.e., the product) between a dispersion proxy

and a leverage proxy ought to be significant and negative. Taken literally, the model

offers an explicit nonlinear expression for expected returns for each firm. But the simplest

specification captures the essence of the model’s insight without leaning too heavily on

the over-stylized framework. Indeed, a glance at Figure 1 suggests that a formulation

along the lines of

a + b · leverage · (c− dispersion)

(with b, and c > 0) should well approximate the full model expected return function.

This approximation also points to a second prediction of the model: The dispersion effect

should not enter on its own in the presence of the interaction term. In terms of economic

intuition, this just captures the restriction that there should be no role for parameter

risk when firms have no debt.

I carry out the test using the intersection of the CRSP, COMPUSTAT, and IBES

universes for every month from January 1983 to December 2001.11 The main econometric

challenges are constructing meaningful proxies and holding other things equal.

My primary proxy for leverage will be book value of debt over the sum of book

value of debt and market value of equity, which I call L. Later I will also construct a

measure closer to the quantity that actually enters my model: Face value of debt over

total firm market value. This involves a model-based adjustment to book debt since debt

market values are unavailable. Neither measure captures off-balance-sheet contributions

to leverage, such as pension liabilities and derivative obligations.

My proxy for dispersion of beliefs is essentially the same as that used by DMS: The
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month-end standard deviation of current-fiscal-year earnings estimates across analysts

tracked by IBES. The number and quality of analysts varies across firms. But DMS

show that the expected return effects are not sensitive to the inclusion of controls for

this heterogeneity. Those authors do document an important truncation bias in the

standard deviation as computed by IBES. So accurate numbers must be recomputed

from the detailed history of individual forecasts. I use only the latest forecast made by

each analyst, and I eliminate forecasts that are over 6 months old or that pertain to fiscal

periods that have already ended.12 DMS normalize each stock’s standard deviation by

the mean of the estimates, throwing out firm-months where this denominator is zero. I

call this measure DISP1. Since this sacrifices some valid data and artificially inflates

observations near zero, I also compute a measure, DISP2, that instead normalizes by

book value of assets. This scaling more accurately represents the quantity dV/V that

the model describes.

Figure 3 shows a histogram of these two measures for a typical month. Both measures

display extreme right skewness. (Notice the log scale on the vertical axis.) This is

problematic for two reasons. First, there is the general danger that outliers will distort

OLS estimates. And second, for the particular specification at hand, it will give the

regressions very low power to detect interaction effects. This is because the outliers

all lie in the direction (high dispersion) for which the model expected return surfaces

flatten out and the cross-derivative diminishes.13 I deal with this by transforming both

dispersion measures into percentile ranks. Besides being more robust, this fits the data

better, significantly increasing the R2s in all cases. It also enables one to interpret the

regression coefficients in terms of the performance of portfolios sorted by dispersion.

Figure 3 about here.
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The basic results are shown in Table I. The top panel uses DISP1 and the bottom

panel uses DISP2. With either measure, the main implications of the model are well

supported. In the presence of the interaction term, there is no significant dispersion effect.

The interaction coefficient itself is negative and significant (except in one specification).

Finally, the leverage coefficient is positive and significant, as the model implies it should

be.14 In all, this is a striking collection of successes for the model. The interaction test

especially – being purely motivated by theory, previously unexamined, and not obviously

explainable by alternative theories – provides strong evidence in support of the basic

insight behind the theory.

Table I about here.

Examining the coefficients in terms of economic significance, the estimates imply

that a low dispersion firm (10th percentile) with high leverage (90%) would outperform

a high dispersion one (90th percentile) with low leverage (10%) by between 60 and 90

basis points per month. Firms with no debt have essentially the same expected return

whether they are in the 99th dispersion percentile or the first. These numbers suggest

that the model’s consequences may be of practical as well as theoretical importance.

The specifications in Table I are unconditional however, and these initial conclusions

could be sensitive to cross-sectional variation in the underlying firm parameters. Most

important among these is the asset risk premium π (c.f. equation (7)), which would char-

acterize firm in the absence of debt. The model’s predictions apply to the incremental

effects of debt and dispersion with this fundamental expected return premium held fixed.

I now try to control for possible cross-sectional differences in it. As the introduction

noted, the theory here offers no new suggestions about how to identify the sources of

fundamental risk that would drive these differences. So, in Table II I simply introduce
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the standard controls: Size, book-to-market ratio, and momentum.15 The top two lines

indicate that doing this does not affect the original findings. With either measure of dis-

persion, the interaction term is actually strengthened (more negative) and the dispersion

term alone remains insignificant. The leverage coefficients are still positive but somewhat

diminished. This is due to the strong association between leverage and book-to-market.

The latter absorbs most of the explanatory power of the former, as noted by Fama and

French (1992), and becomes highly significant in these specifications.

Table II about here.

The next two rows of the table take the controls one step further by applying a

two-step procedure that first orthogonalizes both leverage and dispersion with respect

to the expected return proxies.16 If leverage and dispersion are themselves endogenous

quantities, influenced in part by the the cost of capital (risk premium) of the underlying

business, then the estimated coefficients from the original regressions might still be dis-

torted by the dual role the proxies are playing. The table shows, however, that this does

not appear to be a concern. The estimated coefficients are little changed.

The other important parameter in the model not controlled for so far is the volatility

of the underlying asset value, σV . Here there are also reasons for concern. As with the

underlying risk premium, it is certainly plausible that this measure of risk covaries in the

cross-section with dispersion or leverage or both. And, again, endogeneity of leverage

(and possibly of dispersion) clearly matters since riskiness of assets is undoubtedly a

major determinant of the amount of debt firms take on. A new complication, also, is

that leverage in turn influences stock volatility – which is the most tangible way of getting

at asset risk. So, as a first step in controlling for variation in σV , I attempt to unlever the

equity volatility estimated each month from CRSP returns. Then I follow the same steps
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as above: I include the control itself in the return regressions, and also orthogonalize the

dispersion and leverage proxies with respect to it (along with all the earlier controls),

and then use the residuals in place of the original variables.

Table III shows the results.17 The first two regressions employ a crude de-leveraging

that sets σ̂V = σ̂P (1−L). The bottom two regressions employ the model’s own dynamic

relation between these two volatilities to solve for σV . This procedure requires simulta-

neously solving for the model’s leverage ratio, M ≡ e−r τ K/S, which I interpret as the

face value of debt over market value of assets.18 So for consistency I use this measure in

the regressions as well.

Table III about here.

Either way, the previous findings are upheld. There is no significant dispersion effect

independent of leverage, and the interaction is significant and negative. These specifi-

cations show no separate role for leverage, which, as above, is not inconsistent with the

model. The book-to-market ratio is picking up the role of debt while also proxying for the

positive role of other model parameters.19 It seems safe to conclude, at this point, that

the initial success of the theoretical predictions was not due to any confounding cross-

sectional correlation between the main proxies and other factors influencing equity’s risk

and return.

To summarize, this section has documented a new significant feature of the cross-

section of expected returns: A negative interaction effect between leverage and dispersion

of beliefs. Rather than presenting a new puzzle, however, this pattern was predicted by

a simple classical model of information and risky debt. That model, in turn, accounts

for the original puzzle of a negative effect of dispersion alone. The results serve as a
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reminder of the complex and important role played by capital structure in continuously

altering the exposure of equity to the underlying risks of a firm’s business.

IV. Concluding Remarks

One of the most intriguing aspects of the original phenomenon reported by Diether,

Malloy, and Scherbina (2002) is the suggestion that, to the extent that dispersion of earn-

ings expectations is under the control of firms themselves, they might actually benefit,

via a lower cost of equity capital, by increasing disagreement. Or, at the very least, the

finding casts strong doubt on the notion that transparent disclosures and timely earnings

guidance are in a firm’s own best interests. The results of this paper not only support

these impressions, but also offer a straightforward explanation. For levered firms, adding

idiosyncratic uncertainty about cash flows increases the option value of equity. In fact,

the situation is exactly analogous to the so-called asset substitution agency problem in

corporate finance, except that here a separate – and much simpler – channel is involved.

No assets need be substituted to achieve the desired result. All that is required is obfus-

cation.

Does this happen? In a sense, the thesis of this paper is that it should, at least

when firms have debt. And this prediction is also supported in additional regressions

reported by DMS. High (book) leverage and poor past performance are associated with

higher dispersion in the cross-section, suggesting that firms with higher incentives to

dissemble may in fact do so. This interpretation is bolstered by the surprising fact that

high book-to-market ratios also entail higher dispersion. One might have expected the

reverse: That dispersion might be higher for firms with more intangible value. Instead

distressed firms are more prone to analyst disagreement despite their smaller intangible
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component. It seems plausible that this is due, at least in part, to a deliberate response

of managers to bad news. The model here offers a rationale for such behavior.

Understanding the complete game determining the amount and accuracy of infor-

mation reported by managers is a topic of enormous current interest and importance.

This paper has only attempted to model the asset pricing consequences of an exogenous

information setting. Still, it demonstrates that this is a crucial facet of the problem that

yields some striking implications. Moreover, there appears to be compelling empirical

support for its basic linkage between leverage and uncertainty about fundamentals in

determining expected returns.

Appendix: Filtering Equations

This appendix provides explicit representations for the endogenous quantities that

arise in the filtering problem of Section II.A.

To start, write the complete system of state, vt, and observation, (ut, λt) ≡ (log Ut, log Λt),

evolution as

dvt = ε̄ dt + σV dW V
t

dut = ε̄− κ(ut − vt) dt + σU dWU
t

dλ = −r̄ dt + σΛ dWΛ
t ,

where r̄ ≡ (r + 1
2
σ2

Λ) and σU dWU ≡ σV dW V + ση dW η. Notice that the second line uses

η = u− v to eliminate any explicit reference to the noise process.
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Let Σ be the covariance matrix between the two observable processes. That is,

Σ =




σ2
U σUΛ

σUΛ σ2
Λ


 .

When the error component of the signal, η, is assumed to be orthogonal to both V and

Λ, then σUΛ is also equal to ρV Λ σV σΛ. Let Σ−1/2 denote any matrix square root of Σ.

Now define the bivariate innovation process dŴt to be

dŴt = Σ−1/2




dut − Ẽt[dut]

dλt − Ẽt[dλt]


 .

Then the results of Section 12.3 in Liptser and Shiryaev (1977) imply that dŴt is a

standard Brownian motion, and that the conditional expectation m̃t ≡ Ẽt[vt] evolves

according to

dm̃t = ε̄ dt + ĥ′t dŴt,

where ĥt is given by

ĥt = Σ−1/2




σV U + κ ω̃t

σV Λ


 .

This vector gives the sensitivity of the conditional expectation to the two sources of

information. The terms σV U and σV Λ reflect the known covariances of the unobservable

process with the two types of innovation. The additional term κ ω̃t increases the reaction

of m̃ to u shocks because v appears in the true drift of u. Here the intuition is more subtle.

Even if shocks to u were uncorrelated with shocks to v, the presence of u in the drift

means that some part of the observed surprise in u (i.e., dut− Ẽt[dut]) will have been due

to misestimation of the true drift. Bayesian updating will then try to improve estimates

of the level of v by exploiting this extra information. Positive surprises probably mean
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that the drift was underestimated, and so m̃ should be increased based on the portion of

the surprise that was likely due to this error.

To connect the above vector quantities to the notation used in the text, note that the

scalar processes h̃t and W̃t can be defined implicitly by the relations

h̃t dW̃t = ĥ′t dŴt

and

h̃2
t = ĥ′tĥt.

Next, the classical analysis also yields the result that the conditional variance process

ω̃t solves the ordinary differential equation

σ2
V +

dω̃t

dt
= ĥ′tĥt = h̃2(ω̃t).

The steady state value must solve the time-homogeneous version of this, which shows

that h̃2(ω̃) = σ2
V , as claimed in the text. Solving explicitly for the limiting value ω̃ yields

ω̃ =
σ2

V

κ
(1− ρ2

V Λ)





√√√√1 +
(1− ρ2

V U)

(1− ρ2
V Λ)

− 1



 .

This is the expression plotted in Figure 2. It does use the orthogonality assumptions on

η, which also imply ρ2
ηV = (ση/σV )2 = (1− ρ2

V U) (see also footnote 5).
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Pástor, L̂uboŝ, and Pietro Veronesi, 2003, Stock valuation and learning about profitabil-

ity, Journal of Finance , forthcoming.

Zarnowitz, Victor, and Louis A. Lambros, 1987, Consensus and uncertainty in economic

prediction, Journal of Political Economy 95, 591–621.

28



Table I

Return Regressions

The table shows results from monthly Fama-MacBeth regressions of returns on measures of analyst
forecast dispersion and leverage, and their product. The variable DISP1 is the standard deviation of
current fiscal-year forecasts divided by the mean of the forecasts. The variable DISP2 is the standard
deviation divided by the firm’s most recently reported asset value. Both measures are transformed into
percentile rank form. The leverage measure L is the most recently reported book value of debt divided
by the sum of that debt and the month-end market value of equity. The data are monthly observations
from January 1983 through December 2001. The rightmost column is the arithmetic average of the R2s
of the individual regressions. The t statistics are in parentheses.

Independent
variables Dispersion Leverage Interaction R2

DISP1, L -.0059 0.42
(2.46)
-.0058 .0049 1.44
(2.68 ) (1.24)
-.0041 .0071 -.0044 1.53
(1.44) (2.23) (1.19)

.0103 -.0113 1.33
(2.19) (3.28 )

DISP2, L -.0035 0.65
(1.09)
-.0027 .0035 1.82
(1.09 ) (0.79)
.0017 .0089 -.0124 2.00
(0.60) (2.32) (2.27)

.0074 -.0097 1.80
(1.45) (2.02)
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Table II

Return Regressions with Expected Return Controls

The table shows results from monthly Fama-MacBeth regressions of returns on measures of analyst fore-
cast dispersion and leverage, and their product, as well as on controls for expected return of underlying
assets. The variable SZ denotes log market value of equity; BM is log of the ratio of book equity to
market value of equity; R12 is the total stock return over the 11 months preceding the previous month;
and DISP1, DISP2, and L are described in the caption to Table I. The bottom two specifications em-
ploy versions of these variables that have been orthogonalized (via a pooled regression) with respect to
the expected return controls. The data are monthly observations from January 1983 through December
2001. The rightmost column is the arithmetic average of the R2s of the individual regressions. The t

statistics are in parentheses.

Independent
variables Dispersion Leverage Interaction R2

DISP1, L; -.0004 .0031 -.0090 4.41
SZ, BM, R12 (0.13) (0.85) (2.36)

DISP2, L; .0028 .0034 -.0131 4.46
SZ, BM, R12 (0.98) (0.90) (2.70)

Orthogonalized DISP1, L; -.0038 .0024 -.0074 4.38
SZ, BM, R12 (1.82) (0.68) (2.00)

Orthogonalized DISP2, L; -.0022 .0036 -.0124 4.39
SZ, BM, R12 (1.01) (0.98) (2.70)
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Table III

Return Regressions with Expected Return and Volatility Controls

The table shows results from monthly Fama-MacBeth regressions of returns on measures of analyst
forecast dispersion and leverage and their product, as well as on controls for expected return and volatility
of underlying assets. The variable σ̂P is the prior month standard deviation of daily stock returns; σ̂V

and M are the implicit model values of asset volatility and leverage, respectively, (the latter defined as
present value of debt over firm market value) that simultaneously match the observed market value of
equity and equity return volatility. The orthogonalized variables are residuals from a first-stage pooled
regression on the controls. The variables SZ, BM, and R12 are described in the caption to Table II.
The variables DISP1, DISP2, and L are described in the caption to Table I. The data are monthly
observations from January 1983 through December 2001. The rightmost column is the arithmetic average
of the R2s of the individual regressions. The t statistics are in parentheses.

Independent
variables Dispersion Leverage Interaction R2

DISP2, L, .0038 -.0039 -.0143 5.28
SZ, BM, R12, σ̂P (1-L) (1.61) (1.24) (2.96)

Orthogonalized DISP2, L, -.0017 -.0018 -.0175 5.22
SZ, BM, R12, σ̂P (1-L) (0.38) (0.51) (3.00)

DISP2, M, .0029 -.0008 -.0100 5.32
SZ, BM, R12, σ̂V (1.29) (0.35) (2.70)

Orthogonalized DISP2, M, -.0013 -.0017 -.0082 5.28
SZ, BM, R12, σ̂V (0.70) (0.81) (2.26)
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Figure 1 Risk premium for the levered firm.

The figures show the expected excess return for a levered firm under the model of Section II.
The different panels correspond to different choices of the cash-flow horizon T . The firm has a
value of S = 100 and an unlevered expected excess return of 0.05. Face value of debt K varies
along the left axis and the amount of parameter uncertainty ω̃1/2 varies along the right axis.
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Figure 2 Determinants of parameter uncertainty.

The figure shows the steady-state level of posterior standard deviation of beliefs, ω̃1/2, about
log fundamental value as a function of the size and persistence of shocks to the noise process
ηt. The size of shocks is measured by ση and their persistence by the half-life log 2/κ. The plot
assumes that η is uncorrelated with both the stochastic discount factor and the fundamental
value process. See the appendix for the full expression.
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Figure 3 Raw dispersion measures.

The figures show histograms of the normalized dispersion measures DISP1 and DISP2 for
December 2000. The measure DISP1 is the standard deviation of analyst earnings estimates
for the current fiscal year divided by the mean of the same estimates. The measure DISP2
normalizes instead by the most recently reported book value of assets.
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Notes

1 For this to translate into a statement about returns, the overpricing needs to be corrected.

So the story actually implies that changes in dispersion should be correlated with returns.

2 That said, the two explanations can be empirically distinguished. As DMS fully acknowl-

edge, the evidence tying the dispersion effect in returns to short-sales costs is mixed at

best.

3 It should be pointed out that the behavioral story advanced by DMS does not rely on this

interpretation, and instead views dispersion more literally as a measure of heterogeneity

of beliefs.

4 Filtering problems are often written in terms of unobserved growth rates of an observable

process (rather than a level). The current problem can be equivalently expressed in that

form as well. If we define the drift of ut (supressing the superscript) as µt, then

µt = ε̄− κ (ut − vt).

Hence the system can be written

dµt = κ(ε̄− µt) dt + ση dW η
t

dut = µt dt + σU dWU
t ,

with σU dWU ≡ σV dW V +ση dW η. Inferences about vt can then be made indirectly from

inferences about µt because vt = ut + (µt − ε̄)/κ.

5 The scalar Brownian motion dWU
t (which I didn’t define above) is implicitly defined

(along with σU) by σU dWU
t = ση dW η

t + σV dW V
t . This is where it becomes convenient
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to take η orthogonal to V . Then σ2
U = σ2

η + σ2
V and ρV U = σV /σU .

6 This reasoning suggests that the strategy of attempting to bury bad news by reporting

it on busy days is completely misguided. Investors will only want compensation for the

information uncertainty if bad news might come on bad (aggregate) days.

7 These results generalize in a straightforward way to the interesting case where both assets

(V ) and liabilities (K) evolve stochastically. The form of (8) will be the same, in analogy

to the formula for an option to exchange one asset for another.

8 Note that the unlevered claim St does not actually have to be a traded asset.

9 The proof of this is simply a matter of calculus. So I will omit it.

10 Fixing S while varying other parameters is equivalent to varying the conditional expec-

tation m̃ in an appropriate fashion.

11 Overall these tend to be relatively large firms with above average past performance. A

detailed discussion of the sample properties (and summary statistics) can be found in

DMS.

12 I make no further adjustment for the obvious seasonality in dispersion: There is much

less room for disagreement about “current” year earnings when, for instance, three of

four quarters’ results have already been reported. However, I did repeat the tests below

after dividing dispersion by the square root of the length of time remaining to the end

of the fiscal period. Results were unaffected.

13 To see this another way, think of the model again as a + b · leverage · (c − dispersion).

Fitting this with extremely large dispersion values requires taking c large to keep the

leverage effect positive. But this forces b to be small to keep the leverage effect from
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being extreme for small levels of dispersion, where most of the observations are.

14 All reported t-statistics are adjusted for heteroskedasticity and autocorrelation. The

choice of lag length in estimating the covariance matrix of coefficients has no effect on

any of the conclusions.

15 Using the book-to-market ratio as a proxy for fundamental risk in this context is a

debatable call, because under the model, this ratio is also a function of leverage and

parameter risk. The treatment here is traditional and facilitates comparison with the

existing literature. However, it is worth pointing out that the model implies a positive

role for book-to-market even if it has no relation to systematic risk. Holding systematic

risk fixed, a lower ratio means higher idiosyncratic risk and hence – just as with dispersion

– lower expected returns. Hecht (2002), in a cross-sectional study of total firm returns

that effectively strips out the influence of leverage, finds that most of the book-to-market

effect does in fact vanish, and concludes that the ratio’s apparent influence on returns

must stem from capital structure effects. The model here provides a formal explanation

for exactly how these capital structure effects might work.

16 This is carried out by a single pooled regression.

17 Here I only show the results for DISP2 for brevity. The findings are the same with

DISP1.

18 To solve for the volatility and market value of the firm, the model requires a time horizon,

T , and a risk-free rate r. I used 4 years and 4% for these, but the results are not sensitive

to these choices. Details are available from the author upon request.

19 Another interpretation of the role of B/M, suggested by Brennan, Wang, and Xia (2002),

is as a control for the duration of cash-flows, which is T here. As such, it would also be
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expected to enter positively: Longer duration (lower B/M) means higher option value

and lower expected returns (see footnote 15 above).
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