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Abstract—Based on the visibility analysis data during

November 2009 through April 2010 over North America from the

Aviation Digital Database Service (ADDS), the performance of

low visibility/fog predictions from the current operational 12 km-

NAM, 13 km-RUC and 32 km-WRF-NMM models at the National

Centers for Environmental Prediction (NCEP) was evaluated. The

evaluation shows that the performance of the low visibility/fog

forecasts from these models is still poor in comparison to those of

precipitation forecasts from the same models. In order to improve

the skill of the low visibility/fog prediction, three efforts have been

made at NCEP, including application of a rule-based fog detection

scheme, extension of the NCEP Short Range Ensemble Forecast

System (SREF) to fog ensemble probabilistic forecasts, and a

combination of these two applications. How to apply these tech-

niques in fog prediction is described and evaluated with the same

visibility analysis data over the same period of time. The evaluation

results demonstrate that using the multi-rule-based fog detection

scheme significantly improves the fog forecast skill for all three

models relative to visibility-diagnosed fog prediction, and with a

combination of both rule-based fog detection and the ensemble

technique, the performance skill of fog forecasting can be further

raised.

1. Introduction

Fog is infrequent but it may be a very hazardous

weather condition related to all forms of traffic and

on health. Central guidance from the National Cen-

ters for Environmental Prediction (NCEP) on fog

thresholds is being considered and particularly

emphasized by the National Weather Service (NWS)

of the National Oceanic and Atmospheric Adminis-

tration (NOAA), and in NextGen (SOUDERS, 2010), a

future Air Traffic Management System of the Federal

Aviation Administration (FAA), in the United States.

However, fog is still not a part of the documents of

NCEP central guidance, due to its complexity and

limitation of computational resources. Instead, it is

only diagnosed locally by forecasters either through

subjective visibility forecasts or through other vari-

ables from model output such as MOS (Model Output

Statistics). Nevertheless, effort to add it to NCEP’s

central guidance is considered to be important. As a

step forward in response to the request from NWS

and NextGen, low visibility/fog forecast has been

experimentally implemented, tested and validated

using NCEP operational models.

Currently, the visibility-liquid water content

(LWC) relationship of (STOELINGA and WARNER,

1999) is used in horizontal visibility computations in

all the NCEP models. However, studies have shown

that this visibility computation has large errors, par-

ticularly in the situation of fog when droplet number

concentration (Nd) is not considered (GULTEPE and

ISAAC, 2004; GULTEPE et al., 2006). Besides the error

from the visibility computation, a bias in the model

LWC near the surface is another source of errors. The

visibility computation error can be reduced by

applying Gultepe’s visibility versus LWC and Nd

parameterization (GULTEPE et al., 2006, 2009),

whereas the reduction of model LWC error is extre-

mely difficult due to a lack of fog physics for all fog

types, model bias and low resolution of the opera-

tional models. To overcome these drawbacks, we

have recently developed a rule-based fog detection

scheme (ZHOU and DU, 2010). The rule-based fog

detection scheme is a combination of rules related to

surface LWC, relative humidity with respect to water

(RH), wind speed, and fog top (Zt) and base (Zb)

heights for various fog types.

The second improvement effort is extending the

NCEP Short Range Ensemble Forecast System

(SREF, DU et al., 2006) to fog forecasting. Because
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of the chaotic and highly nonlinear nature of the

atmospheric system, initially small differences in

either initial conditions (ICs) or the model itself can

amplify over forecast time and become large after a

certain period of time. Since intrinsic uncertainties

always exist in both ICs and model physics, a forecast

by a single model run always has uncertainties too.

Such forecast uncertainties vary from time to time,

from location to location, and from case to case. A

dynamical way to quantify such flow-dependent

forecast uncertainties is to use an ensemble fore-

casting (LEITH, 1974). Instead of using a single model

simulation, multiple model integrations are per-

formed that were initiated with slightly different ICs

and/or based on different model configurations.

Given the intrinsic uncertainties in model forecasts,

and the fact that fog forecasting is believed to be

extremely sensitive to the initial conditions and the

physics schemes used in a prediction system (BERGOT

and GUEDALIA, 1994; BERGOT, 2005), it is strongly

desirable to have fog prediction as a part of the

NCEP’s ensemble framework.

Both the rule-based fog detection scheme and the

ensemble application have been tested and evaluated

in the World Meteorological Organization (WMO)’s

2008 Beijing Olympic Game Research and Demon-

stration Project (B08RDP) over China with 7 months

of data from 13 Chinese cities (ZHOU and DU, 2010).

The evaluations have shown that the rule-based fog

detection scheme could improve the fog forecasting

score by a factor of two while its combination with

the ensemble technique could add extra value to fog

predictions. After B08RDP was finished, these two

techniques, individually and combined, were further

tested and evaluated over North America for NCEP’s

regional models and the ensemble forecast system.

The objective of this paper is to evaluate (1)

performance of fog prediction using the visibility-

LWC relationship from the current NCEP’s regional

models, (2) rule-based fog detection scheme, and (3)

ensemble forecast technique for fog detection over

the North American domain. This paper is organized

as follows: section 2 is for the configurations of the

models and the ensemble forecast system involved,

section 3 is for the evaluation method for the results,

and section 4 is for the results and discussion, fol-

lowed by the conclusion section.

2. Configurations and Methods

2.1. Configuration of Regional Models

The three regional operational models over North

American domain (see Fig. 1) used for low visibility

(Vis) and fog prediction verifications are (1) 13-km

resolution Rapid Update Cycle model, or RUC-13

(BENJAMIN, 2003), (2) 12-km resolution North Amer-

ican Mesoscale model, or NAM-12 (ROGERS et al.,

2005), and (3) 32-km resolution Non-hydrostatistic

Mesoscale Model, or NMM-32 (JANJIĆ, 2001). RUC-

13 runs hourly, specifically for aviation weather

forecasts. NAM-12 runs four times (00, 06, 12 and

18Z) per day to provide central guidance to regular

weather for all local forecasters in the United States.

NMM-32 is NCEP’s WRF (Weather Research and

Forecasting) model, which is also one of the base

models in the SREF system running four times (03,

09, 15 and 21Z) per day to generate both regular and

aviation weather guidance. In fact, NAM-12 is also a

WRF-NMM based model but runs in different

horizontal resolution from NMM-32. The parameter-

ization schemes employed in both NAM-12 and

RUC-13 are listed in Table 1.

2.2. Visibility Computation Method

Currently, there is no direct fog prediction

algorithm used in either the NCEP’s regional models

or SREF system. Instead, the visibility computation

in these models is based on the algorithm of

(STOELINGA and WARNER, 1999) that uses rain, snow,

and cloud water or ice amount. In the case of fog, the

KUNKEL (1984) Vis-LWC parameterization is

employed, where the LWC is the value at the lowest

model level.

2.3. Rule-Based Fog Detection Scheme

Although one hopes that LWC at the lowest

model level can be explicitly used for fog calculation,

experience tells us that the visibility-LWC approach

doesn’t work well in the operational models mainly

for two reasons: one is the too coarse model spatial

resolution and the other is the lack of sophisticated

fog physics. As a result, LWC from the models is

B. Zhou et al. Pure Appl. Geophys.



usually not reliable enough to represent fog; there-

fore, models tend to seriously miss the fog forecast

and Vis in many cases (GULTEPE et al., 2006; GULTEPE

AND MILBRANDT, 2007). To better detect fog, other

variables besides LWC should be considered to

enhance the hit rate of fog forecasting.

For this reason, the rule-based approach used in

the fog prediction is suggested for the post-processor

of the NCEP models (1 for yes and 0 for no fog

occurrence) given as

LWC at model lowest level � 0:015 g kg�1; OR

ð1aÞ

Cloud top height Ztð Þ � 400 m

AND Cloud base height Zbð Þ� 50 m,OR ð1bÞ

10m - Wind Speed U10mð Þ
� 1 ms�1AND 2 m-RH RH2mð Þ� 95 % ð1cÞ

This diagnosis is similar to the conceptual scheme

suggested by CROFT (1997). The LWC rule in (1a)

comes from the definition of fog visibility range.

With Kunkel’s equation (KUNKEL, 1984), LWC

C0.015 g kg-1 is equivalent to visibility less than

1,000 m, that is defined as a threshold for fog

definition by the World Meteorology Organization

(WMO). The Zt threshold in (1b) follows the general

features of fog. Observations indicate that the depth

of most fogs on land is about 100–200 m (radiation

fog). Some marine fogs or advection fogs are deeper,

but rarely exceed 400 m. The Zb threshold in Eq. 1b

reflects the lowest level height of our models. To deal

with ground fog, the RH-wind rule (1c) is included.

The selection of thresholds for surface wind and RH

over large domains in a model is more difficult than

those of LWC and cloud heights because fog usually

occurs locally and different models can have different

RH and wind biases. In many cases, fog was reported

while the model RH was less than 100%. Thus, weak

turbulence is usually a necessary condition for

radiation fog formation. With appropriate thresholds

for RH and turbulence intensity (e.g. those suggested

Figure 1
Model domain for NCEP regional models: dash line is the running domain and solid line is the output domain, where the low visibility and fog

forecasts were evaluated
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for radiation fog by ZHOU and FERRIER, 2008), fog in a

model grid area can be diagnosed more efficiently.

Unfortunately, the turbulence intensity was not an

output from these models. An alternative approach is

using a parameter related to a combination of surface

RH and wind speed but no quantitative relationship

between wind speed and turbulence intensity has

been developed for fog formation. The forecasters

usually use RH at 2 m (C90–100%, GULTEPE et al.,

2007; some use dew point temperature) and 10 m

wind speed (B1–2 ms-1) to check for fog occurrence,

and these thresholds vary depending on location and

model type. For centralized fog forecasting, the

optimized RH and wind speed thresholds as 95%

and 1 ms-1, respectively, were usually used by local

forecasters (Justin Arnott, NWS Binghamton, NY,

personal communication). This application is slightly

different than that of B08RDP due to a wet bias in

current NCEP regional models.

2.4. Configuration of the NCEP SREF System

The NCEP SREF system has four base models,

including 32 km Eta (BLACK, 1994), 32 km WRF-

NMM (or NCEP-WRF, JANJIĆ, 2001), 32 km WRF-

ARW (or NCAR-WRF, SKAMAROCK, 2005) and

45 km RSM, the regional spectral model (JUANG,

1997). Each base model is expanded with perturbed

ICs to generate more ensemble members by using one

control IC plus one or two pairs of positive and

negative perturbed ICs (called ‘‘breeding’’, TOTH and

KALNAY, 1993) for each of the base models. These

bred ensemble members are further combined with

various physical parameterizations, PBL, surface

layer and radiative schemes to construct a total of

21 members in the current SREF system. The

configuration of different models with different

parameterizations and schemes in the SREF is also

listed in Table 1, which shows that the four base

models are perturbed into six, five, five, and five

members, respectively. All models in Table 1 use the

same Noah Land Surface Model (NOAH, EK et al.,

2003).

Such a combination of various models with

different physical schemes and parameterization,

and using a variety of ICs, the simulation errors for

fog forecasting can appropriately be addressed.

However, for an ensemble forecast system, the total

number of members, or ensemble size, is often a

concern for a particular weather’s ensemble probabi-

listic prediction. The question is, ‘‘are the 21

members in the SREF large enough to increase the

Table 1

Configuration of NAM, RUC and the SREF system

Models (members: ctr, p, n control,

positive and negative perturbs)

Convection

scheme

Micro-physics Res (km)/levels PBL IC/BC Long wave Short wave

NAM BMJ Ferrier 12/60 MYJ GDAS/GDAS GFDL GFDL

RUC GD Thompson 13/50 MYJ GDAS/GDAS RRTM Dudhia

Eta (3: ctr, p1, n1) BMJ Ferrier 32/60 MYJ NDAS/GENS GFDL GFDL

Eta (3: ctr, p1, n1) KF Ferrier 32/60 MYJ NDAS/GENS GFDL GFDL

NMM (5: ctr, p1, n1, p2, n2) BMJ Ferrier 32/52 MYJ GDAS/GENS GFDL GFDL

ARW (5: ctr, p1,n1, p2, n2) KF Ferrier 35/36 YSU GDAS/GENS RRTM Dudhia

RSM (3: ctr, p1, n1) SAS ZC 32/28 MRF GDAS/GENS RRTM NASA

RSM (2: p2, n2) RAS ZC 32/28 MRF GDAS/GENS RRTM NASA

KF stands for the Kain-Fritsch scheme (KAIN and FRITSCH, 1990), SAS for the simplified Arakawa-Schubert convection scheme (KANAMITSU

et al., 2002), RAS for the relaxed Arakawa-Schubert (RAS) convective scheme (KANAMITSU, et al., 2002), Ferrier for the Ferrier mircophysical

scheme (FERRIER, 2002), ZC for the Zhao and Carr micro-physics scheme (ZHAO and CARR, 1997), YSU for the Yonsei University PBL scheme

(HONG and DUDHIA, 2003), GDAS and NDAS for the Global Data Assimilation System, and NAM Data Assimilation System, MRF for

Medium Range Forecast system (belong to NCEP global forecast system GFS) and GENS for the NCEP’s Global Ensemble System (TOTH and

KALNAY, 1993). GD stands for Grell-Devenyi convective scheme (GRELL and DEVENYI, 2002), Thompson for the Thompson micro-physics

scheme (THOMPSON et al., 2004), BMJ for the Betts-Miller-Janjić convective scheme (BMJ, JANJIĆ, 1996), MYJ for the Mellor-Yamada-Janjić

scheme (JANJIĆ, 1996), GFDL for the Geophysical Fluid Dynamics Lab schemes (long wave: SCHWARZKOPF and FELS, 1991, short wave: LACIS

and HANSEN, 1974), RRTM for the Rapid Radiative Transfer model (MLAWER et al., 1997), Dudhia for the Dudhia short wave scheme (DUDHIA,

1989)

B. Zhou et al. Pure Appl. Geophys.



forecast skill in fog prediction?’’ The answer can be

yes because of saturation of ensemble members.

According to the theory of RICHARDSON (2001), the

optimum ensemble size of an ensemble forecast

system will eventually saturate. That is, an initial

increase in the ensemble size has a bigger effect on

the prediction skill enhancement, but if there is a

further increase in the model populations, results will

reach to a saturation level. At that point, there will be

no more improvement in the prediction. The theory

also indicates that the most effective ensemble size

for a rare-occurrence weather range is within 10

members, whereas the most effective ensemble size

for frequent weather events can be reduced to as low

as within five members. Therefore, ensemble size of

21 for the SREF is good enough to satisfy our

objectives in a fog probabilistic forecast.

2.5. Probabilistic Distribution Function

Computation

In this study, fog types are not considered and the

ensemble member models used are not tested for

specific fog type. Thus, at the present stage, equal

capability of the each member used in ensemble runs

to capture fog is assumed. This means that each

ensemble member in the SREF system has an equal-

member weight. For such an equal member weight

ensemble system, the ensemble probabilistic predic-

tion, or probability distribution function (PDF), for a

Vis range smaller than a threshold value (Vist) for

each grid number (i, j) at a forecast time is given as :

Pi;j t,vtð Þ ¼ 1

N

XN

m¼1

Km
i;j t,vtð Þ for Vis�Vist

or fog is predictedð Þ ð2Þ

where Km
i;j t,vtð Þ ¼ 1 if a member (m) predicts

Vis B Vist in a grid at forecast time t. In simulations,

the Vist is set up as 500, 1,000, 2,000, 4,000,

8,000 m. The N is the ensemble size and taken as 21

in the SREF. The Pi,j (t, Vist) is the ensemble prob-

ability at t for Vis B Vist for grid i = 1,2, …nx, and

j = 1,2, …, ny, where nx and ny are max size of the

model area. For example, in a grid, if there are 10

members that predict fog, then the ensemble fog

prediction probability is 10/21 (47.6%). Thus, for

each forecast run, the ensemble probability distribu-

tion function for various visibility thresholds can be

computed over the entire domain based on Eq. (2)

and validated grid to grid against observations at all

grids within the domain.

3. Validation Data and Evaluation Method

3.1. Validation Data

An evaluation of fog prediction over a large

domain like North America is generally difficult due

to a lack of direct fog observations and the fact that

model-based fog value represents a grid area that

cannot be interpolated to the location of the obser-

vational sites. Thus, using high resolution visibility

analysis (also gridded data) from the Aviation Digital

Database Service (ADDS) of the Aviation Weather

Center, NCEP, as validation truth for our objective

verification is appropriate. The grid space for the

ADDS data is about 5 km which is routinely analyzed

from more than 5,000 surface station observations

over the US and Canada through a data assimilation

system. The 5 km grid space is much smaller than

that of the regional models. To objectively compare

the grid-scaled visibility values or fog events from

the regional models against the ADDS data at the

same locations, the visibility/fog forecast from each

model was first downscaled to match the ADDS grid

values using copyg (the NCEP’s grid converter; ZHOU

et al., 2011) with the nearest neighbor option (no

interpolation is performed because fog is considered a

non-continuous feature in the horizontal direction).

3.2. Evaluation Method

The observational data period covers 6 months

from Nov 1, 2009 to Apr 30, 2010. This time period

is chosen because of an observed high occurrence of

fog events in this period. If the observed/forecast

visibility is B1 km in a grid, the ADDS/model grid is

considered as foggy. The model forecast visibility is

compared to the observed visibility in a grid as

follows: if visibility is B1 km in both observation and

model grids, this is assigned as a ‘‘hit’’; if forecast

visibility is B1 km but observed is [1 km, this is

Forecast of Low Visibility and Fog from NCEP



assigned as a ‘‘false alarm’’; and if forecast visibility

is [1 km but observed is B1 km, the result is

assigned as a ‘‘missed alarm’’. Using these statistical

classifications, forecast scores such as bias, probabil-

ity of detection (POD), and equitable threat score

(ETS) can be derived. The bias here is defined by the

ratio of total forecast events divided by total observed

events. If the bias is larger/smaller than 1, it means

the model is over/under predicting. An over-predic-

tion system means higher false alarms but not

necessarily higher hits. In comparison to the usual

threat score (TS or critical success index, CSI), the

ETS has an advantage that removes the random hit

contribution from the score. These traditional scores

can generally be used to evaluate both a single model

(deterministic) forecast and an ensemble probabilistic

forecast in deterministic aspect. Since ETS is an

overall score that considers combined effects (POD,

false alarm rate, and missing rate, etc.), the perfor-

mance ranking of evaluated models will be based on

the values of ETS in the latter sections.

The traditional (deterministic) scores are usually

not enough to evaluate a probabilistic forecast from

an ensemble forecast system. Some other probabilis-

tic measures, such as Brier skill score, resolution and

reliability, are also required as we did during an

evaluation of the ensemble fog forecast in B08RDP

(ZHOU and DU, 2010). Since our purpose is to

compare the fog predictions from a single and an

ensemble system (not to evaluate the ensemble

forecast system itself), only deterministic verification

scores are evaluated. To compare a single model

forecast and an ensemble probabilistic forecast in a

deterministic aspect, the probabilistic visibility/fog

forecast should be converted to a deterministic

visibility/fog forecast with a certain probability

threshold percentage. For a given percentage thresh-

old (such as 50%), a probabilistic forecast can be

viewed as a deterministic forecast in the way that an

event (e.g. visibility \1,000 m) is expected to occur

when the forecast probability is greater than or equal

to the selected threshold. That is, if more than 10 out

of 21 members in the SREF predict visibility

B1,000 m in same grid, fog is expected in this grid

by the ensemble forecast. To evaluate an ensemble

forecast for a fog event over the entire PDF space,

several probability thresholds such as 10, 20, 30, …

90, and 100% were selected to evaluate which

ensemble probability thresholds will yield the best

prediction performance.

4. Results and Discussions

4.1. Performance of Current Regional Models

In this section, first, results are presented for low

visibility forecast from each regional model. The

evaluation scores from NAM-12, RUC-13, and

NMM-32 are illustrated in Fig. 2, from which the

performance for fog range (visibility B1 km) can be

estimated. Figure 2 shows that the general perfor-

mances degrade as the visibility threshold decreases.

For the visibility threshold of fog, the POD is about

25% for RUC-13, 10% for NAM-12 and only 5% for

NMM-32. Since NAM is also a NMM-based regional

model, it can be expected that the coarse resolution

model NMM-32 has a lower hit rate (POD) or is more

prone to miss the forecast than that of higher

resolution (12 km) of the same model in fog

prediction.

Another feature shown in Fig. 2b is that the POD

for dense fog (visibility B0.5 km) is lower than that

of shallow fog intensity (visibility [0.5 km but

B1 km). In other words, dense fog events are more

difficult to detect by these operational models in fog

prediction. Figure 2a shows significant high biases

for fog predictions by all three models (where bias

*1 means no bias). A positive bias implies an over-

prediction or a false alarm of fog forecast. For

shallow fog, the highest bias is 3 (or 300%) for RUC-

13. The bias for dense fog prediction is even larger.

Such high positive biases for all models indicate that

very low visibility or fog from all NCEP regional

models is highly overpredicted. The low POD with

high bias leads to poor general performances as

indicated by ETS (Fig. 2c), where the ETS values for

all three models are around 5%. These scores are

similar to the single model evaluation in B08RDP. To

compare the ETS values for fog prediction to those

for precipitation prediction, the average precipitation

forecast ETS (*35%) from the same NCEP regional

models is also marked in Fig. 2c, meaning that the

ETS for fog prediction is much lower than that for

B. Zhou et al. Pure Appl. Geophys.



precipitation prediction. Therefore, in order to catch

up the performance of precipitation forecast at NCEP,

tremendous efforts should be dedicated to improving

our fog forecast. Low POD (Fig. 2b) and high bias

(Fig. 2a) implies that the current models overpredict

low visibility or fog occurrence in some areas but

miss most of the real fog events. In fact, the visibility-

diagnosed fog method is based on the LWC-rule.

This is the reason why current visibility-diagnosed

fog prediction, without input from other variables,

has very low performance (GULTEPE et al., 2006).

To examine this feature, let us further look at an

east coast regional fog event that occurred on Nov 16,

2009 (Fig. 3a). This particular regional fog event

covered several east coast states, including northern

Florida, almost all of South Carolina and North

Carolina, most of Virginia, Maryland and Delaware,

extending to some regions of Pennsylvania, New

York and some of Ontario and Quebec of Canada.

The visibility computations in the three models are

obtained from fog LWC. The green colors (dark

green, green and light green) indicate the fog

intensities expressed by visibility levels and loca-

tions. Comparing the observed fog location and its

intensity (Fig. 3a) with the fog visibility at 12 h

forecast by NAM (Fig. 3b), one can easily notice that

the NAM forecast missed most of the fog events in

Virginia and North Carolina although it captured

some of the fog locations in Maryland and Delaware.

However, it issued false alarms for half of Pennsyl-

vania and New York states, and most of the other

northeast states as well as some regions of Canada. At

hour 9, the forecast by NMM-32 (Fig. 3c) almost

missed the entire fog event over the east coast. This

case for Vis, again, shows a worst performance of a

lower resolution model than that of higher resolution

0

1

2

3

4

5

6

7

8

9

10

Visibility range ( < m)

B
ia

s
NAM-12

NMM-32

RUC-13Fog

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

Visibility Range ( < m )

P
ro

b
ab

ili
ty

 o
f 

D
et

ec
ti

o
n

 (
P

O
D

) 
   

   

NAM-12

NMM-32

RUC-13

Fog

(b)

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

0 1000 2000 3000 4000 5000 6000 7000

Visibility Ran ge ( < m ) 

E
q

u
it

ab
le

 T
h

re
at

 S
co

re
 (

 E
T

S
 )

   
  

NAM-12

NMM-32

RUC-13

     Precip  fcst  from NCEP models:  
                      ETS ~  0.35

Fog

(c)

Figure 2
Tests for visibility over different thresholds (x-axis): bias (a), POD (b) and ETS (c) for each of the three regional models
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model. The RUC’s 12 h forecast for this case can be

seen by comparing Fig. 3a and d. The RUC forecast

also missed most of the fog in Maryland, Virginia,

North Carolina and South Carolina, and over-pre-

dicted the fog in Pennsylvania and New York states

as well as over most of the other northeast regions,

similar to the NAM forecast. This case clearly

illustrates the ‘‘large false alarm’’ feature of low

visibility and fog forecast from current models and

reminds us that incorrectly predicted location and

amount of grid-scaled fog LWC at the surface makes

it difficult to precisely compute the visibility in the

case of fog.

4.2. Suggested Improvements

Three approaches have been directed at improv-

ing the performance of the low visibility and fog

forecasting in NCEP. The first is applying the rule-

based fog diagnostic scheme in the three regional

models, the second is conducting an ensemble fog

prediction system in SREF, and the third is a

combination of the rule-based and ensemble tech-

nique for fog prediction. These are explained as

below.

4.2.1 The Rule Based Technique

The rule-based fog diagnostic scheme has been

extensively evaluated in B08RDP in China (ZHOU

and DU 2010). Because fog is extremely sensitive to

surface variables, particularly to RH and wind speeds,

selections of different threshold values in the rule will

have significant impacts on the performance of the

rule-based fog forecast. The sensitivity test of the

RH-wind rule in B08RDP has shown that if the RH

threshold is too large (*100%) or the wind threshold

too small, the performance will hit a limit after which

the RH-wind rule no longer has an effect on fog

forecast and only the cloud rule (1b) and LWC rule

(1a) play roles under such circumstances. On the

other hand, if the threshold for RH is too low or the

wind is too strong, the overall performance score will

be even lower than that of the visibility-diagnosed

method due to too many false alarms. In other words,

inappropriate RH-wind thresholds may cause a

negative contribution to the forecast score. Therefore,

RH and wind thresholds are critical but their appro-

priate thresholds are more important to a successful

fog forecast. The evaluation in B08RDP also revealed

that with a rule-based fog detection scheme, the

prediction ETS was tripled in comparison to that with

the visibility-diagnosed method, in which the RH-

wind rule has most of the contribution (as large as

50%) to the skill improvement. This implies that

radiation fog is the most frequent fog type since RH

and calm air are two critical conditions for radiation

fog. One can expect that without the RH-wind rule

the models would miss at least 50% of the fog events.

In this study, the rule-based fog detection scheme was

further tested in each of the three regional models

over North America and evaluated with the same

ADDS visibility analysis data. The evaluated scores

for various models are listed in Table 2, in which

NAM-12 shows better POD than the other two

models. Despite its higher bias, NAM-12 has best

overall performance indicated by the ETS. Compar-

ing NAM-12 and NMM-32, it is demonstrated again

that the forecast skill of a higher resolution model is

better than that of a lower resolution peer model for

fog prediction with the rule-based detection.

4.2.2 Ensemble Fog Forecasting Technique

This technique involves the computation of the low

visibility (B1,000 and B500 m, respectively) based

on ensemble predictions from the SREF system.

Computing the ensemble probability for low visibility

in a grid from the SREF is relatively simple: the first

step is counting how many ensemble members

predict low visibility in this grid, and then dividing

the count by the ensemble size, 21, to obtain the

probability of low visibility in this grid with Eq. 2.

To use the traditional measures in evaluation of an

ensemble forecast, the SREF low visibility probabi-

listic forecast was first converted to a deterministic

forecast with a certain probability threshold. To

evaluate with which ensemble forecast probability

threshold the SREF has the best low visibility

prediction performance, multiple forecast probability

thresholds, generally from 10 to 100%, with every

10% as an interval, were selected and evaluated

respectively for both visibility B1,000 and 500 m

forecasts (see Fig. 4). The results reveal that (1) the

B. Zhou et al. Pure Appl. Geophys.



performance for visibility B500 m forecast is con-

sistently lower than that for visibility B1,000 m

forecast over all of ensemble forecast probability

thresholds, which means that dense fog is also more

difficult to predict with an ensemble forecast system

as with a single model; and (2) for different ensemble

forecast probability thresholds the SREF for both low

visibility ranges (1,000 and 500 m) have different

forecast performances. For a smaller forecast prob-

ability threshold, the ensemble gives a higher POD

(Fig. 4b) but with a large bias as a penalty (Fig. 4a).

To decrease the bias, a larger forecast probability

threshold should be chosen. In this case, the forecast

POD decreases accordingly. Therefore, how to

choose an appropriate forecast probability threshold

in fog prediction means a trade-off bias and POD.

Different users may select different forecast proba-

bility thresholds based on their own unique

requirements, objectives, economic values (cost-loss

analysis), and decision making procedures. For

Figure 3
Nov 16, 2009 fog visibility observations from ADDS at 1200 UTC in east coast (a) and their 12 h forecasts from NMM-12 (b), 9 h forecast

from NMM-32 (c) and 12 h forecast from RUC-13 (d). Dark green is for visibility\0.2 km, green for\0.5 km and light green for\1.0 km to

represent different fog intensities

Table 2

Scores for rule-based fog detection method used in single models

NAM-12 RUC-13 NMM-32

Bias 2.40 2.25 1.60

POD 0.290 0.240 0.185

ETS 0.071 0.065 0.050
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example, if the cost of protection is not so high in

comparison to the loss, users may prefer a higher

POD and may not worry about a false alarm, while

others may be the opposite. If one is more concerned

about POD, select a smaller forecast probability

threshold; otherwise, select a larger forecast proba-

bility threshold to reduce false alarms and bias. One

of the advantages of an ensemble forecast system is

that it provides different users with different choices

and decision making procedures based on their own

needs but a single model forecast can not. Such a

distribution of evaluation scores over different prob-

ability thresholds from an ensemble forecast system

provides users with a decision making reference. If

there is no preference, a medium range of forecast

probability threshold can be selected around 40–50%,

where the ensemble forecast usually has a best

performance as shown in Fig. 4c. It should be noted

that such a 40–50% probability range is a common

feature for all of probabilistic forecast systems

(WILKS, 2006).

4.2.3 Integrated Technique

This technique is a combination of the rule-based fog

detection into the SREF system. The method is as

follows: first apply the rule-based fog detection in

each of the ensemble members from the SREF to

determine whether this member predicts fog in a grid,

and then use this to compute the ensemble PDF for

fog occurrence with Eq. 2, based on how many

ensemble members have fog occurrence in the same

grid. To determine if one issues a fog forecast in a

grid depends on what probability threshold is chosen.

To evaluate which probability threshold in the third

effort (i.e. combination of rule-based diagnosis and

ensemble) has the best fog prediction performance,

different probability thresholds were tested and

shown in Table 3. One can see that comparing to

the low visibility ensemble prediction, the fog

ensemble prediction combined with the rule-based

fog detection has a similar distribution of score over

different forecast probability thresholds (comparing

Table 3 and Fig. 4): both POD and bias (Table 3, row

2 and row 3) consistently decrease as the forecast

probability threshold increases. Particularly, the ETS

score (Table 3, row 4) has its best value near 40%. If

choosing a smaller probability threshold, the bias will

be very high although it can raise the POD. To reduce

the bias or false alarms, a larger probability threshold

should be used. To see how this works in an actual

ensemble fog forecast, let us see the SREF fog

prediction for the same case in Fig. 3. Figure 5 shows

the 9 h forecast of fog ensemble PDF from the SREF

over North America valid at 12Z, Nov 16, 2009. The

regions where fog most likely occurred are marked

with cyan-orange-red colors. Comparing the obser-

vation in Fig. 3a and the PDF forecast in Fig. 5, it can

be seen that fog events on the east coast are covered

by yellow–red colors (ensemble probability larger

than 70–100%), in North Carolina by cyan-yellow

colors (larger than 50–70%) and in South Carolina by

cyan color (larger than 40–50%), significantly

improving the fog predictability in comparison to

the single models as shown in Fig. 3b, c, and d.

Having a closer look at Fig. 5, It can be noticed that

many regions are colored with low PDF (10–20%). If

selecting a higher probability threshold value, e.g.

40% (cyan color in Fig. 5), the false alarm regions

with small PDF (10–20%) can be filtered out, leading

to better agreement with observations (Fig. 4a) and

improving the ensemble forecast performance.

4.3. Comparison of the Three Techniques

The comparisons of bias, POD and ETS among

the three techniques are summarized in Fig. 6. As a

reference, the scores of visibility method with single

mode and ensemble are also indicated. For the first

technique with rule-based fog detection scheme

applied in the each model, although a small bias is

added in comparison to the visibility method (black

bars compared to grey bars for NAM-12, RUC-13

and NMM-32 in Fig. 6a), more POD and much

bigger ETS are rewarded (black bars compared to

grey bars for NAM-12, RUC-13 and NMM-32 in

Fig. 6b, c), increased by almost 100% of ETS scores

for NAM-12 and NMM-32, 30% for RUC-13. The

reason for better performance with the rule-based fog

detection is that fog has various types and each type

of fog has its particular formation and development

mechanism. The visibility-diagnosed forecast from

current regional operational models at NCEP is based

on the LWC rule, which may not efficiently capture

B. Zhou et al. Pure Appl. Geophys.



all types of fog. For local fog or radiation fog, it more

locally forms and develops, and in most situations, is

grid-scaled weather which may not be adequately

represented by the cloud schemes employed in the

operational models. On the other hand, any opera-

tional model presents certain degrees of model bias,

particularly, in the surface humidity, temperature and

wind speed forecasts. Such biases lead to miss or

false prediction of grid-scaled fog in the models in

many situations and reduce the forecast POD and

overall performance as a result.

Since NMM-32 is one of the base models in the

SREF system, it is possible to compare the perfor-

mances of the visibility-diagnosed fog detection

(B1,000 m) between the SREF and the single model

NMM-32 forecasts at same resolution (32 km) for the
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Figure 4
Scores for low visibility ensemble probabilistic prediction from the SREF: Bias (a), POD (b) and ETS (c) under different forecast probability

thresholds as in x-axis

Table 3

Scores for fog probabilistic prediction for different probability thresholds from the SREF combined with the rule based fog detection method

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bias 12.0 4.5 2.3 1.3 1.1 0.9 0.7 0.5 0.3 0.2

POD 0.62 0.49 0.40 0.25 0.22 0.15 0.12 0.10 0.05 0.02

ETS 0.03 0.04 0.05 0.06 0.05 0.04 0.04 0.03 0.02 0.01
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second effort. Although bias reduction is not so

significant for the SREF from its base model NMM-

32 (compare light grey bars for NMM-32 and SREF-

32 in Fig. 6a), the increases in POD (compare light

grey bars for NMM-32 and SREF-32 in Fig. 6b) and

ETS (compare light grey bars for NMM-32 and

SREF-32 in Fig. 6c) in the SREF forecast for low

visibility are obvious in comparison to those of

NMM-32.

With further combination of rule-based fog

detection into the ensemble in the third effort, extra

POD and ETS scores were added (black bars

compared to grey bars for SREF-32 in Fig. 6b and

c), although a bias is expected (black bar compared to

grey bar for SREF-32 in Fig. 6a). This demonstrated

the better performance of ensemble over single model

fog prediction over North America. It is of interest to

observe that the overall score ETS of the SREF

prediction, particularly with rule-based fog detection,

still can not beat the same scores for NAM-12 and

RUC-13 (black bar for SREF-32 compared to blacks

for NAM-12 and RUC-13 in Fig. 6c). The results

(ETS) of the ensemble (10 members with 15 km

resolution) in B08RDP are found to be better than

what is obtained from the SREF presented in this

paper. It should be kept in mind that the resolution of

the current SREF is 32 km, which is much lower than

that of NAM-12, RUC-13 and the ensemble in

B08RDP. This implies that an increase in the

resolution of the ensemble system for fog prediction

is an effective way to further raise its performance

after the ensemble size has reached a saturation size.

The horizontal resolution of the current SREF is still

not high enough to skillfully predict local grid-scaled

fog events even with a better fog detection scheme.

This once again prompts us to increase the horizontal

resolution to get a better performance for fog

ensemble prediction from the SREF in the near

future.

To demonstrate meteorologically why an ensem-

ble forecast works better than a single forecast (in

same model resolution), two aspects need to be

explained. First, fog is a threshold weather event that

is extremely sensitive to model ICs, which in general

can have some errors. Small errors in the ICs will

lead to totally different fog forecasts. After the ICs

are perturbed around their control values in an

ensemble system, the forecast can effectively

Figure 5
9 h fog ensemble probability forecast from the SREF issued at 03Z, Nov 16, 2009, valid at 12Z on the same day. The color bar is the ensemble

probability indicator
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encompass all possible IC values that fog may meet

in the forecast. Thus, the chance of correctly

forecasting fog can be significantly increased. Sec-

ond, fog has various types but one model or one

scheme employed may not deal with all fog types. In

many cases, a model performs well for a specific fog

type (SHI et al., 2010) but it may not work well at all

the times and over all the locations. Therefore, it is

suggested an ensemble forecasting can do a better job

for fog forecasting compared to the use of single

model based predictions.

5. Conclusion

The operational forecasts from NCEP’s three

regional models, NAM-12, RUC-13 and WRF-

NMM-32, over North America were evaluated

against the ADDS data (observations) from Novem-

ber 2009 to April 2010, and their performances of

low visibility and fog prediction were estimated.

The results show that the performances of the fog

prediction from current models still need significant

improvements. The reason may be that these models are

unable to predict correct locations and intensities of fog

events due probably too-coarse model resolutions,

missing appropriate fog physics in the models (GULTEPE

and MILBRANDT, 2007), and model numerical bias.

In order to improve the low visibility and fog

prediction to meet the new request of NextGen of the

FAA, three efforts have been made at NCEP;

(a) develop an application of a rule- based fog

detection scheme, (b) develop an application of

multi-model and multi-physics SREF system, and

(c) integrate these two applications. The rule-based

fog detection includes LWC, cloud and RH-wind
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parameters to enhance fog detection. The ensemble

application is used to address the errors and uncer-

tainties in initial conditions, model systems, and

physical schemes, and it is believed that fog is

extremely sensitive to these conditions.

The validations suggested the following

conclusions

• The rule-based fog detection scheme applied in the

regional models doubled their forecast skill scores

in comparison to visibility-diagnosed forecast from

the same models.

• Ensemble fog prediction from the SREF also

enhanced the prediction performance even if only

with visibility-diagnosed fog detection in the SREF

models. The reason is that the ensemble system can

effectively encompass the perturbed initial condi-

tions and capture various fog types with multi-

models and multi-physics schemes.

• Combining rule-based fog detection into the

ensemble prediction from the SREF, extra score

was added to the forecast. The evaluation also

indicated that if the ensemble size has been large

enough, an increase in its resolution is one of

critical and effective way to further raise the

performance of ensemble fog prediction.

In the future, observations collected during an ice

fog project (GULTEPE, et al., 2008) will be tested for

model performances in the cold climates. Although

rule-based scheme improves the performance of fog

prediction, it only predict occurrence of fog, no fog

intensity can be diagnosed. In overcome this draw-

back, some new technique based on ZHOU and

FERRIER (2008) has been suggested (ZHOU, 2011). The

next step is testing and evaluation of the new scheme

with both single model and the ensemble system at

NCEP.
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