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Forecasting Agricultural 
Commodity Prices with 

Asymmetric-Error GARCH Models 

Octavio A. Ramirez and Mohamadou Fadiga 

The performance of a proposed asymmetric-error GARCH model is evaluated in com- 
parison to the normal-error- and Student-t-GARCH models through three applications 
involving forecasts of U.S. soybean, sorghum, and wheat prices. The applications 
illustrate the relative advantages of the proposed model specification when the error 
term is asymmetrically distributed, and provide improved probabilistic forecasts for 
the prices of these commodities. 
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Introduction 

Producing reliable forecasts is often a key objective in agricultural economics research. 
A reliable forecast should be unbiased or at  least consistent, should provide a narrow 
confidence interval for the expectedvalue of the economic variable of interest, and should 
incorporate confidence bands that adequately portray the likelihood of the variable's 
occurrences. Time-series models have been widely used for these purposes. Among them, 
the generalized autoregressive conditional heteroskedastic process (GARCH) (Bollerslev 
1986) and its predecessor, the autoregressive conditional heteroskedastic process (ARCH) 
(Engle), have proven useful for modeling a variety of time-series phenomena because 
many time-series variables exhibit autocorrelation as well as dynamic heteroskedas- 
ticity. Some of these variables, however, are also nonnormally distributed. 

Agricultural economics applications of standard GARCH models include analyses by 
Moss, and by Moss, Shonkwiler, and Ford. Bollerslev (1987) proposed a nonnormal-error 
GARCH model of speculative prices and rates of return based on the Student-t distri- 
bution (t-GARCH), which is leptokurtic but symmetric. 

Yang and Brorsen, concerned with the nonnormality of daily cash prices, explored the 
use of a mixed diffusion-jump process, a deterministic chaos model, and the t-GARCH 
model to explain the stochastic behavior of these prices. They concluded that, while the 
t-GARCH model best explains daily cash price behavior, "it is not well calibrated" 
because it cannot explain all of the observed nonnormality (p. 714hreferring to the 
t-GARCH model's inability to account for the skewness in the distribution of cash prices. 

As shown by Pagan and Sabau; Lee and Hansen; and Deb, in finite sample sizes, mis- 
specification of the error-term distribution results in poor statistical properties, and an 
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unreliable quasi-maximum likelihood estimator. Ramirez and Shonkwiler report that 
symmetric-error GARCH models tend to underestimate the true standard errors of the 
intercept and slope parameter estimators when the true underlying error-term distri- 
bution is asymmetric. Because most GARCH applications occur with small- or moderate- 
sized samples, a flexible specification which can accommodate both error-term skewness 
and kurtosis is important to improve the reliability of quasi-maximum likelihood esti- 
mation of GARCH models. 

To address the problem of unreliable quasi-maximum likelihood estimation of GARCH 
models, Wang et al. recently proposed an asymmetric-error GARCH model based on the 
Exponential Generalized Beta 2 (EGB2) family of distributions and applied it in the 
modeling of exchange rates. According to McDonald and White, however, the EGB2 can 
only accommodate positive standardized (normal kurtosis = 0) kurtosis coefficients from 
0 to 6, and skewness coefficients between -2 and 2. These ranges of kurtosis and skew- 
ness coefficients might be a limitation in certain applications. 

In this study, an arguably more flexible asymmetric-error GARCH (A-GARCH) model 
is developed based on an expansion of the S,family of distributions (Johnson, Kotz, and 
Balakrishnan) which can accommodate any level of leptokurtosis and right or left skew- 
ness-specifically, kurtosis coefficients from 0 to w, and skewness coefficients from -w 

to m. The flexibility of the expanded S, family is exploited to estimate an A-GARCH in 
which error-term kurtosis and skewness are allowed to systematically change through 
time. A-GARCH models of U.S. soybean, sorghum, and wheat prices are estimated and 
their forecasting performance is evaluated in comparison to Bollerslev's normal-error 
(N-GARCH) and t-GARCH models.' 

The A-GARCH(p, q)  Model 

An A-GARCH(p, q) model analogous to Bollerslev's (1986) N-GARCH(p, q) is written as: 

where NN(0, h,) represents afamily of nonnormal distributions with mean zero and vari- 
ance h,. In the case of the t-GARCH models, e,-NN(0, h,) is assumed to follow a Student- 
t distribution with possibly variable degrees of freedom. In the EGB2, &, is assumed to 
follow an exponential generalized Beta of the second kind. In the A-GARCH(p, q) model, 
it is assumed e, can be adequately represented by the following expansion ofthe S, family 
of distributions: 

(2) et = [ ~ h , l ~ ( @ ,  p)I'/'Isinh(Ov,) - F(O, ~z)]] /O, v,-N(p, I), 

F(O, p) = E[sinh(Ov,)] = exp(02/2)sinh(OFz), and 

G(O, p) = Iexp(02) - 11 {exp(02)cosh(-2OP) + 11 /202, 

where -m < O < w, -m < pc m, and 0 < o < w are distributional parameters. 

' The A-GARCH is not directly compared to the EGB2-GARCH because the main means of comparison utilized in this 
analysis, i.e., the computation of confidence bands for the dependent variable occurrences, require simulation of random 
draws from the assumed en-or-termdistribution. To ourknowledge, there are no proceduresto simulate draws from anEGB2. 
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From the results of Johnson, Kotz, and Balakrishnan, it follows: 

(4) Skew [ E ~ ]  = S(O, p) = -?4wM(w - 112 [W {W + 21sinh(3SZ) + 3sinh(SZ)] /G(O, pl3", 

(5) Kurt [&,I = K(O, p) = {1/8{ w - l12[w2{w4 + 2w3 + 3w2 - 31cosh(4SZ) 

+ 4w2{w + 2lcosh(2R) + 3{2w + l ) ] / ~ ( @ ,  p)2}, 

where w = exp(Q2), SZ = -Op, and Skew [EJ and Kurt[~J refer to the standardized measures 
of skewness and excess kurtosis. As in the previously discussed t- and EGB2-GARCH 
models, equation (3) implies E[yJ and Var[~,] are the same as in Bollerslev's N-GARCH 
model. The error-term skewness and kurtosis are determined by the parameters Q and 
p. According to equations (4) and (5), if O = 0 and p = 0, then Kurt [EJ = 0 and Skew [EJ = 0, 
E, follows a normal distribution, and the proposed A-GARCH reduces to Bollerslev's 
N-GARCH. 

Higher absolute values of O cause increased positive kurtosis, up to infinity. If O z 0 
and p = 0, Kurt[~J z 0 but Skew [EJ = 0, which means that E, follows a leptokurtic but sym- 
metric distribution, such as the Student-t. If O z 0 and p >  0, Kurt[&,] # 0 and Skew [&,I > 0, 
implying leptokurtosis and right-skewness, while p < 0 results in Skew [EJ < 0 (left-skew- 
ness). Further, note that as p goes to w (-m), Skew [&,I also approaches w (-w). Although 
higher absolute values of pincrease both skewness and kurtosis, kurtosis can be lowered 
by reducing O. 

In practice, under error-term normality, O and p will approach zero and the A-GARCH 
will approach Bollerslev's N-GARCH. This is another advantage of the proposed speci- 
fication: the null hypothesis of an N-GARCH versus the alternative of a leptokurtic but 
symmetric-error A-GARCH can be directly tested by H,: O = p = 0 versus HA: O > 0. The 
null hypothesis of a leptokurtic but symmetric-error GARCH versus the alternative of 
a full (leptokurtic and skewed error) A-GARCH is given by H,: 0 > 0, p =  0 versus HA: 
O > 0, p + 0. The null of an N-GARCH versus the alternative of a full A-GARCH can be 
directly tested as well. 

Another advantage of the A-GARCH is that the degree of skewness and kurtosis of 
the error-term distribution can be assumed variable across observations without inter- 
fering with the estimation of the linear regression and GARCH-process parameters. 
This is achieved by making either O or p, or both, a function of time or any other potenti- 
ally relevant factor. Given equations (1) and (2), the concentrated log-likelihood function 
for estimating the A-GARCH model is obtained using the transformation technique 
(Mood, Graybill, and Boes): 

where G, = {htlG(O, p)(l + R:)]-~; Ht = {~inh-~(R,)lO) - p; R, = [O(yt - xi b)l{htlG(O, p)l-Ml 
+ F(O, p); t = 1, ..., T refers to theobservations; sinh-l(R,) = ln{Rt + (1 + R:)*] is the inverse 
hyperbolic sine function; and h,, F(O, p), and G(Q, p) are as given in equations (1) and (2). 

Maximization of (6) with respect to the model's parameters is achieved through 
numerical optimization algorithms, which are available in most econometric software 
packages, including the GAUSS-386i program (Aptech Systems, Inc.) used in this study. 
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These pre-programmed procedures only require a few standard command lines and the 
log-likelihood function. These procedures achieve convergence when the gradients of all 
parameter estimates are less than some arbitrarily small amount. In addition to 
parameter estimates, they provide standard errors based on anumerical estimate of the 
Hessian matrix of this function. In most applications, the optimization algorithm con- 
verges quickly and properly, as long as the startingvalues are reasonable. The intercept, 
slope, and GARCH process parameter estimates from an N-GARCH model are excellent 
starting values, while it is best to start with 0.1 c O c 0.5 and p = 0. 

Although there were no convergence problems in any of the applications discussed 
below, these could arise when working with small samples (Tc 40) or when there is a 
highly insignificant parameter. Then, the log-likelihood function will converge to a max- 
imum but not be able to compute standard error estimates. This problem is attributed 
to the extreme flatness of the log-likelihood function at the maximum or to excessive 
differences in the magnitudes of the elements of the numerical estimate of the Hessian 
matrix that has to be inverted. 

As in any other quasi-maximum likelihood estimator, such as the N-, t- or EGB2- 
GARCH, if the regressors are fixed in relation to the error term, the A-GARCH esti- 
mators for the slope parameters will be unbiased. Also, as McDonald and Newey point 
out, so long as the error term is independent of the regressors, any quasi-maximum 
likelihood estimator of the mean of the distribution ofy, conditional on x, would be con- 
sistent. Thus, there is no need to assume that e, is a member of the expanded S, family 
to guarantee a consistent forecast. 

With regard to the flexibility of the proposed A-GARCH model, Johnson, Kotz, and 
Balakrishnan note that both the Gaussian and the lognormal family of densities are 
limiting cases of the S, family, which also provides for a close approximation of the 
Pearson family of distributions. They demonstrate that the S, family can accommodate 
any kurtosis-skewness combination below the lognormal line. Because these results 
apply to the expanded form of the S, family underlying the proposed asymmetric-error 
GARCH, it is clear the A-GARCH allows for any mean and variance, as well as for any 
combination of right or left skewness and leptokurtosis values which could be exhibited 
by a continuous unimodal variable. Under zero skewness, the A-GARCH allows for any 
possible mean-variance-leptokurtosis combination: it can precisely fit the first four 
central moments of any symmetric "thickn-tailed distribution. 

Normal-Error versus t- and A-GARCH Models 
of U.S. Commodity Prices 

The modeling strategy of Engle and Kraft, also used by Bollerslev (1986) to illustrate 
his GARCH expansion of Engle's ARCH process, is adopted here. In particular, it is 
assumed that real U.S. commodity prices may be forecasted on the basis of their past 
behavior, denoted by the following model: 

All models are estimated using the Newton-Raphson algorithm (cubic step-length 
calculation method) preprograrnmed in GAUSS-386i constrained maximum-likelihood 
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(CML) module. The model in equation (7) is first estimated for real, quarterly U.S. soy- 
bean (1924-20001, sorghum (1933-2000), and wheat (1913-2000) prices received by 
farmers, under the assumption of error-term normality. These nominal price data were 
compiled from the U.S. Department of Agriculture/National Agricultural Statistics Ser- 
vice (USDNNASS) database.' The price data were adjusted for inflation, with year 2000 
as a base, using the producer price index for nonprocessed agricultural products from 
the U.S. Department of Labor, Bureau of Labor  statistic^.^ 

All price series are found to be stationary according to augmented Dickey-Fuller tests. 
Also following Bollerslev (1986), the standardized GARCH residuals (&,lh?) are tested 
for independence. In the case of soybeans and wheat, several autocorrelations and 
partial autocorrelations are statistically significant at  the 5% level, and the Box-Pierce 
Q-statistic rejects the null hypothesis that the first 12 autocorrelation coefficients are 
all zero, also at  the 5% level. In the case of sorghum, only the seventh partial auto- 
correlation is significant a t  the 5% level, but the Q-statistic does not reject the joint null 
hypothesis of error-term independence a t  the 10% level. Closer examination of the 
correlograms suggests the autocorrelation patterns in the residuals of the soybean and 
wheat models are likely due to seasonality. 

Therefore, the data are seasonally adjusted following a standard centered multiplica- 
tive moving-average procedure. The deseasonalized data are also stationary, according 
to augmented Dickey-Fuller tests. N-, t- and A-GARCH models are then estimated with 
the deseasonalized price data. In the case of soybean and wheat prices, the standardized 
residuals do not show any statistically significant autocorrelations, partial autocorrela- 
tions, or Q-statistics, at  the 10% level. Deseasonalizing real prices solves the autocor- 
relation problem. Because deseasonalizing actually creates a residual autocorrelation 
problem in the case of sorghum, the models are estimated with seasonally adjusted 
soybean and wheat data, and with the unadjusted sorghum data (table 1). 

All GARCH parameters (a,, a,, and P,) are statistically different from zero at the 5% 
level, and all models satisfy the variance stationarity condition (0 < a, + P, < 1). Also, fol- 
lowing Bollerslev (1986), the D'Agostino skewness test statistic (S), Anscombe and Glynn 
kurtosis test statistic (K), and the D'Agostino-Pearson omnibus normality test statistic 
(K? (D'Agostino, Belanger, and D'Agostino) are applied to the standardized residuals 
( ~ ~ l h ? )  in the case of the N-GARCH models because, if the true errors are nonnormal, 
the residuals from an estimated N-GARCH are expected to be nonnormally distributed. 

Alternatively, because, in theory, the error term of the A-GARCH model is related to 
a normally distributed error through equation (2), if an estimated A-GARCH has appro- 
priately accounted for residual nonnormality, the residuals transformed by the inverse 
of (2) should be normally distributed. Therefore, to evaluate the former, the S, K, and 
K2 tests are applied to the standardized and normalized residuals ( I~ inh-~([@~, l{h  J 
G(@, p)I-%l + F(@, p))/@) - p) from the A-GARCH models. Because a Student-t random 
variable cannot be expressed as an algebraic transformation of a normal, the residuals 
from the t-GARCH models can be standardized but not normalized, making it difficult 
to ascertain how well the t-distribution is able to model error-term nonnormality in a 
particular application. 

The USDANASS database can be accessed online at http://www.usda.gov/nass/pubs/hisMata.ht. 
The U.S. Department of LaborBureau of Labor Statistics price index can be accessed online at http://www.bls.gov/. 
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Table 1. Parameter Estimates for Final N-, t-, and A-GARCH Models: U.S. Soy- 
bean, Sorghum, and Wheat Prices 

A. SOYBEAN PRICES (1924-20003 

N-GARCH t-GARCH A-GARCH 

Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error 

2*MVLLF 65.668 

Skewness statistic (S) 4.488 

Kurtosis statistic (K) 3.290 

Normality statistic (K2) 30.969 

B. SORGHUM PRICES (1933-2000) 

N-GARCH t-GARCH A-GARCH 

Parameter Estimate Std. Error Estimate Std. Error Estimate Std. Error 

2 *MVLLF 1.972 

Skewness statistic (S) 8.131 

Kurtosis statistic (K) 6.819 

Normality statistic (K2) 112.61 

( continued . . . ) 
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Table 1. Continued 

C. SOYBEAN PRICES (1913-2000) 

N-GARCH t-GARCH A-GARCH 

Parameter Estimate SM. Error Estimate SM. Error Estimate Std. Error 

Skewness statistic ( S )  0.483 

Kurtosis statistic ( K )  3.823 

Normality statistic (p) 14.846 

Notes: Single and double asterisks (*)denote statistical significance at the 10% and 5% levels, respectively, based 
on one-tailed t-tests for the GARCH process parameters, which are supposed to be positive, and two-tailed t-tests 
for all other parameters. The b,, el, and pl parameter and standard error estimates have been multiplied by 100. 
MVLLF indicates the maximum value reached by the concentrated log-likelihood function. 

Under the null hypothesis of normality, S and K are distributed approximately normal, 
and K? follows a xi l  distribution. Note, in the N-GARCH models, the null hypothesis of 
residual normality is rejected at the 1% level of statistical significance in all three cases. 
The S and K statistics indicate statistically significant error-term skewness and kurtosis 
in the case of soybean and sorghum prices, but only kurtosis in the case of wheat prices 
(table 1). 

Fully parameterized A-GARCH models (available from the authors on request) were 
initially estimated specifying the kurtosis and the skewness parameters (0 and p) as 
linear functions of time (0, = 0, + 0,t and = p,, + p,t). Single-parameter likelihood-ratio 
(LR) (xi,) tests and the usual t-tests are conducted separately to determine the statistical 
significance of Go, el, p,,, and p,. As expected, the LR and the t-tests yield similar results. 
The final A-GARCH models presented in table 1 were obtained by setting any of these 
four parameters (O,, 0,, p,,, or p,) equal to zero if it did not result in statistical signifi- 
cance at the 10% level. Consequently, the final models for soybean, sorghum, and wheat 
prices only include O,, p,, and p,; 0, and p,; and 0,, respectively. 

In the case of soybean prices (panel A of table I), 0, = 0 implies the error-term distri- 
bution was nearly normal during the 1920s. The positive estimate for 0, combined with 
a negative estimate for p, in this case results in the kurtosis coefficient increasing 
through time at a faster rate than the skewness coefficient. Specifically, the skewness 
and kurtosis coefficients, calculated using the formulas in equations (4) and (5 ) ,  are both 
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below 0.5 until 1943. By 1960, skewness reaches 1.2 and kurtosis 6.26. The estimated 
year 2000 error-term distribution is considerably skewed (3.34) and highly kurtotic 
(53.27). 

In the final A-GARCH sorghum price model (panel B, table 1),0, = 0 and y, = 0, but 
0, and p,, are statistically different from zero. The positive estimate for ~b implies a 
right-skewed and leptokurtic error distribution with constant skewness and kurtosis 
coefficients of 1.46 and 9.84, respectively. Note that some of these skewness-kurtosis 
combinations are not allowed by the EGB2 family. The EGB2-GARCH would not be as 
theoretically suitable to model soybean and sorghum prices. In the final A-GARCH wheat 
model (panel C, table I), only O, is statistically different from zero, implying an error- 
term distribution with a constant kurtosis coefficient of 3.78. 

In short, two of the three estimated A-GARCH models exhibit error-term distribu- 
tions that are substantially right-skewed, suggesting relatively high positive forecasting 
errors are more likely than negative errors of the same high magnitude. Right-skewed 
forecasting errors are expected because agricultural price series, even when expressed 
in real terms, usually exhibit more pronounced peaks on the up side than on the down 
side. In all three cases, likelihood-ratio tests (x:, = 113.06 - 65.67 = 47.39; X; = 69.40 - 
1.97 = 67.43; and = 472.59 - 449.86 = 22.73) rejected H,: O, = ~b = y, = 0, H,: 0, = p,, 
= 0, and H,: 0, = 0 at the 1% level (table I), implying the frnal A-GARCH models are 
significantly more likely to have generated the observed soybean, sorghum, and wheat 
price data than final N-GARCH models. 

Also note that the values taken by the S, K, a n d p  statistics for the standardized and 
normalized residuals from the final A-GARCH models are all less than one. These find- 
ings confirm the "normalizing" transformation implied by the expanded S, family was 
successful in removing the nonnormality from the GARCH residuals in all cases. In other 
words, the expanded S, family provides a good approximation to the nonnormal distri- 
bution of those residuals. 

Initial t-GARCH models were also estimated assuming that the degrees-of-freedom 
parameter (01, which determines the degree of leptokurtosis of the error-term distri- 
bution, was a function of time (0, = 0, + 0,t). As before, the final t-GARCH models were 
obtained by setting to zero either of the two parameters (0, or 0,) not statistically sig- 
nificant at the 10% level (table 1). The parameter 0, is only significant in the case of the 
soybeans model, resulting in the degrees-of-freedom parameter declining from 7.8 in 
1924 to 2.1 in the 2000. As in the A-GARCH model of soybean prices, the kurtosis coeffi- 
cient is markedly increasing through time. Also as in the A-GARCH models, the error- 
term kurtosis in the t-GARCH models of sorghum and wheat prices has remained 
constant though time. 

The t-GARCH approaches an N-GARCH as the degrees-of-freedom parameter (0) 
approaches infinity, i.e., at the boundary of the admissible parameter space. This 
relationship implies the distribution of a likelihood-ratio test statistic in which the 
N-GARCH is viewed as a restricted t-GARCH would be more concentrated toward zero 
than the probability distribution of a xfll variable (Bollerslev 1987). By comparing the 
likelihood-ratio test statistic with a x i l  (or a Xf21, when 0 = 0, = 0, + O,t), it follows that 
rejection of H,: N-GARCH in favor of HA: t-GARCH would be a safe conclusion. Such 
likelihood-ratio tests allow for rejection of H,: N-GARCH in favor of HA: t-GARCH in all 
three commodity price models (xi1 = 93.62 - 65.67 = 27.95; xFll = 56.65 - 1.97 = 54.68; 
and = 471.33 - 449.86 = 21.47). 
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With regard to forecasting performance, because of the partially adaptive nature of 
the A-GARCH models (McDonald and White), the standard error estimates for the 
intercept and "slope" parameters (b,, b,, b,, b,, b,, and b,) in these models are always 
(and sometimes substantially) lower than in the N-GARCH models. Also note the 
standard error estimates must be evaluated in light ofthe previously discussed evidence 
about the unreliability of quasi-maximum-likelihood estimation results when working 
with finite samples and a misspecified error-term distribution. In particular, symmetric- 
error GARCH models tend to underestimate the true standard errors of the intercept 
and slope parameter estimators when the true underlying error-term distribution is 
asymmetric. 

Given the A-GARCH is based on the most flexible error-term distribution, and that 
statistically significant skewness is detected in the cases of soybean and sorghum prices, 
the A-GARCH standard error estimates should be considered more reliable than those 
of the N- and t-GARCH models. The latter models likely underestimate the true standard 
errors. In the absence of significant skewness, as in the case of wheat price, the t- and 
A-GARCH models yield nearly identical results. 

Because of the differences in the intercept and slope parameter estimates, the point 
forecasts from the N-, t-, and A-GARCH models differ noticeably from one another. 
Specifically, the averages of the absolute differences between the within-sample forecasts 
from the N- versus the A-GARCH are 5 . 4 ~ ~  6.8$, and 1.8$/bushel in the case of the soy- 
bean, sorghum, and wheat models, respectively, while the maximum differences are 35$, 
46$, and lO$/bushel, respectively. Interestingly, larger average absolute differences are 
found between the N- and A-GARCH models in which the error terms exhibit more 
pronounced nonnormality. In spite of the large average absolute differences, the within- 
sample root mean squared prediction errors (RMSE) and the squares of the correlation 
coefficients between the observed and the predicted dependent variable values (R2s) are 
almost identical under these three types of models (table 2). Nearly equal RMSEs, how- 
ever, do not imply that the N-, t-, and A-GARCH model predictions and their associated 
confidence intervals are equally reliable. 

A reliable prediction is characterized by narrow and accurate confidence intervals for 
the dependent variable occurrences. In nonlinear models, confidence intervals are 
usually obtained by applying the numerical technique of Krinsky and Robb. Specifically, 
let hi (i = N, t, or A) be the k x 1 vector of maximum-likelihood estimators forb,, the vector 
of true population parameters underlying the N-, t-, or A-GARCH models, and ~ a r [ h i ]  
be the (k x k) estimated covariance matrix for hi. Then, a draw from the joint probability 
distribution of hi is simulated by: 

where z is a 1 x k vector of independent standard normal draws, Chol(.) denotes the 
Cholesky decomposition, and hi the 1 x k vector of ML parameter estimates obtained from 
hi. Repeated application of equation (8) yields an rn x k matrix (Si) of random variables 
with mean hi and covariance matrix ~ a r  [hi]. Under the correct model specification, hi is a 
consistent estimator forb,, and var[hi] is a consistent estimate for the theoretical covari- 
ance matrix of hi, implying Si is a theoretically correct probabilistic statement about bi. 

Thus, the boundaries of a (1 - a)% confidence interval for the expected soybean, 
sorghum, and wheat prices under the N-, t-, or A-GARCH models at  time period t can 



Table 2. Confidence Band Statistics for the N-, t, and A-GARCH Models: U.S. Soybean, Sorghum, and Wheat Prices 

SOYBEAN PRICE SORGHUM PRICE WEIEAT PRICE 

Description N-GARCH t-GARCH A-GARCH N-GARCH t-GARCH A-GARCH N-GARCH t-GARCH A-GARCH 

Average width of confidence banda 

% of Observations: . below 80% LB . above 80% UB . below 90% LB . above 90% UB . below 95% LB 
above 95% UB 

below 99% LB 
above 99% UB . below LB of all confidence bands . above UB of all confidence bands 

RMSE of Price Predictions ' 0.382 0.385 0.383 0.459 0.466 0.458 0.124 0.124 0.124 

R2 0.734 0.733 0.733 0.646 0.646 0.647 0.861 0.861 0.861 

"Average width of confidence band is the average width of the 20 (80% to 99%) confidence bands for the observed prices. The average lower bound, upper bound, and width 
of each of the 20 bands are calculated as the simple means of the bounds and widths of then - 4 confidence intervals obtained for the n - 4 predictions. 
The %of observations below LB (above UB) refers to the percentage of observations that were vertically below (above) the lower (upper) bound of the corresponding confidence 

band. The % of observations below LB (above UB) of all confidence bands refers to the percentage of observations that were vertically below (above) the lower (upper) bound 
of all 20 (80% to 99%) confidence bands. The percentages are in reference to the theoretical number of observations that should be below or above the specified bound. 
'RMSE denotes root mean squared error. 
dThe R2 is calculated as the square of the correlation coefficient between the observed and the predicted prices. 
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be obtained by extracting the m sets of simulated intercept and slope parameter values 
from S,, St, or SA to obtain m "predicted" price values for time t, and finding the 
(a121 x mth and the [(I - a) + a121 x mth largest of these m price values. 

The next step in computing the confidence intervals for the actual price occurrences 
requires simulation of m draws of the error term as well. In the case of the N-GARCH, 
these are obtained by extracting the m simulated values for the GARCH process param- 
eters (a,, a,, and p,) from SN and using them to obtain m simulated values of h, according 
to the GARCH(1,l) variance function [equation (7)1, and multiplying their square roots 
by m independent draws from a standard normal random variable. In the case of the A- 
and t-GARCH models, the process of simulating the h, values is similar, except that the 
m sets of simulated GARCH process parameters are extracted from SA and St. 

For the A-GARCH, these m simulated h, values are coupled with the m simulated O,, 
h, 0,, and p, values, also obtained from SA, and with m independent standard normal 
draws. Then, m nornormal error-term values are simulated by applying equation (2). 
For the t-GARCH, the square roots of the m simulated h, values are coupled with the m 
simulated 0, and 0, values obtained from St, and multiplied by m independent draws 
from a Student-t distribution with 0,+0,t degrees of freedom. The final step in con- 
structing the boundaries of a (1 - a)% confidence interval for the actual price observations 
is to add the m simulated error-term values to the corresponding m simulated price 
"predictions" and find the (a12) x mth and the [(I - a) + a121 x mth largest of the resulting 
m simulated price realization values. 

The process described above is programmed in GAUSS-386i with m = 10,000, starting 
at t = 1 assuming co = 0 and h, = aol(l - a, - p,) (the unconditional GARCH process vari- 
ance), and recursively repeated up to t = T, under the N-, t-, and A-GARCH soybean, 
sorghum, and wheat price models. The resulting boundaries are joined to obtain (1 - a)% 
confidence bands for the T within-sample price predictions from each of the estimated 
models. The process is repeated from a = 0.20 to a = 0.01 at 0.01 decrements to obtain 
80% to 99% confidence bands. 

Figure 1 shows the 80% confidence bands for the soybean price occurrences versus the 
sample data under the N- and A-GARCH models. The difference between these two confi- 
dence bands starts to become visually obvious at about 1950, when the estimated error 
term becomes substantially nonnormal. Under the N-GARCH, the observed prices tend 
to be closer to the middle of the interval. Only 19 observations trespass the lower bound, 
while 30 observations exceed the upper bound of the 80% confidence band, versus the 
theoretically required T x 0.2012 = 304 x 0.2012 = 30.4. Given the pattern of the soybean 
price observations, the symmetry of the assumed error-term distribution results in a 
lower bound that is unnecessarily low in order to ensure more of the observed price 
spikes do not surpass the upper bound. 

Under the A-GARCH, the right-skewness in the estimated error-term distribution 
allows for a substantially higher lower bound, which is closer to the mass of the obser- 
vations, coupled with an upper bound that is still high enough to avoid a theoretically 
excessive number of observations surpassing it. Specifically, 25 observations are found 
under the lower bound and 35 exceed the upper bound of the 80% confidence band, 
respectively, versus the theoretically required 30.4. The t-GARCH bands are symmetric, 
like the N-GARCH bands, and follow a similar visual pattern. The 80% band leaves 20 
observations under its lower bound and 41 observations above its upper bound. At the 
same time, the average width of the 80% A-GARCH band is $1.35/bushel, versus $1.51/ 
bushel for the N-GARCH and $1.4l/bushel in the t-GARCH. 
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Figure 1.80% confidence bands for the soybean price 
occurrences versus 1950-2000 data under the N- and 
A-GARCH models 

Theoretically Required Numbers Below 80?? to 9% Bands 

Figure 2. Theoretically required versus actual number of 
observations below the 80% to 99940 confidence bands under 
the N-, t-, and A-GARCH models of soybean prices 

Figure 2 shows the number of observations left below the lower bounds of the 80% to 
99% confidence bands from the N-, t-, and A-GARCH models of soybean prices, versus 
the theoretically required numbers. Both the N- and the t-GARCH bands leave sub- 
stantially fewer observations under their lower bounds than required, while leaving an 
excessive number of observations over their upper bounds. 

When all 20 (80% to 99%) confidence bands are jointly considered, only 164 (51.4%) 
out of the theoretically required total observations, 
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are found below the lower bounds of the N-GARCH, while 414 observations (129.7%) 
appear above the upper bounds (table 2). In the case of the t-GARCH, 169 observations 
(or 52.9% of the theoretically required) are found below the lower bounds, and 422 
(132.2%) appear above the upper bounds. The assumption of error-term symmetry, which 
causes these confidence bands to be symmetric about the predictions, is clearly incom- 
patible with the observed soybean price data. The 80% to 99% A-GARCH bands, in 
contrast, leave a total of 286 (89.6%) observations below and 379 (118.7%) observations 
above their respective boundaries. Although not perfect, the A-GARCH bands adhere 
more closely to what is theoretically expected. 

The A-GARCH bands, being kurtotic and nonsymmetric about the predictions because 
of the leptokurtosis and right-skewness of the estimated error-term distribution, better 
reflect the statistical behavior of soybean prices. At the same time, the average width 
of the A-GARCH confidence bands is $1.96/bushel, versus $2.03/bushel and $2.25/bushel 
in the cases of the N- and t-GARCH bands. As illustrated in figure 1, compatibility with 
the data  is improved by lower bounds that  are higher than their N- and t-GARCH 
counterparts, and thus closer to the mass of low price occurrences, combined with upper 
bounds similar to those of the N-GARCH at  high a levels, but become relatively higher 
at  reduced a levels. 

As illustrated in figure 3, the A-GARCH confidence bands for the sorghum price 
occurrences are also more compatible with the observed data than the bands under the 
N- and t-GARCH models. The 80% to 99% N-GARCH bands leave a total of 100 (35.7%) 
and 273 (97.4%) out of the theoretically required observations, 

below and above their lower and upper bounds, respectively, while the t-GARCH bands 
leave 189 (67.4%) and 439 (156.6%) observations below and above their respective lower 
and upper bounds. In contrast, in the case of the A-GARCH, 253 (90.2%) and 284 
(101.3%) observations are left below and above the lower and upper bounds, respectively 
(table 2). 

I t  could be argued that the N-GARCH bands in this case could be narrower, leaving 
more observations below and above their boundaries. However, although the 80% band 
is much wider than theoretically desired, the 95% and 99% bands leave 3.4% and 2.2% 
of the observations above their respective upper bounds (table 2), i.e., they are much too 
narrow on the up side. The problem, then, is the normal distribution cannot produce 
bands that are asymmetric and narrower a t  high a values and wider a t  the lower a 
levels. Interestingly, the average width of the 80% to 99% confidence bands is less under 
the t-GARCH than under the A-GARCH (table 2). This result is of no advantage because 
the band locations are incompatible with the data, but it corroborates the finding of 
Wang et al. that when the underlying error term is asymmetric, the t-GARCH tends to 
overestimate the degree of kurtosis, fitting an excessively peaked distribution. 

In the case of the wheat prices, where the error term appears to be symmetrically dis- 
tributed, the t- and A-GARCH models provide fairly similar results, as expected, while 
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Theoretically Required Numbers Above 80% to 99% Bands 

Figure 3. Theoretically required versus actual number of 
observations above the 80% to 99% confidence bands under 
the N-, t-, and A-GARCH models of sorghum prices 

the N-GARCH still produces a less than adequate statistical representation of the data 
and relatively wide inefficient confidence bands for the price occurrences (table 2). 

The previously discussed inconsistencies between the confidence bands implied by the 
symmetric-error N- and t-GARCH models and the data they are supposed to represent 
are important because a reliable, accurate confidence interval is an essential element 
of a good prediction. The demonstrated incompatibility of the N- and t-GARCH con- 
fidence bands with the data is also important because it illustrates the inadequacy of 
these models when the underlying error is asymmetrically distributed. Although the 
inadequacy of symmetric-error GARCH models when the true error-term distribution 
is asymmetric has been established in theory, the good R2s and RMSEs for the forecasts 
often associated with these misspecified models might deceive applied researchers into 
thinking that they provide reliable predictions of the data. 

Concluding Remarks 

The asymmetric-error GARCH model proposed and illustrated in this study represents 
an improved alternative for the forecasting of time-series variables and for producing 
reliable confidence intervals for these forecasts when the conditional probability distri- 
bution of the dependent variable is asymmetric. Researchers using GARCH models 
should test for error-term nornormality as illustrated in this analysis. If the error term 
appears leptokurtic but not skewed, either the t- or the A-GARCH model discussed here 
should be utilized. If the tests suggest both positive kurtosis and right- or left-skewness, 
either the EGB2- or the A-GARCH could be suitable, subject to the previously addressed 
limitations in the levels of skewness and kurtosis allowed by the EGB2 family of distri- 
butions. Unfortunately, no theoretically suitable alternative to model the less common 
negative (platy) kurtosis is available. 

[Received August 2002;Jinal revision received December 2002.1 



Ramirez and Fadiga 

References 

Asymmetric-Error GARCH Models 85 

Aptech Systems, Inc. GAUSS-386i Mathematical and Statistical System. Maple Valley WA: Aptech 
Systems, Inc., 1999. 

Bollerslev, T. "Generalized Autoregressive Conditional Heteroskedasticity." J. Econometrics 31(1986): 
307-27. 

. "A Conditionally Heteroskedastic Time-Series Model for Speculative Prices and Rates ofReturn." 
Rev. Econ. and Statis. 69(August 1987):54247. 

D'Agostino, R. B., A. Belanger, and R. B. D'Agostino, Jr. "A Suggestion for Using Powerful and Infor- 
mative Tests of Normality." Amer. Statistician 44,4(November 1990):316-21. 

Deb, P. "Finite Sample Properties of Maximum Likelihood and Quasi-Maximum Likelihood Estimators 
of EGARCH Models." Econometric Rev. 15(1996):51-68. 

Engle, R. F. (1982). "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of 
U.K. Idation." Econometrica 50(1982):987-1008. 

Engle, R. F., and D. Kraft. "Multiperiod Forecast Error Variances of Ida t ion  Estimated from ARCH 
Models." In Applied Time-Series Analysis ofEconomic Data, ed., A. Zellner, pp. 93302. Washington 
DC: U.S. Bureau of the Census, 1993. 

Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. New York: John 
Wiley and Sons, 1994. 

Krinsky, I., and A. L. Robb. "On Approximating the Statistical Properties of Elasticities." Rev. Econ. and 
Statis. 68(1986):715-19. 

Lee, S., and B. E. Hansen. "Asymptotic Theory for the GARCH(1,l) Quasi-Maximum Likelihood Esti- 
mator." Econometric Theory 10(1994):29-52. 

McDonald, J. B., and W. K. Newey. "Partially Adaptive Estimation of Regression Models Via the Gen- 
eralized t-Distribution." Econometric Theory 4(1988):428-57. 

McDonald, J. B., and S. B. White. "A Comparison of Some Robust, Adaptive, and Partially Adaptive 
Estimators of Regression Models." Econometric Rev. 12,1(1993):103-24. 

Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. New York: McGraw- 
Hill, 1974. 

Moss, C. B. "The Cost Price Squeeze in Agriculture: An Application of Cointegration." Rev. Agr. Econ. 
14,1(1992):209-17. 

Moss, C. B., J. S. Shonkwiler, and S. A. Ford. "A Risk Endogenous Model of Aggregate Agricultural 
Debt." Agr. E n .  Rev. 50(1990):73-79. 

Pagan, A. R., and H. Sabau. "On the Inconsistency of the MLE in Certain Heteroskedastic Regression 
Models." Mimeo, University of Rochester, 1987. 

Ramirez, 0. A., and J. S. Shonkwiler. "Autoregressive Conditional Heteroskedasticity Under Error- 
Term Non-Normality." CASNR Manu. No. 1-513, Texas Tech University, Lubbock, May 2001. 

U.S. Department of Agriculture, National Agricultural Statistics Senrice. NASS historical data 
(soybean, sorghum, and wheat historical prices). Online. Available a t  http://www.usda.gov/nass/ 
pubs/histdata.htm. [Retrieved January 20011. 

U.S. Department of Labor, Bureau of Labor Statistics. Producer price index for non-processed agricul- 
tural products. Online. Available a t  http:lhyww.bls.gov/. [Retrieved January 20011. 

Wang, K. L., C. Fawson, C. B. Barrett, and J. B. McDonald. "AFlexible Parametric GARCH Model with 
an  Application to Exchange Rates." J. Appl. Econometrics 16(2002):521-36. 

Yang, S.-R., and B. W. Brorsen. "Nonlinear Dynamics of Daily Cash Prices."Amer. J. Agr. Econ. 
74,3(August 1992):706-15. 


