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Abstract: Air is the most essential constituent for the sustenance of life on earth. The air we inhale has a 

tremendous impact on our health and well-being. Hence, it is always advisable to monitor the quality of air 

in our environment. To forecast the air quality index (AQI), artificial neural networks (ANNs) trained with 

conjugate gradient descent (CGD), such as multilayer perceptron (MLP), cascade forward neural network, 

Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive model with 

exogenous input (NARX) along with regression models such as multiple linear regression (MLR) consisting of 

batch gradient descent (BGD), stochastic gradient descent (SGD), mini-BGD (MBGD) and CGD algorithms, and 

support vector regression (SVR), are implemented. In these models, the AQI is the dependent variable and the 

concentrations of NO
2
, CO, O

3
, PM

2.5
, SO

2
, and PM

10
 for the years 2010–2016 in Houston and Los Angeles are the 

independent variables. For the final forecast, several ensemble models of individual neural network predic-

tors and individual regression predictors are presented. This proposed approach performs with the highest 

efficiency in terms of forecasting air quality index.

Keywords: Artificial neural networks, air quality index, ensemble of predictors, forecasting, gradient descent.

1   Introduction

The quality of air significantly contributes to the health of the inhabitants in a particular area. Inhaling pol-

luted air can cause dreadful diseases such as lung cancer, stroke, and respiratory infections, especially in 

children. The long-term consequences of polluted air lead to global warming and greenhouse [15]. It is a 

major concern in most of the densely populated areas. New diseases are being diagnosed every day and more 

deaths are being reported every year due to air pollution. There are several reasons for the increase in the 

levels of air pollution, such as industrialization and globalization [8]. A number of monitoring sites have been 

set up globally to monitor the quality of air [4, 18]. Air quality monitoring using soft computing techniques 

has produced a tremendous research analysis in recent years.

All over the world, there are more deaths due to poor air quality compared to other sources [7]. The World 

Health Organization (WHO) states that there are about 2.4 million deaths that are directly attributed to air pol-

lution [19]. The concept of the air quality index (AQI) has been proposed to address the purpose of measure-

ment of air quality in an area. Several methods under artificial intelligence (AI) domain have been proposed 

for forecasting. In particular, computational intelligence methods, such as artificial neural networks (ANN), 

contribute a significant amount of accuracy in the prediction of air quality. These methods have been proven 

to be a success in various scenarios. The prescribed standards of the AQI in Houston and New York are given 

by the U.S. Environmental Protection Agency (EPA) (https://www3.epa.gov/airquality/cleanair.html) and are 

shown in Table 1.
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2   Materials and Methods

2.1   Data Preparation

Houston is the most populous city in Texas State, with a population count of about 2  million (https://

en.wikipedia.org/wiki/Houston), and Los Angeles is the second most densely populated city (https://

en.wikipedia.org/wiki/Los_Angeles) in the United States, with an estimated population of 4.04  million 

[11, 16]. The data related to the quality of air in Houston, including NO
2
, CO, O

3
, PM

2.5
, and SO

2
, and Los 

Angeles, including NO
2
, CO, O

3
, PM

2.5
, and PM

10
, for the years 2010–2016 were obtained from the US EPA. 

The Houston and Los Angeles data containing 2000  samples were divided into 1500  samples (75%) and 

500 samples (25%) for training and testing each predictive model, respectively. The proposed approach uses 

the cascade forward neural network ensemble of individual neural networks and regression models and 

also the support vector regression (SVR) ensemble of individual neural networks and regression models. 

The base learners include neural networks such as multilayer perceptron (MLP), cascade forward neural 

network, Elman neural network, radial basis function (RBF) neural network, and nonlinear autoregressive 

model with exogenous input (NARX) and regression models such as multiple linear regression (MLR) with 

gradient descent variants as optimization algorithms and SVR. In the case of Houston, for each individual 

neural network predictor and regression model, the AQI is the dependent variable and the data related to 

the concentrations of NO
2
, CO, O

3
, SO

2
, and PM

2.5
 are the independent variables. The statistical measures of 

all data samples of Houston used in the current study are shown in Table 2. In the case of Los Angeles, for 

each individual neural network predictor and regression model, the AQI is the dependent variable and the 

data related to the concentrations of NO
2
, CO, O

3
, PM

2.5
, and PM

10
 are the independent variables. The statisti-

cal measures of all data samples of Los Angeles used in the current study are shown in Table 3. The perfor-

mance of each individual base learner and ensembles is evaluated using the error indexes such as mean 

absolute error (MAE), mean absolute percent error (MAPE), correlation coefficient (R), root mean square 

error (RMSE), and index of agreement (IA). The performance of the testing data is evaluated, as it represents 

the accuracy of each predictor.

Table 1: Proposed Categories of AQI (0–500) by the US EPA.

Range AQI category

0–50 Good

51–100 Moderate

101–150 Unhealthy for sensitive groups

201–300 Unhealthy

301–400 Very unhealthy

401–500 Hazardous

Table 2: Statistical Measures of Houston Data Samples.

Variable Unit Range Mean SD

NO
2

ppb 6.36–132.71 32.70 13.95

CO ppm 0.088–2.464 0.53 0.277

O
3

ppm 0.009–0.121 0.04 0.01

SO
2

ppb 0.009–0.121 6.86 8.98

PM
2.5

µg/m3 3.84–45.65 13.00 5.00

AQI NA 18–217 60.33 27

https://en.wikipedia.org/wiki/Houston
https://en.wikipedia.org/wiki/Houston
https://en.wikipedia.org/wiki/Los_Angeles
https://en.wikipedia.org/wiki/Los_Angeles
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2.2   Gradient Descent Variants: Conjugate Gradient Descent (CGD)

The CGD optimization algorithm [12] uses the line search method in the conjugate directions to achieve faster 

convergence. In this method, the step size or the learning rate is calculated after each iteration, which is 

known as the adaptive learning rate. The steps involved in the CGD optimization are given as follows:

Say for a quadratic test function, 
1

( ) ,
2

T T
x x Ax x bφ = −  where A is assumed to be a symmetric positive 

definite (SPD) matrix. Minimizing this quadratic test function is equivalent to solving Ax = b.

Compute r
0
 = Ax

0
 − b and set p

0
 = −r

0
.

For k = 0, 1, 2, … until convergence
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The first step in this method involves calculating the initial residual r
0
 or initial conjugate gradient direction 

equal to the steepest descent direction, which is the negative gradient of the function. The formula (1) gives 

the calculation of the optimal step length, which represents the distance that needs to be taken along the 

conjugate direction until it no longer descends. Using formula (2), we update the solution by adding the step 

to minimize the quadratic function φ along x
k
 + η

k
p
k
. It is obvious that this leads to search directions that are 

orthogonal to each other. After this, the residual is updated according to formula (3). The conjugate direction 

method has a property in which the new conjugate vector p
k+1

 can be computed using the previous vector p
k
 

using formula (4). The new direction or new step p
k
 will be the linear combination of the negative residual 

−r
k+1

 and the previous search vector p
k
. The ratio of norm squared current residual to the norm squared of the 

previous residual gives the value of the constant β
k
 using formula (5).

2.3   Neural Networks

ANNs are the most widely used machine learning algorithms for time series prediction [22]. Neurons are 

the building blocks of these predictors. The most basic ANN is MLP. It belongs to the class of feed-forward 

Table 3: Statistical Measures of Los Angeles Data Samples.

Variable Unit Range Mean SD

NO
2

ppb 12.72–132.71 44.51 14.75

CO ppm 0.264–4.7 1.14 0.65

O
3

ppm 0.019–0.122 0.05 0.01

PM
2.5

µg/m3 4.56–94.23 21.27 9.10

PM
10

µg/m3 6.48–131.77 37.17 13.58

AQI NA 35–218 89.57 35.55
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networks, which maps the input to an appropriate output and is commonly known for its robust universal 

approximation ability [13]. A basic MLP structure consists of an input layer, hidden layer, and an output 

layer in which both input and output layers are called visible layers. Cascade forward neural network also 

belongs to the class of feed-forward networks with a weight connection from the input layer to each layer 

in the network. It is based on the principle that feed-forward networks with a more number of layers in the 

architecture would learn more complex input-output relationship quickly. Elman neural network is a recur-

rent neural network with an extra layer called the context layer between the input and hidden layers to feed 

back the states of hidden units into hidden units during the next stage of input. It is mostly implemented to 

learn the time-varying patterns. RBF neural networks [3] are a kind of neural networks in which the radial 

basis kernel, such as Gaussian kernel, takes the role of the activation function. A clustering algorithm such 

as K-means clustering [14] is used to transform the input vector into K number of clusters. The optimal value 

of “K” is determined by the elbow method. NARX relates the current value of a time series with past values 

of the same series. The model employed in the current study has two tap delays, which means both previous 

and before previous input and output values are feed back to the input layer. In the entire neural network 

predictors implemented here, except for RBF neural network, the activation function used at each neuron is 

a logistic function given by Eq. (6):

 

1
( ) .

1 exp( )
f x

x
=

+ −
 

(6)

The errors cost function used in each of the neural network predictors is given by Eq. (7):
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where the variables t(i) and y(x(i)) represent the observed and predicted values of PM
2.5

, respectively, for the ith 

sample of input x, and m represents the number of input data samples. The neural networks implemented 

here relate the input and output in independent approaches. All neural networks presented in the current 

study have been trained using back-propagation with CGD optimization [12] to update the model parameters 

or weights of the network. The structural complexity of MLP, cascade forward, and NARX neural network 

predictors includes five input layer neurons, five hidden layer neurons, and one output layer neuron. The 

Elman recurrent neural network implemented in the current study has a structure of 5-5-5-1, which includes 

five neurons in the context layer. In the RBF neural network, the input data set has been divided into 15 clus-

ters or it can be said that the neural network has 10 RBF neurons. These individual neural network predictors 

are then combined using an ensemble network consisting of cascade forward neural network with the same 

structured implemented before and SVR as the integrators to improve the accuracy of forecasting of the AQI. 

All implemented neural network predictors have used 1000 epochs. The results of both ensemble approaches 

are evaluated and compared.

2.4   Regression Models: MLR with Gradient Descent Variants and SVR

In MLR, the dependent and independent variables are related by determining the model parameters [21], and 

the relationship is governed by Eq. (8):

 
1 1 2 2 n n

y w x w x w x= + + +…  (8)

where y is the dependent variable, x
1
, x

2
, … x

n
 are the independent variables, and w

1
, w

2
, … w

n
 are the model 

parameters. This basic regression model is widely used in many studies for prediction [6, 10]. In the current 

study, this model has been implemented using batch gradient descent (BGD) with a learning rate or step size 

of 0.01, stochastic gradient descent (SGD) with a learning rate of 0.0001, mini-BGD (MBGD) with a learning 
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rate of 0.005, and batches of 50 samples and CGD optimization algorithms, as these are the most common 

ways of optimizing any regression model. All MLR models employed here use 1000 epochs for training. SVR 

[9] based on support vector machines (SVM) [5] has also been implemented as a regression model in the 

current study for predicting the AQI in Houston and Los Angeles.

2.5   Modeling Technique: Stacking Ensemble

In the current study, the stacking ensemble method is used for the final forecast of the AQI. In the stack-

ing ensemble method, the predictions of the individual base learners are given as input to the any of the 

base learner algorithm, which is used as a combiner algorithm for the higher level of training. Usually, this 

combiner algorithm outperforms the performance of the individual base learners [20]. It has been proven 

to be a successful approach for supervised learning tasks such as regression analysis [2] and also for unsu-

pervised learning tasks such as density estimation [17]. In general, a simple logistic regression is used as 

a combiner algorithm. The combiner algorithms used here include cascade forward neural network and 

SVR. All other predictors including these two are considered as base learners. Here, the performance of 

both combiner algorithms have been evaluated by taking two different sets of base learners: the first set of 

base learners includes all neural network predictors such as MLP, cascade forward neural network, Elman 

recurrent neural network, RBF neural network, and NARX neural network with CGD as the optimization 

algorithm to update weights, and the second set of base learners includes MLR with different gradient 

descent variants such as BGD, SGD, MBGD, and CGD optimization algorithms and SVR. The predictions 

of these individual neural network predictors and regression models are given as input to the combiner 

algorithm such as cascade forward neural network and SVR. The final forecast of this combiner algorithm 

predicts the AQI in an area of interest. This stacked model often improves the accuracy due to its smooth-

ing nature and its ability to credit each of the base learners where they perform best and to discredit where 

they perform poorly. The overall performance of this stacked model will be good when the base learners 

are significantly different in the way they predict. The block diagrams demonstrating ensembles are given 

in Figures 1 and 2.

3   Results and Discussion

3.1   Cascade Forward and SVR Ensembles of Neural Network Predictors

In these two ensembles, the base learners are individual neural network predictors: MLP, cascade forward 

neural network, Elman neural network, RBF neural network, and NARX. The predictions of these predictors 

Pollutant

concentrations

NARX

RBF

Elman

Cascade forward Cascade forward

SVR

AQI

AQI

MLP

Figure 1: Cascade Forward and SVR Ensemble of Neural Network Predictors.
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Pollutant

concentrations

MLR (BGD)

MLR (SGD) Cascade forward

SVR AQI

AQI

MLR (MBGD)

MLR (CGD)

SVR

Figure 2: Cascade Forward and SVR Ensemble of MLR with Gradient Descent Variants and SVR.
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are given as input to cascade forward neural network and SVR for the final forecast of the AQI. The perfor-

mance of these two combiner algorithms with same base learners is compared.

The testing results of the cascade forward neural network as the combiner algorithm with neural network 

base learners for forecasting the AQI in Houston and Los Angeles are given in Figure 3. The testing results of 

SVR as the combiner algorithm with neural network base learners for forecasting the AQI in Houston and Los 

Angeles are given in Figure 4. The performance measures of both ensembles with neural network predictors 

as the base learners are given in Table 4.

It can be seen that the cascade forward ensemble outperformed the SVR ensemble of individual neural 

network predictors. The regression plots represented in Figure 3B and D for Houston and Los Angeles, respec-

tively, indicate that the relationship between the observed and predicted values of the AQI determined by the 

cascade forward ensemble makes a good fit.
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Table 4: Performance of Cascade Forward and SVR Ensembles with Neural Networks as the Base Learners.

Algorithm MAE MAPE R RMSE IA

H LA H LA H LA H LA H LA

MLP 5.70 8.62 6.76 10.25 0.978 0.947 7.31 11.12 0.989 0.972

Cascade forward 3.04 2.91 3.86 3.69 0.993 0.993 4.06 4.05 0.996 0.996

Elman 9.39 9.04 10.89 10.81 0.939 0.948 12.31 11.23 0.967 0.970

RBF 4.18 4.47 5.38 5.89 0.981 0.981 6.83 6.65 0.990 0.990

NARX 14.35 11.08 17.24 12.71 0.880 0.919 18.06 13.95 0.907 0.951

Ensemble (cascade forward) 2.68 2.70 3.34 3.39 0.994 0.994 3.75 3.70 0.997 0.997

Ensemble (SVR) 2.95 3.01 3.82 3.96 0.993 0.993 4.06 3.96 0.996 0.996

H, Houston; LA, Los Angeles.
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Figure 5: Cascade Forward Ensemble of Regression Models: (A) Testing Plot for Houston, (B) Regression Plot for Houston, 

(C) Testing Plot for Los Angeles, and (D) Regression Plot for Los Angeles.
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3.2   Cascade Forward and SVR Ensembles of Regression Models

In these two ensembles, the base learners are individual regression models: MLR with BGD, SGD, MBGD, and 

CGD optimization algorithms and SVR. The predictions of these regression models are given as input to the 

combiner algorithms for the final forecast of the AQI.

The testing results of the cascade forward neural network as the combiner algorithm with regression 

models as the base learners for forecasting the AQI in Houston and Los Angeles are given in Figure 5. The 

testing results of SVR as the combiner algorithm with regression models as the base learners for forecasting 

the AQI in Houston and Los Angeles are given in Figure 6. The performance measures of both ensembles with 

regression models as the base learners are given in Table 5.

It can be seen that the cascade forward ensemble outperformed the SVR ensemble of individual regres-

sion models. Also, most of the neural network predictors exhibited high accuracy compared to MLR models 

with gradient descent variants. Among the neural network predictors, the cascade forward neural network 
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has shown high performance, and among regression models, SVR has shown high performance. The cascade 

forward neural network performed better due to its structure. It has greater ability to map nonlinear input to 

the output. Also, the neural networks usually outperform regression models such MLR when nonlinearities 

are involved. Often, generalization is more in the case of neural network predictors. Both ensembles have 

shown better accuracy than the individual predictors of the AQI.

4   Conclusion

The proposed approach investigates the concentrations of NO
2
, CO, O

3
, PM

2.5
, SO

2
, and PM

10
 to build a forecast-

ing model of the AQI. The study has been carried out for Houston and Los Angeles. The accuracy of prediction 

has been improved by the stacked ensemble of individual predictors. The performance of the implemented 

ensemble methods for two different sets of base learners has been evaluated and compared. It can be con-

cluded that cascade forward ensemble outperformed SVR ensemble for both sets of base learners. The limita-

tion of the current study is the ability to predict the AQI more accurately from highly nonlinear data. Often, 

the neural network methods usually converge to locally optimal solutions. The CGD optimization method 

greatly deals with this problem. The future study can be attributed to the use of deep learning methods such 

as LSTM and deep belief networks such as restricted Boltzmann machines, as they extract features layer 

by layer and combine low-level features to form high-level features and they also have the ability to model 

complex mapping [1]. Fuzzy logic can also be implemented when the behavior of the mathematical model is 

complicated and the linguistic rules are needed to define the behavior of a system. The scope of the current 

study also includes the use of ensemble methods such as bagging and boosting. In conclusion, the present 

study has indicated that the ensemble approach provides promising results for forecasting the AQI compared 

to individual neural network predictors and regression models.
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