
Further Results on

Forecasting and Model Selection Under Asymmetric Loss

Peter F. Christoffersen and Francis X. Diebold

Department of Economics
University of Pennsylvania

3718 Locust Walk
Philadelphia, PA 19104

October 1995
This Print:  June 27, 1996

Abstract:  We make three related contributions.  First, we propose a new technique for solving
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selection under the relevant loss function.
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      To the best of our knowledge, only two known loss functions produce closed-form1

optimal predictors -- the linlin and linex loss functions studied by Granger (1969), Varian
(1974), Zellner (1986) and Christoffersen and Diebold (1994).

1.  Introduction

Proper specification of the loss function is crucial in empirical work (e.g., McCloskey,

1985).  Nowhere is this more evident than in forecasting.  It is widely acknowledged that

textbook favorites like mean squared prediction error or mean absolute prediction error,

although mathematically convenient, are not flexible enough to capture the loss structures that

often face actual forecasters.

In spite of the need for a practical forecasting framework that incorporates realistic

loss functions, until recently one was forced to favor mathematical convenience over realism -

- quite simply, there was no alternative.  But modern computing power has changed the

situation dramatically, as computations that were infeasible not long ago are now done in a

few seconds on a desktop computer.

Thus, we have three related objectives in this paper.  First, we propose a forecasting

framework that exploits modern computational capabilities to find optimal forecasts under

general loss structures, in spite of the fact that the optimal predictor typically does not exist in

closed form.   One approach, taken in Christoffersen and Diebold (1994), is to approximate1

the optimal predictor.  Here we take a different and complementary approach -- instead of

approximating the optimal predictor for the exact loss function, we find the exactly optimal

predictor for an approximate loss function.

Second, we provide a detailed application to the optimal prediction of a GARCH(1,1)
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      A prediction-error loss function, L( ), is a loss function defined directly on the prediction2

error, 

process under a prediction-error loss function linear on each side of the origin.   Conveniently2

for our illustrative application, the optimal predictor does have an analytic closed-form

expression under that loss function, as shown by Christoffersen and Diebold (1994).  But the

insights gained are relevant for any attempt at optimal prediction under asymmetric loss,

whether by the methods of this paper or our earlier paper.

Finally, we show how optimal prediction under asymmetric loss may be combined

with related techniques for estimation and forecast accuracy comparison under asymmetric

loss to produce a flexible framework for forecast model selection.

2.  Closed-Form Optimal Predictors Typically Don't Exist

To see the difficulty associated with analytic solution, even for very simple loss

functions, consider the following natural generalization of quadratic loss ("quadquad" loss), in

which loss is quadratic on each side of the origin, but positive errors cost more than negative

errors (or conversely),

Conditionally expected loss is 
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      Newey and Powell (1987) give an analytic solution in the uniform case.3

      Notice that for a=b the conditional mean is of course optimal.4

Differentiating with respect to the predictor, we obtain the first order condition

It is clear that analytic solution of this first-order condition is impossible in general. 

Moreover, even in cases as highly-structured as conditional normality, analytic solution

remains impossible except for very special cases.   To see this, rewrite the first-order3

condition as

Under conditional normality, expressions for the truncated expectations are available. 

Inserting these, using  where  and cancelling terms

yields   4

Thus, although conditional normality does yield some simplification, closed-form analytic

solution remains impossible.

Existence and uniqueness of the optimal predictor are easily established under

conditional normality, however.  Denote the first-order condition that defines the optimal



g (ŷt h) a(1 ( t h t)) b ( t h t),
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      Note that any desired level of approximation accuracy may be obtained by taking5

sufficiently many segments.

predictor by .  Existence follows from  and ,

together with continuity of the first-order condition.  The two limits are easily verified;

immediately,  and .  For uniqueness we need that

 be strictly negative everywhere.  This too is easily verified; immediately,

which is strictly negative everywhere, because a>0, b>0 and  is a cumulative density

function.

When the optimal predictor exists and is unique (as is the case here), numerical

algorithms (nonlinear equation solution algorithms in conjunction with numerical integration)

may be used to compute the optimal predictor quickly and reliably.  We now turn to a

convenient and flexible class of loss functions for which it is easy to show that the optimal

predictor exists and is unique, even in conditionally non-Gaussian cases.

3.  Piecewise-Linear Approximation of the Loss Function

Consider a piecewise-linear loss function L( ) constructed by concatenating linear

segments, such that the loss of zero is zero and loss is increasing on each side of the origin. 

This may actually be the relevant loss function, or it may be used as an approximation to any

prediction-error loss function.5

Conditionally expected loss is
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for I, J  2.  The first line denotes the pieces on the positive side of the origin and the second

line the negative, i.e.,   The c 's and c 's denote the breakpointsi
j

between segments, with c  < c  < 0 and 0 < c  < c ,   To ensure zero loss at the originl k
k l

we impose   To ensure that neighboring segments connect at the

breakpoints we impose  , and similarly

 .

Differentiating with respect to the predictor, , and using Leibniz's rule we obtain

This first-order condition defines the optimal predictor.  After some manipulation all pdf
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terms cancel, leaving

or equivalently (after a bit more manipulation),

This first-order condition cannot be solved analytically, but it is easy to solve numerically,

given the conditional cumulative density function .  Sufficient conditions for

existence and uniqueness of the solution are given in the following theorem.

Theorem  If:

(1) 

(2) 

(3) ,

then a solution to the first-order condition exists and is unique.

Proof  Denote the first-order condition by   We shall show that 

and  so that the first-order condition has at least one root, by continuity of

  Immediately,  and   These limits are strictly

positive and negative, respectively, by condition (3) in conjunction with the fact that the a 'si

are all non-negative and the a 's are all non-positive.  Now we establish uniqueness byj

showing that .  Immediately, 
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      See Christoffersen and Diebold (1994) for more detailed discussion of optimal prediction6

under linlin loss. 

Notice that all terms are nonnegative from condition (1) in conjunction with the fact that the

a 's are all non-negative and the a 's are all non-positive, and because  is a density function. i
j

Conditions (2) and (3) are sufficient to guarantee strict positivity, by guaranteeing that at least

one term is strictly positive, but of course they are not necessary. Q.E.D.

4.  Forecasting a Conditionally Heteroskedastic Process Under Asymmetric Loss

Here we illustrate our methods by predicting a simple conditionally-Gaussian

GARCH(1,1) process under linlin loss.  The GARCH(1,1) process is

Linlin loss, for which where there is only one linear piece on each side of the origin, is a

special case of piecewise-linear loss (a =a  for all I, and a =a , for all j, which in turn impliesi 1
j 1

b =0 and b =0 for all I and j).  In Figure 1, we show various parameterizations of the linlin lossi
j

function superimposed for reference on a symmetric, quadratic loss function.  The first order

condition that defines the optimal predictor collapses to  which

actually yields a closed form for the optimal predictor, 6

Throughout, we normalize the unconditional variance to 1 by taking  and we

set the GARCH parameters at =.2 and =.75, which are typical of estimates reported in the
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literature.  We set the linlin loss parameters at a =.95 and a =- .05, corresponding to high1
1

asymmetry, which is useful for pedagogical purposes.

For h=1 the conditional density is Gaussian so the optimal predictor is easily

calculated as     We will compare the

conditionally expected linlin loss of the optimal predictor to that of two competitors.  The first

competitor is the pseudo-optimal predictor,  which ignores

conditional heteroskedasticity, and the second is the conditional mean predictor,

 which ignores both loss asymmetry and conditional heteroskedasticity.

Note that the optimal predictor acknowledges loss asymmetry and the possibility of

conditional heteroskedasticity through a possibly time-varying adjustment to the conditional

mean, thereby providing a direct link from conditional heteroskedasticity to optimal  point

prediction, rather than simply to interval prediction.  The conditional mean, in contrast, is

always suboptimal as it incorporates no adjustment.  The pseudo-optimal predictor is

intermediate in that it incorporates only a constant adjustment for asymmetry; thus, it is fully

optimal only in the conditionally homoskedastic case 

In Figure 2, we show a realization of the GARCH(1,1) process, together with the real-

time linlin-optimal, pseudo-optimal and conditional mean predictors.  It is apparent that the

optimal predictor injects more bias when conditional volatility is high, reflecting the fact that

it accounts for both loss asymmetry and conditional heteroskedasticity.  This conditionally

optimal amount of bias is sometimes more and sometimes less than the constant bias

associated with the pseudo-optimal predictor, which accounts for loss asymmetry but not

conditional heteroskedasticity.  Finally, of course, the conditional mean injects no bias, as it
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      Baillie and Bollerslev (1992) suggest a Cornish-Fisher expansion to approximate the7

conditional distribution for h > 1, but such extensions are beyond the scope of the present
example.

      Note that it would be uninformative to set  equal to the unconditional variance, 8

because that would obscure the difference between the optimal and pseudo-optimal
predictors.

accounts neither for loss asymmetry nor conditional heteroskedasticity.

It is worth mentioning that the "optimal" predictor used here is truly optimal only for h

= 1, because conditional normality holds only for h = 1.  But, although the "optimal" predictor

used in this example is in fact only an approximation to the optimal predictor when h > 1 (it is

in fact an improved pseudo-optimal predictor), one expects it to perform better than the

"constant adjustment" pseudo-optimal predictor, because it explicitly adapts to the time-

varying conditional variance.  Recognizing the abuse of language, we shall continue to refer

to it as the "optimal predictor" and to use the predictor formula for h > 1. 7

Computation of conditionally expected linlin loss requires conditioning on an initial

value of  and the results will, of course, vary with the value adopted.  We set the initial

conditional variance equal to the unconditional variance plus one standard deviation of the

conditional variance,   Calculation of  the variance of the8

conditional variance, is straightforward but somewhat tedious.  We have

 but recall that  so that  

Thus,  by the law of iterated expectations, and as shown by

Bollerslev (1986) the requisite unconditional fourth moment is

because we set .  The normalization of  implies that  and we get
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Computation of conditionally expected linlin loss also requires an expression for ,

which enters the expression for the optimal linlin predictor.  Using results from Baillie and

Bollerslev (1992), it is easy to show that for the GARCH(1,1) process,

Because of the conditional non-normality when h > 1, we do not rely on the formulas

derived in Diebold and Christoffersen (1994) to compute the conditionally expected losses of

the optimal, pseudo-optimal, and conditional-mean predictors.  Instead, we compute them by

simulation.  At each of 20,000 replications, we draw a GARCH(1,1) realization of length 50,

with the conditional variance initialized as discussed above, and we compute the loss of each

of the three predictors at each of the 50 horizons.  Finally, we average across replications.

In Figure 3, we show the conditionally expected linlin loss of the pseudo-optimal

predictor relative to that of the optimal predictor, across prediction horizons.  The increase in

conditionally expected loss from ignoring the conditional variance dynamics--that is, the

increase in conditionally expected loss from using the pseudo-optimal as opposed to the

optimal predictor--is as high as 35% for short horizons.  Of course, as the prediction horizon

increases, the cost of ignoring the conditional variance dynamics decreases, and the ratio of

conditionally expected losses converges to 1.

In Figure 4, we show the conditionally expected linlin loss of the conditional mean

relative to that of the optimal predictor.  Although the cost of ignoring the conditional

variance dynamics still decreases with horizon, the ratio of conditionally expected losses does

not approach 1, because the conditional mean predictor ignores loss asymmetry in addition to



ŷt h µ t h t( ) f( , t h t( )),

-11-

      The separation of conditional mean and higher order dynamics is guaranteed by a9

theorem in Christoffersen and Diebold (1994), who build on an earlier result of Granger
(1969).  The theorem follows from the loss function being defined directly on prediction
errors.

conditional heteroskedasticity.  The failure of the conditional mean to acknowledge the loss

asymmetry affects predictive performance at all horizons.

5.  Model Selection Under the Relevant Loss Function

The prediction techniques developed here can be used in recursive prediction-based

procedures for model selection under the relevant loss function.  This also involves estimation

under the relevant loss function, as in Weiss and Andersen (1984) and Weiss (1994). 

Important related work along those lines, under a Kullback-Liebler distance metric (one-step-

ahead squared-error loss), is reported in Vuong (1989) and Phillips (1994). 

First, assume prediction-error loss with known optimal predictor of the form

where  is the vector of loss function parameters,  is the vector of model parameters, ( )t+h|t

is the vector of higher order moments, and f( ) might be an explicit function or it might be

given implicitly by a first order condition. 9

Let the initial estimation sample run from t = 1, ..., T , so that the "holdout sample"*

used for comparing predictive performance runs from t = T +1, ..., T.  We proceed as follows:*

(1)  Using a numerical optimization procedure, find for model j:
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Such procedures are discussed in Weiss and Andersen (1984) and Weiss

(1994).

(2)  Calculate the loss of the h-step-ahead prediction error at time T ,*

(3)  Use terminal estimation date T  +1.  Repeat steps (1) and (2) to get*

(4)  Repeat steps (1)-(3) until the terminal estimation date is T-h.  Then form the

average loss for model j as

(5)  Repeat steps (1)-(4) for all models j = 1, 2, ..., J.  Use the appropriate Diebold-

Mariano (1995) test to assess the significance of the difference between the

models based on average loss.

Second, suppose the form of the optimal predictor is unknown.  Hence the algorithm

above must be augmented with a step that estimates the form of the predictor.  This situation

could be brought about by a non-tractable loss function, perhaps not defined on the prediction
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errors.  In the conditionally Gaussian case, we form the predictor as an expansion in the first

two conditional moments (here, for example, we adopt a second-order expansion, but higher-

order terms could of course be included):

Step (1) of the algorithm simply becomes more complicated; the others are unchanged.  Step

(1) becomes:

(1')  Using a numerical optimization procedure, find for model j:

Finally, if the form of the optimal predictor is unknown and the conditional density is

non-Gaussian, again only step (1) changes.  We form the predictor as an expansion in the

conditional moments, but moments above the second will need to be included.  Hansen's

(1994) autoregressive conditional density approach may help to achieve parsimony.

6.  Summary and Directions for Future Research

We have studied prediction under asymmetric loss and its role in a broader framework

for model selection.  The discussion consisted of three parts.  First, we suggested a flexible

yet tractable piecewise-linear approximation to the loss function, and we established existence

and uniqueness of the optimal predictor.  This approach to optimal prediction under

asymmetric loss complements those proposed by Christoffersen and Diebold (1994).
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      White develops his nonparametric prediction procedure under linlin loss, but it is readily10

extended to other loss functions.

      See, for example, Zellner (1992).11

Second, we provided a detailed application to prediction of a GARCH(1,1) process

under linlin loss, which clearly illustrated the fact that higher-order conditional moments (that

is, conditional moments beyond the conditional mean) are relevant for point prediction under

asymmetric loss.  Under conditional normality, for example, the conditional variance plays a

key role in optimal point prediction.  Thus, as in Granger (1981) (although for very different

reasons), one can "forecast white noise" under asymmetric loss.

Third, we showed how our results on optimal prediction under asymmetric loss could

be combined with results on estimation and forecast accuracy comparison under asymmetric

loss to produce a unified and general framework for forecast model selection.

As for future work, it will be of interest to examine the usefulness of the parametric

prediction and model selection procedures developed here in applied forecasting, and to

compare the performance of our parametric predictors to White's (1992) nonparametric

predictor.   We conjecture that our approach will perform well, as much of the literature10

suggests that simple, tightly parameterized -- but nevertheless sophisticated -- models tend to

perform best in out-of-sample prediction. 11
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Figure 1 

Various Linlin Loss Functions with Quadratic Loss Superimposed for Reference

Notes to Figure:  Quadratic loss appears as a dashed line and linlin loss appears as a solid line. 
Asym = a  / (a  - a ), where a  and a  are Linlin loss parameters such that L(x) = a x, if x > 0;1 1 1 1

1 1

and L(x) = - a x, if x  0.1

 
  



Figure 2

GARCH(1,1) Realization with

Linlin Optimal, Pseudo-Optimal, and Conditional Mean Predictors

         

Notes to Figure:  The linlin loss parameters are set to a  = .95 and a  = - .05, so that a /(a  - a )1 1 1
1 1

= .95.  The GARCH(1,1) parameters are set to =.2 and =.75.  The dotted line is the
GARCH(1,1) realization.  The horizontal line at zero is the conditional mean predictor, the
horizontal line at 1.65 is the pseudo-optimal predictor, and the time-varying solid line is the
optimal predictor.



Figure 3

Ratio of Conditionally Expected Linlin Loss

of Pseudo-Optimal and Optimal Predictors

Notes to Figure:  The linlin loss parameters are set to a  = .95 and a  =- .05, so that a /(a  - a )1 1 1
1 1

= .95.  The GARCH(1,1) parameters are set to  = .2 and  = .75.



Figure 4

Ratio of Conditionally Expected Linlin Loss

of Conditional Mean and Optimal Predictors

  
 
Notes to Figure:  The linlin loss parameters are set to a  = .95 and a  = - .05, so that a /(a - a )1 1 1 

1 1

= .95.  The GARCH(1,1) parameters are set to  = .2 and  = .75.


