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This dissertation presents new empirical evidence in two specific fields in economics:

Forecasting and Monetary Policy Analysis. The dissertation comprises two separate

but related papers, each of one tackles one of these two fields. The main objective

aims to provide new lights and insights about specific questions that have been studied

before in the literature, but using alternative methodological approaches to improve

our understanding of the topics.

In Chapter 2, I argue that the out-of-sample forecast performance of nonlinear

models for the conditional mean has being underestimated in the literature because

these models are highly parameterized and hence parameter estimation error can

easily offset their predictive gains. Thus, I consider restricted versions of nonlinear

models that are commonly used in forecast competition between linear and nonlinear

models. The restrictions aim to reduce the number of parameters to estimate allowing

the specification of parsimonious nonlinear models. This setting explores more deeply

the space of nonlinear models in order to find a suitable specification able to boost

the performance of this type of models. The empirical evaluation is conducted using

a linear benchmark and both global and local test of forecast predictive accuracy.

The main results can be summarized as follow. First, if forecast comparison between
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linear and nonlinear models excludes restricted nonlinear models then results are in

line with previous findings. However, results change dramatically in some cases when

restricted versions of nonlinear models are incorporated. In particular, I spot cases

on which the mean square forecast error decreases by almost fifty percent relative

to the benchmark model. These results give us new lights about the performance of

nonlinear models and challenge the conventional view that the literature has about

them because they show that their predictive gains may be elusive but that a simple

exploration of their functional form may reveal significant predictive gains.

In Chapter 3, I investigate the propagation of a foreign monetary policy shock

over a small open economy, in particular over the Chilean economy. This is an

joint research project with Jorge Fornero and .Andrés Yany from the Central Bank

of Chile. Our motivation is base on the ongoing period of monetary normalization

already started by the Fed. We follow Canova (2007) and compare the impulse

response functions of Structural VAR models and a DSGE model tailored for the

Chilean economy. We use the recursive VAR model of Sims (1980a) and an extension

of the “agnostic” VAR model of Uhlig (2005) and Arias et al. (2014) for small

open economies following Koop and Korobilis (2010). The results suggest that the

recursive VAR model does not properly identify the shock and its implications are

counterintuitive. On the contrary, beyond the quantitative differences, we find that

the responses of the “agnostic” VAR model are in line qualitatively with those of

the DSGE model except for output. However, the transmission of the shock to the

local economy is limited but more persistent according to the DSGE model. Finally,

we spot different policy implication arising from both models. According to the

“agnostic” VAR model, the central bank do not need to rise its policy rate because

the drop in activity offsets any burst of inflation; whereas in the DSGE model the

rise in prices is partially accommodated by an increase in the policy rate. Thus, this

comparison motivates an interesting discussion for the policy maker.
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Chapter 1

Introduction

This dissertation will present empirical research in two specific fields in empirical

macroeconomics: Policy Analysis and Forecasting. Each field by it self is important.

Policy Analysis helps economists to quantify and understand how the economy will

react after a given impulse (monetary policy shock, productivity shock, uncertainty

shock, credibility shock, etc). Unveil the driving forces of the economy, such as prop-

agation or amplification mechanism, is extremely important to any policy maker with

some objective in mind, such as in inflation targeting, full employment or consump-

tion smoothing. Finally, forecasting is also a crucial input to policy makers, financial

institutions or other agents alike. The reason is quite simple and appealing to under-

stand: good forecasts lead to good decisions. The two fields usually come together

quite frequently. Huge efforts and resources are oriented to understand and predict

the state of the economy at a given horizon of time.

In the second chapter of this dissertation entitled “A comparison of the predictive

performance of restricted nonlinear models, linear models and forecast combination

schemes”. I study the predictive performance of nonlinear models for the conditional

mean to challenge the conventional view that the literature has about their predictive

accuracy1. In particular, there are two main results that can be found in this litera-

ture: (1) nonlinear models are not able to outperform simple linear models and even

if they do, the forecast gains are small or not statistically significant; and (2) forecast

combination schemes usually outperform single (non)linear models. Thus, the main

objective of this chapter is to challenge these two key results.

1see Diebold and Nason (1990), De Gooijer and Kumar (1992), Stock and Watson(1999),
Clements, Franses and Swanson (2004), Marcellino, Stock and Watson (2006), Bates and Granger
(1969), Clemen (1989), Deutsch, Granger and Teräsvirta (1994), Swanson and Zeng (2001), Hendry
and Clements (2004), Elliot and Timmermann (2005), Stock and Watson (2004) and Frances (2011)
for more details
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The conjecture can be briefly summarized as follow, I argue that the out-of-sample

forecast performance of nonlinear models has being underestimated in previous re-

search due to a deficient specification in the functional form of these models. In

particular, nonlinear models are highly parameterized and hence parameter estima-

tion error can easily offset their predictive gains. Thus, I incorporate restrictions into

the functional forms of nonlinear models in order to decrease the number of param-

eters and at the same time to increase their predictive accuracy. I call these models

“restricted nonlinear models”. I consider restricted versions of three type of nonlinear

models that are commonly used in this literature: The Self-Exciting Threshold Au-

toregressive Model (SETAR), The Markov Switching Autoregressive Model (MSAR)

and The Multilayer Perceptron Network (MLP):

The comparison includes the prediction from forty one models, including the linear

AR model which is used as the benchmark model. Thus, these experiments allow me

to tackle the first main result of the literature. To tackle the second result, I also

consider several forecast combination schemes. Thus, the comparison includes the

predictions of forty one models and thirteen combinations schemes for three forecast

horizons (1, 3, 12-step-ahead forecast).

To this end, I use three key macroeconomic variables: the percent change in the

industrial production index (IP), the percent change in the consumer price index

(CPI) and the difference of the 10 year Treasury-bond yield (r10); and I use the

Giacomini and White (2006) and Giacomini and Rossi (2010) tests of global and

local predictive ability.

The main finding of this paper is to provide empirical evidence supporting the

view that traditional forecast comparisons between linear and nonlinear models can

be misleading since the predictive gains of nonlinear models may be elusive but that

a simple exploration of the functional form may reveal significant predictive gains.

In the third chapter of this dissertation entitled “Reassessing the effects of foreign
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monetary policy on output: new evidence from structural and agnostic identification

procedures”, I investigate the propagation of a foreign monetary policy shock over the

Chilean economy. This is an joint research project with Jorge Fornero and .Andrés

Yany from the Central Bank of Chile. Having said that, I want to emphasise that

discussion and interpretation of the main results are more biased toward my own

interpretation of them.

From a policy point of view, this chapter is well-timed since the ongoing period

of monetary normalization already started by the Fed. According to Canova (2007),

the conventional approach to tackle these questions is to use: (1) recursive VAR

models on which identification is achieved using a specific order of the variables of the

system; and (2) a theoretical model on which the complete structure of the economy

is specified (i.e., a DSGE model). Intuitively; recursive VAR models should be able

to uncover the main dynamics of variables after a shock and therefore they should

provide an empirical benchmark to real structural model (i.e. the DSGE model) in

order to assess its potential bias or misspecification.

However, what the literature has found is that identification of monetary policy

shocks through recursive VAR models has always been a subject of debate and differ-

ent specifications and models may lead to different responses under a monetary policy

shock, see Christiano et al. (1998); in addition the identification of the shock is full

of puzzling results, such as the ”price puzzle” explained in Sims (1992), Eichenbaum

(1992), Bernanke et al. (2005), Weber et al. (2009) and Castelnuovo (2015).

Therefore, we extend the conventional approach and include a novel “agnostic”

approach that combines the works of Uhlig (2005) and Arias et al. (2014) with Koop

and Korobilis (2010). We call this model the “agnostic” VAR model. In this setting,

the identification of the shock is done by restricting the impulse responses functions

directly according to conventional wisdom without relying in a particular order of

the VAR system. Thus, this approach offers a challenging benchmark that allows to
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reassess the propagation of foreign monetary policy shocks and the policy implication

derived from DSGE models. In particular, we analyze the propagation of this shock

with a DSGE model tailored to the Chilean economy.

Our results suggest that recursive VAR models do not identify properly the shock

and its implications are counterintuitive. On the contrary, beyond the quantitative

differences, we find that the responses of the “agnostic” VAR model are in line quali-

tatively with those of the DSGE model except for output. However, the transmission

of the shock to the local economy is limited but more persistent according to the

DSGE model; which in turn will imply different policy implication for the central

bank. Thus, the comparison unveils an interesting discussion for the policy maker

and it highlights the benefits of using alternative approaches to better understand

the propagation of shocks through the economy.
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Chapter 2

A comparison of the predictive performance of

restricted nonlinear models, linear models and

forecast combination schemes

2.1 Introduction

Over the last three to four decades, a lot of research has been conducted analyz-

ing the out-of-sample forecast performance of nonlinear models for the conditional

mean. The motivation for this line of research was supported under the premise that

nonlinear models should be able to better capture the nonlinearities that naturally

arise in economic data1 in order to generate superior forecasts compare to the ones

obtained from linear models. However, the statistical evidence systematically showed

that these type of models were not able to forecast best than a simple AR model. In

particular, two main results can be found in this literature: (1) nonlinear models are

not able to outperform simple linear models and even if they do, the forecast gains

are small or not statistically significant; see Diebold and Nason (1990), De Gooijer

and Kumar (1992), Stock and Watson(1999), Clements, Franses and Swanson (2004)

and Marcellino, Stock and Watson (2006); (2) forecast combination schemes usu-

ally outperform single (non)linear models; see Bates and Granger (1969), Clemen

(1989), Deutsch, Granger and Teräsvirta (1994), Swanson and Zeng (2001), Hendry

and Clements (2004), Elliot and Timmermann (2005), Stock and Watson (2004) and

Frances (2011). These results are counterintuitive since nonlinear models arise natu-

rally in time series econometrics as a promising framework to exploit the predictive

1For instance, financial variables can be characterized by a two-regime process: low and high
volatility, output growth as a two-regime process (recessions and expansions), inflation as a two-
regime process in countries on which the Central Bank explicitly defines a band for inflation (i.e.
inside and outside the band), zero-lower bound for the interest rates, exchange rate bands, structural
breaks, time varying pass-through of exchange rates, etc.



6

content of nonlinearities in the data. Moreover, this nonlinear dependency between

economic variables is also suggested by structural models, such as RBC models.

The first result is tackled comprehensively by Diebold and Nason (1990). In

particular, they identify four possible explanations: (1) The degree of nonlinearity in

the data; if nonlinearities are not significant in the data generating process (DGP)

then linear models should forecast best. This view favors the parsimonious argument

in time series forecasting. (2) False rejection of the null hypothesis of linearity. The

rejection of the null may be due to outliers or structural breaks which in turn will

lead the econometrician to specify a nonlinear model instead of a linear one. (3)

Nonlinearities may exist in higher even-ordered conditional moments which can not be

exploited efficiently by focusing in the first moment (i.e., the conditional expectation).

(4) Misspecification; statistical tests may be able to reject linearity but they are not

informative about how you should proceed afterwards; a poor specification of the

nonlinear model will have a significant impact in its performance.

The second result has been reported in many empirical applications since the

seminal work of Bates and Granger (1969)2. In an ever evolving DGP, forecast com-

bination arises as an alternative method to produce superior forecasts when all the

models are misspecified. However, at the same time it implies a consistent inability

of the forecaster to specify a suitable approximation to the DGP which may be a

questionable implication of this literature.

Therefore, the main objective of this paper is to challenge these two key results

2The main contribution of this paper was to derive the combination weights using an optimality
condition to minimize the overall variance of the forecast errors. Since their seminal paper, several
combination methods have been proposed. For instance, Deutsch et al. (1994) analyse the perfor-
mance of nonlinear forecast combination methods on which the weights are chosen according to an
observable state variable. More recently, Elliot and Timmermann (2005) study the forecast gains
derived from markov switching combination schemes. Other authors have tackled the combination
problem in a model selection framework, as in Swanson and Zeng (1997) and Frances (2011). In
these setting, only the best models are chosen to construct the weights due to the collinearity of
the forecasting models. A complete review of this literature is far from the scope of this paper, but
the interested reader can refer to two comprehensive literature reviews done by Clemen (1989) and
Diebold and Lopez (1996).
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from the literature. I argue that the out-of-sample forecast performance of nonlinear

models has being underestimated in previous research due to a deficient specification

in the functional form of these models. Nonlinear models are highly parameterized3

and hence parameter estimation error can easily offset their predictive gains. How-

ever, the literature has not addressed this point properly in previous forecast compar-

isons exercises and hence the empirical results that support the current view about

their performance are incomplete. Thus, I consider restricted versions of three type

of nonlinear models that are commonly used in this literature: The Self-Exciting

Threshold Autoregressive Model (SETAR), The Markov Switching Autoregressive

Model (MSAR) and The Multilayer Perceptron Network (MLP). The restrictions

aim to reduce the number of parameters to estimate allowing the specification of

parsimonious nonlinear models. The complete set of models (henceforth models or

methods) are evaluated with respect to a linear univariate benchmark (i.e. the au-

toregressive model). This model rich environment allow us to explore more deeply

the space of nonlinear models in order to find a suitable specification able to boost

the performance of these type of models4. In addition, this framework may lead to a

dynamic model able to outperform traditional forecast combination schemes. On the

contrary, if this search over the space of nonlinear models fails, then it constitutes

strong evidence against these types of models and confirms the previous findings of

this literature.

My approach relates to two of the four points developed by Diebold and Nason

(1990); more precisely with points (1) and (4) outlined earlier: the degree of nonlin-

3Even the simplest nonlinear model can easily have twice as many parameters than a linear one
and the degrees of freedom vanish quite rapidly when more complex nonlinear models are take it
into account. This is known as the the curse of dimensionality.

4To motivate the main argument, considered the following example. For instance, in the Markov
Switching Autoregressive Models (MSAR), the parameters of an autoregressive model change be-
tween states according to a hidden markov process. However, if the only parameter that changes
between the states is the constant term and this restriction is not included in the model, then pa-
rameter estimation error increases and it may dominate any predictive gains from this type of model.
The inclusions of these restrictions may offer significant predictive gains.
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earity in the data and misspecification. I do not focus my attention in the remaining

two points since in-sample tests do not necessarily imply good out-sample perfor-

mance and because the focus of this paper is on the out-of-sample performance of the

models for the conditional mean, i.e. the first moment.

To this end, I use three key macroeconomic variables that the Federal Reserve

considers to conduct their monetary policy according to Armah and Swanson (2011):

the percent change in the industrial production index (IP), the percent change in the

consumer price index (CPI) and the difference of the 10 year Treasury-bond yield

(r10); similarly to Rossi and Sekhposyan (2010) but I enhance their work by incor-

porating nonlinear models and different forecast horizons. The forecast comparison

is performed using two tests: (1) the unconditional Giacomini and White (2006) test

(GW) of predictive ability to evaluate the average (or global) performance of the

models; (2) the fluctuation test (FL) of Giacomini and Rossi (2010) (GR) to evaluate

their local performance since the GW test may hide important information about

the performance of the models through time. The FL test may be able to identify

windows of opportunities as it was pointed out by Clements, Franses and Swanson

(2004). The models are also compared with different forecast combination schemes, as

in Rapach et al. (2010), to show that in some cases a careful forecaster should be able

to identify a suitable forecast model able to outperform these combination schemes.

This comprehensive evaluation framework along with the model rich environment,

will give us new lights and insights about the performance of nonlinear models and

enables me to challenge the results from this literature. This novel approach to as-

sess the predictive performance of nonlinear models has not been considered in the

empirical literature so far, or at least to this level.

In addition, the average performance of the models is evaluated in two sub-

samples, before and after the financial crisis of 2008, to identify breaks in the per-

formance of the models due to this unique event. Finally, In order to compare my
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findings with previous results from the literature and to stress my argument, I per-

form the forecast comparison between linear and nonlinear models for the case on

which the econometrician fails to consider the restricted versions of nonlinear models.

This exercise is extremely helpful since it provides a benchmark to judge the empirical

results and conclusions from this paper.

The main findings can be summarized as follows. First, results of forecast compar-

ison between linear and univariate nonlinear models show results in line with the two

key findings outlined earlier. But, the results change dramatically in some cases when

restricted nonlinear models are included. The global evaluation shows interesting re-

sults for the industrial production index (IP), I spot cases on which the relative mean

square error with respect to the benchmark model (rMSFE) decreases between thirty

and forty five percent (30% - 45%) depending on the forecast horizon. In particular,

the multivariate restricted versions of the markov switching model show the highest

performance and they are also able to outperform the forecast combination schemes.

For the interest rate (r10) the evidence is less conclusive since the predictive gains

are not as sharp as before. The greatest gains for nonlinear models are reported at

longer forecast horizons but linear models forecast best at shorter horizons. The local

evaluation for IP shows that most of the models have an overall improvement with

respect to the benchmark model after 2008, whereas for r10 the performance of the

models fluctuates considerably through time. Regarding the consumer price index

(CPI), the global and local evaluation show that the benchmark model consistently

outperforms the rest of the models. However, the local evaluation shows that at longer

forecast horizons the multivariate versions of the threshold model report promising

results and further research in this line may reveal significant predictive gains from

these type of models. Finally the sub-sample evaluation shows that the results for IP

do not change significantly. This is not the case for r10 since several models are able
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to outperform the benchmark model before 2008 but not after5. In conclusion, this

paper has provided empirical evidence supporting the view that forecast comparisons

between linear and nonlinear models can be misleading since the predictive gains of

nonlinear models may be elusive but that a simple exploration of the functional form

may reveal significant predictive gains.

Other authors have tackled the model specification issue before in this context but

from a different approach. For instance Swanson and White (1995, 1997a, 1997b),

Teräsvirta et al. (2005) and Teräsvirta (2006), show that adaptive procedures on

which the optimal number of regressors is chosen each time a new observation be-

comes available from the evaluation window, can offer significant predictive gains for

nonlinear models. Alternatively, other authors have applied a different strategy to

keep parameter estimation error under control by first testing the linearity hypothesis

in the data, as in Teräsvirta (1998). However, in-sample properties do not necessarily

imply good out-of sample performance. Instead, I follow a different approach and

explore the predictive gains due mainly to the functional form of the models.

The rest of the paper is organized as follows; the next section describes the unre-

stricted and restricted nonlinear models used to predict the target variables. Section

three describes the forecast exercise. Section four reports the results and the last

section concludes.

2.2 Linear and Nonlinear Models

Define object yt as the endogenous or target variable of a dynamic model; εt as a

noise component, θ as a vector of parameters and w(zt, xt) = (z′t, x
′
t)

′ as a vector of

exogenous or predetermined variables with zt ∈ Rp, xt ∈ Rk and w ∈ Rp+k; where

zt = (yt−1, ..., yt−p)
′ is a vector that contains the autoregressive part of the model

(i.e., lags of the endogenous variables) and xt = (x1t, ..., xkt)
′ a vector of strongly

5This results may be due to the unconventional monetary policies conducted after 2008 (zero
lower bound) since interest rates were following a complete different dynamic after 2008
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exogenous variables. Without loss of generality a dynamic model with an additive

noise component can be defined as follows:

yt = g (w(zt, xt); θ) + εt (1)

Where g(·) is a generic function that maps the exogenous variables and parameters

to the output variable yt. Depending on the vector xt, the univariate or multivari-

ate version of the model can be specified. I consider three types of models: The

Self-Exciting Threshold Autoregressive Model (SETAR), The Markov Switching Au-

toregressive Model (MSAR) and The Multilayer Perceptron Network (MLP). These

models are special cases of (1) and they have been used many times in the empirical

literature. The next sections describe the unrestricted and restricted versions of these

models6.

2.2.1 Unrestricted models

The linear AR model (henceforth benchmark model) is defined as:

yt = β0 + β ′w(zt, xt) + εt (2)

With β0 ∈ R1 and β ∈ Rp+k. The parameters are estimated by minimizing the sum of

squares of the residuals (SSR) of the model. One of the first extension to this model

was the inclusion of threshold variables to allow for different regimes for the target

variable. The m-regime SETAR model (henceforth threshold model) incorporates a

regime switching process for yt that depends on its past values (i.e., the regime is

observable at time period t). Following the notation of Hansen (2000), the model is

6A detailed description of each nonlinear model is available in Appendix 2.A for the interested
reader.
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defined as follows:

yt =
m
∑

i=1

(β0,i + β ′
iw(zt, xt))Iit(γ, d) + εt (3)

Where β0,i ∈ R1, βi ∈ Rp+k for i = 1, ..., m and εt, ∼ N(0, σ2). The object Ijt(γ, d) =

I(γj−i < yt−d ≤ γj) is the indicator function that takes the unit value if the internal

condition holds and zero otherwise, with d as the delay parameter (d < t) and

γ = (γ1, ..., γm) with γ1 < γ2 < ... < γm as the vector of threshold parameters. The

parameters are estimated using a sequential approach to minimize the SSR of the

model.

One of the assumption behind the threshold model is that the state variable that

defines the regime of the process is observable at time t. Hamilton (1989) introduces

a generalization of this model, the m-regime MSAR model. In this model the regimes

(or states) are unobservable and the model uses the data to make an inference about

the state at time t, this is known as filtering. The m-states MSAR model is defined

as:

yt = β0,st + β ′
stw(zt, xt) + εt,st (4)

Where β0,st ∈ R1 and βst ∈ Rp+k for st = 1, ..., m; the state variable st evolves

following an independent markov chain and εt,st ∼ N(0, σ2
st). The parameters are

estimated by quasi-maximum likelihood.

Finally, neural networks are a class of nonlinear model that are flexible enough to

approximate any unknown function given enough structure. This is known as Univer-

sal Approximation Theorem, see Cybenko (1989). For a comprehensive discussion of

this type of models, see Kuan and White (1994). In addition, interesting application

can be found in Swanson and White (1995, 1997a, 1997b). Thus, these type of models

provide a flexible functional form to approximate the conditional mean of a target

variable. Neural networks decompose (1) into two components; a linear and nonlin-

ear component. Following the notation of McNelis (2005), the one layer Multilayer
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Perceptron Network (MLP) with v∗ hidden units is defined as:

yt = β0 +
p+q
∑

i=1

βiwi +
v∗
∑

v=1

γvNv,t(w(zt, xt)) + εt (5)

Nv,t(w(zt, xt)) =
1

1 + e−nv,t

nv,t = ωv,0 +
p+q
∑

i=1

ωv,iwi

Where wi is the ith component of the vector w(xt, zt) ∈ Rp+q, β0 ∈ R1 and each βi and

γv are in R1. In addition, Nv,t(·) is the logistic squashing function with ωv,0 ∈ R1 and

each ωv,i ∈ R1. The parameters are estimated by minimizing the SSR. In this paper

I use a two step procedure to minimize this function; in the first stage the function

is optimized using a genetic algorithm, whereas in the second stage the function is

optimized using a Quasi-Newton algorithm that uses the output from the previous

stage as the starting values for the algorithm.

2.2.2 Restricted nonlinear models

Two constraints are imposed over the threshold models: (1) the number of regimes

is set to two (m = 2) and (2) each regime has the same set of exogenous variables

(w(zt, xt)). This setting defines the 2-regime SETAR model:

SETAR: yt = (β0,1 + β ′
1w(zt, xt))I1t(γ, d) + (β0,2 + β ′

2w(zt, xt))I2t(γ, d) + εt

The MSAR type of models are restricted in two ways: (1) the number of regimes is

set to two (m = 2) and (2) restrictions over the parameters that are state dependent.

The unrestricted MSAR is defined as:

MSARc(1): yt = β0,st + β ′
stw(zt, xt) + εt,st

Whereas the restricted versions of this model are defined as follow:
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MSARc(2): yt = β0,st + β ′w(zt, xt) + εt

MSARc(3): yt = β0 + β ′
stw(zt, xt) + εt

MSARc(4): yt = β0 + β ′w(zt, xt) + εt,st

MSARc(5): yt = β0 + β ′
stzt + β ′xt + εt

Note that in the MSARc(2) specification only the constant term is state dependent

whereas in the MSARc(3) all the parameters of the conditional mean are state de-

pendent but the constant term. In the MSARc(4) model only the noise component

is state dependent. Finally in the MSARc(5) specification, only the autoregressive

part of the model is state dependent.

Finally, the restricted MLP networks consider different combinations of variables

for the linear and nonlinear components of the network. The unrestricted network is

defined as:

MLP(1): yt = β0 +
∑i∗

i=1 βiw(zt, xt) +
∑v∗

v=1 γvNv,t(w(zt, xt)) + εt

Whereas the restricted networks are defined as follow:

MLP(2): yt = β0 +
∑i∗

i=1 βiwi +
∑v∗

v=1 γvNv,t(xt) + εt

MLP(3): yt = β0 +
∑i∗

i=1 βiwi +
∑v∗

v=1 γvNv,t(zt) + εt

MLP(4): yt = β0 +
∑i∗

i=1 βixt +
∑v∗

v=1 γvNv,t(zt) + εt

MLP(5): yt = β0 +
∑i∗

i=1 βizt +
∑v∗

v=1 γvNv,t(xt) + εt

MLP(6): yt = β0 +
∑i∗

i=1 βizt +
∑v∗

v=1 γvNv,t(zt) + εt

MLP(7): yt = β0 +
∑v∗

v=1 γvNv,t(zt) + εt

The first two specifications differ in the variables included in the squashing function

Nv,t(·). The networks MLP(4) and MLP(5) restrict the vector of exogenous variables

of the model and considerer different combination of exogenous variables for the linear

and nonlinear part of the model. The MLP(6) specifies a univariate network, since

only the lags of the dependent variables are used to predict the conditional mean.

Finally, MLP(7) is a restricted version of the MLP(6) network on which the linear

component is shut out.
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2.3 Forecasting

The h-step-ahead point forecast for variable yt+h from model i is defined as:

ŷit+h|t = g
(

w(zt, xt); θ̂t
)

Where θ̂t is the vector of parameter estimates obtained using information up to time t.

Note that the point forecast is computed directly; the literature refers to this approach

as the direct forecast method. An alternative way to produce the h-step-ahead point

forecast is the recursive method; in this setting the dynamic model is used to compute

the one-step ahead forecast and the h-step-ahead forecast is computed by the iteration

of the original model. The main advantage of the direct over the recursive method

is that it avoids the numerical issues involved in the multi-step ahead forecast (i.e.

ŷt+h|t for h ≥ 2) in the context of nonlinear models, see Stock and Watson (1999),

Teräsvirta et al. (2005), Marcellino et al. (2006) and Bredahl and Teräsvirta (2010)

for a detailed explanation of this issue.

The pseudo out-of-sample predictions are obtained for three key economic vari-

ables for the American economy: the percent change in the industrial production

index (IP), the percent change in the consumer price index (CPI) and the difference

of the 10 year Treasury-bond yield (r10). Similarly to Rossi and Sekhposyan (2010)

but I enhance their work by incorporating (un)restricted nonlinear models and differ-

ent forecast horizons (h = 1, 3, and 12). The data are monthly observations covering

the period from January 1960 to December 2014. The model selection works as fol-

lows. The order of the autoregressive part of the model (zt) is chosen according to the

Bayesian information criterion (BIC) or Schwarz criterion7 for each forecast horizon

7Where BIC = T · ln(l̂) + k · ln(T ); with l̂ as the log-likelihhod of the model, T the sample size
and k the number of parameters of the model. Equivalently, under the assumption of normality and
independence in the error term, the BIC can also be defined as:

BIC = T · ln(σ̂2
ε) + k · ln(T )
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using data from the period 1960.01 to 1985.12 (estimation window).

Multivariate models incorporate predetermined variables and lag values of the

target and predetermined variables; whereas univariate models include only lags of

the target variable. To simplify the forecast comparison, I restrict the number of pre-

determined variables to three and define three type of multivariate nonlinear models.

The first type of models (x1) include predetermined variables dated at time t (i.e.,

(xt)), the second type of models (x2) also include the first lags of the predetermined

variables (i.e., (xt, xt−1)) and the third type of models include the first and second lags

of the predetermined variables (i.e., (xt, xt−1, xt−2)). See Table B.2.1 for a detailed

description of the predetermined variables chosen for each target variable. In particu-

lar some variables are chosen due to the close link suggested by economic theory and

others due to the information they have about the state of the economy. For instance,

DSGE models suggest a close connection between interest rates and activity through

a Taylor rule or between unemployment and inflation through a Phillips curve. Fi-

nally, the leading economic and supplier deliveries indexes are diffusion index hence

contain information from many sectors of the economy and thus they could contain

valuable information to predict the target variables8.

I follow this approach because the main objective of this paper is to explore the

predictive gains due mainly to the functional form of the model. In general terms,

the pseudo-out of sample evaluation works as follow. The full sample is divided

in two windows: the estimation window (R) and the evaluation window (P). The

models are estimated using the estimation window and forecasts are made for the

evaluation windows. The models are then re-estimated each time new information is

added from the evaluation to the estimation window and new forecasts are produced.

The process continues until the evaluation window is exhausted. Finally, models are

Where σ̂2
ε = 1

T

∑T

t=1 ε̂
2
t .

8This argument do not imply that these are the best predetermined variables to predict the
target variables. It just clarifies the selection rule. The inclusion of more variables could potentially
improve the performance of the models discussed in this paper.
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compared using statistical tests or statistics to summarize their properties.

Forecasts for each model are computed as follow. For the MSAR type of models,

the h-step-ahead forecast is computed as a convex combination of the predictions

of the states: ŷt+h|t = h′
kξ̂t+k|t; where hk is the vector of forecasts and ξ̂t+k|t the

vector with the states probabilities. Forecasts for the SETAR models are computed

directly since the regime is known at time t, and forecasts for the linear models and

neural networks are computed directly. Nonlinear models may be quite sensitive to

outliers or other features of the data and thus in some experiments these models may

produce extreme predictions that a rational forecaster would never use. To mimic

this process, an automatic trim procedure was included in the MSAR and MLP type

of models in the same spirit of Swanson and White (1995,1997a,1997b); whenever

the model produces a prediction larger that any previously observed value over the

estimation window, I keep the last forecast (i.e. no change in forecast). The full

forecast comparison incorporates the predictions from forty one models9 for each

variable at each forecast horizon.

The comparison is performed using the relative mean square forecast error with

respect to a linear benchmark model, i.e. the AR model of order p. The mean square

forecast error (MSFE) of model i at forecast horizon h is defined as:

MSFEi,h =
T−h+1
∑

t=R−h+2

(

yt+h − ŷit+h

)2

A relative mean square forecast error (rMSFE) greater than one indicates that the

benchmark model outperforms the alternative model, whereas the opposite holds

if the value is less than one. Two test are use to assess the statistical signifi-

cance of the results: the Fluctuation test (FL) of Giacomini and Rossi (2010) (GR)

and the unconditional Giacomini and White (2006) test (GW) of predictive abil-

9More precisely: four AR models, four SETAR models, twenty MSAR models and thirteen MLP
networks.
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ity. This framework requires two conditions: (1) stationarity of the target vari-

able yt+h and (2) rolling window estimation scheme. To address the first point

the target variables are transformed as follows10: yipt+h = 1200ln (IPt+h/IPt) /h,

ycpit+h = 1200 (ln (CPIt+h/CPIt) /h− ln (CPIt/CPIt−1)) and yr10t+h = r10t+h − r10t.

For the second condition, forecasts are made following the procedure outlined earlier

but the sample size of the estimation window is kept constant by dropping the first

observation each time new information is added form the evaluation window.

Finally, the comparison includes several forecast combination schemes with fix

and time-varying combination weights, thirteen combination schemes in total11. The

latter approach requires the use of a training window to estimate the weights and

therefore the evaluation window needs to be adjusted to take this into account.

2.3.1 Forecast combination schemes

The composite h-step-ahead forecast is defined as:

yct+h|t = f
(

y1t+h|t, ..., y
M
t+h|t;̟

)

Where f(·) is a (non)linear combination function12, M the total number of models,

yit+h|t is the conditional forecast from model i and ̟ is the vector of weights, see Bates

and Granger (1969), Clemen (1989), Elliott and Timmermann (2005) and Frances

(2011) for a comprehensive discussion of this literature.

Table 2.1 describes and summarizes the combinations schemes considered in the

experiments. Two types of weights can be found in the literature: fix and time-varying

combination weights. In the former type, the weights are independent of the forecast

accuracy of the models (for instance the mean or median of the forecasts). In the

10The transformation for the CPI follows the work of Stock and Watson (2003) and assumes that
the index is I(2). The case of I(1) was also considered but the results did not change significantly.
The results for this case are available at Table B.2.2 in Appendix section B.

11Thus, the full comparison includes the predictions from fifty four models.
12See Deutsch et al. (1994) for an application of nonlinear combination functions.
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Table 2.1
Forecast combination schemes

Label Description

Fix combination weights

mean Arithmetic mean all models.
med Median all models.
mAR Arithmetic mean AR models.
mST Arithmetic mean SETAR models.
mMS Arithmetic mean MSAR models.
mMLP Arithmetic mean MLP networks.

Time-varying combination weights

tmean Arithmetic mean all models (trimmed by 20%).
best Selects the best model based on the absolute prediction error from last period.
best5 Arithmetic mean of the five most accurate models, based on the absolute

prediction error from last period.
MSEs90 Selects the best model from the set of models for which the rMSE < 90%;

otherwise the arithmetic mean of all models is used.
MSEm90 Arithmetic mean of the five most accurate models, according to the MSE.
OLSr OLS bias correction of the best model in terms of MSE. Weights are

computed using the model: yc
t+h

= β0 + β1ŷbestt+h|t
+ εt+h

MSEw Weighted average all models: yc
t+h|t

=
∑41

i=1
̟iy

i
t+h|t

and ̟i =
MSEi

∑

41

i=1
MSEi

where MSEi is the MSE of model “i”.

Where MSE is the mean square prediction error and rMSE is the relative MSE defined as the
MSE of model “i” divided by the MSE of the benchmark model (i.e. the univariate AR model).
The MSE for the time-varying combination schemes are computed using the out-sample training
window (5 years of data).

latter type, the weights depend on their in/out-of sample performance of the models

and thus they have to be estimated. In this paper, the time-varying combination

weights are estimated according to their out-of sample performance by using a rolling

training windows of five years of data starting with the period of 1986.01 to 1990.12.

Therefore, the evaluation window for the experiments is adjusted to take this into

account and thus the final evaluation sample covers the period of 1991.01 to 2014.12

(i.e., the last twenty four years of data).

2.3.2 Local and global test of average equal predictive ability

The performance of the models and forecast combination schemes is evaluated with re-

spect to the benchmark model in terms of their local and global performance. Several

statistical tests are available in the literature to test the hypothesis of global average

equal predictive ability, like the Diebold and Mariano (1995) (DM) test which prob-

ably remains as one of the most used test to compare the forecast accuracy between

models. According to Diebold (2013), the DM test was developed to compare two
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competing forecasts and it was not intended for the comparison of competing models

in pseudo-out of sample experiments since more sophisticated methods exist for this

purpose. In the DM framework, the forecast errors can have non-zero mean, serially

or contemporaneously correlated and no distributional assumption is made over them.

In addition, the asymptotic distribution of the test is the standard normal distribu-

tion. Thus, the elegance and simplicity of the procedure can help us to understand

why it is still used in many empirical applications. Unfortunately the DM can not be

used when the competing models are nested because in this case the limiting distri-

bution of the test is not defined under the null hypothesis of equal predictive ability.

Thus, we need to specify a different statistical procedure to evaluate the performance

of the models since nonlinear models nest linear models, i.e. the benchmark model.

The forecast comparison between nested competing models has been investigated

deeply in the literature, see for example Clark and McCracken (2001), Clark and West

(2007), Giacomini and White (2006) and Clark and McCracken (2012). In this paper

I use the Giacomini and White (2006) (GW) test because the limiting distribution

under the null is standard and the test is robust to misspecification of the competing

models. Thus, it follows the same spirit of the DM test but the GW test evaluates

the forecasting models along with other choices that are involve in the prediction

process, such as: estimation procedure or different data sets. Therefore, the test

focuses more on the forecast method rather than the forecasting model which makes

the comparison of nested and nonnested models feasible and straightforward since the

limiting distribution of the test is standard13. The GW requires two conditions as it

was explained at the beginning of this section: (1) stationarity of the target variable

yt+h and (2) rolling window estimation scheme.

Define f(θ) and f ′(θ′) as two competing forecast models (or methods) for target

variable yt+h. The parameters of each model are estimated using rolling windows

13One of the main drawbacks of alternative tests to compare nested models is that their limiting
distribution under the null hypothesis are model dependent.
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of data. Define ε̂t+h,f(θ) and ε̂tt+h,f ′(θ′) as the forecast errors for each model. In

particular, define f(θ) as the benchmark model and f ′(θ′) as the alternative model.

Under a quadratic loss function the null hypothesis of equal predictive ability is

defined as:

H0 : E
(

ε̂2t,f ′(θ′) − ε̂2t,f(θ)
)

= 0 for t = R + h, ..., T

The test can be implemented using the statistic:

t =
∆L̄

σ̂P/
√
P

Where ∆L̄ = 1
P

∑P
τ=1

(

ε̂2τ,f ′ − ε̂2τ,f
)

; P as the sample size of the evaluation window;

σ̂P as a Heteroskedasticy and Autocorrelation Consistent14 (HAC) estimator of the

asymptotic variance of
[√

P∆L̄
]

and t ∼ N(0, 1). A two-tailed test identifies which

method forecasts best on average and under H0 both models have the same predictive

performance on average. However, the GW test may hide important information

regarding the performance of the models. For instance, the test can reject the null

hypothesis between two similar competing models if one them have a small subset

of large prediction errors; or it may be the case that each of the competing models

forecast best in one part of the evaluation window, thus the GW test may conclude

that both models predict the target variable with the same accuracy15.

Thus, to enhance the forecast comparisons between models, I also perform a lo-

cal evaluation of the forecast accuracy in addition to the global evaluation. This

framework provides a comprehensive evaluation of the predictive performance of the

14For example, as in Rossi and Sekhposyan (2010):

σ̂P =

q(P )+1
∑

i=−q(P )+1

(1− |i/q(P )|)P−1 ×
T
∑

j=R+H

(ε̂j,f − ε̂j,f ′)(ε̂j−1,f − ε̂j−1,f ′)

Where q(P ) is a bandwidth that grows with the sample size of the evaluation window.
15Following Clements et al. (2004), nonlinear models may have windows of opportunity on which

they can outperform linear specifications but the GW test may be unable to detect these cases since
it focuses on the average performance of the models.
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alternative models with respect to the linear benchmark model and it has not being

explored before in the context of nonlinear models. The local average predictive abil-

ity is measured with the Giacomini and Rossi (2010) fluctuation test (FL). Under the

null hypothesis both models have the same predictive ability at each point in time.

The FL test follows the same spirit of the GW test since it measures the difference

between the mean square forecast errors but using a moving window of m periods:

∆L̄t =
1

m





j=t+m/2
∑

j=t−m/2

ε̂2j+h,f ′ − ε̂2j+h,f





The FL test is defined as:

Ft,m = σ̂−1m−1/2 ×




j=t+m/2
∑

j=t−m/2

ε̂2j+h,f ′ − ε̂2j+h,f





Where σ̂ is HAC estimator of the asymptotic variance of the statistic. The test

plots the sample path of Ft,m along with critical values: cvup > 0 and cvlw < 0.

If Ft,m crosses one of the critical values then it signals that one of the model was

outperformed by the other one at some point. In particular, if Ft,m < cvlw the

alternative model forecasts best, if Ft,m > cvup the benchmark model forecasts best

and if Ft,m ∈ [cvlw, cvup] then both models have equal out-of-sample performance at

each point in time. The main drawback of the FL test is that it does not have a

standard distribution under the null hypothesis. Simulations for the critical values

of the test are reported in the original paper of GR for several values of m (the size

of the moving evaluation window). Following their results, m is set equal to 0.3P in

order to maximize the power of the test.
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2.4 Results

The results are divided in four sections for ease of exposition. The first two sections

analyse the global average performance using the GW test. In particular, the first sec-

tion performs the forecast comparison using univariate unrestricted nonlinear models

and forecast combination schemes whereas the second section extends the analysis

by including the full set of (un)restricted nonlinear models. This comparison unveils

the potential bias from the literature. The third section evaluates the local average

predictive performance of the models using the fluctuation test of GR. Finally, the

last section shows the comparison of the models before and after the financial crisis

of 2008 to analyze the robustness of the global evaluation to this unique event.

2.4.1 Univariate unrestricted nonlinear models

Following the work of Stock and Watson (1999), Teräsvirta et al.(2005), Teräsvirta et

al.(2006), Marcellino (2008), Bredahl and Tersvirta (2010), among others; Table 2.2

shows the relative mean square forecast errors (rMSFE) for univariate unrestricted

nonlinear models, forecast combination schemes and multivariate AR models with

respect to the benchmark model for three forecast horizons. The table also highlights

the cases for which the null hypothesis of equal global average predictive ability is

rejected according to the GW test.

Table 2.2 shows discouraging results from this exercise for univariate nonlinear

models, this is specially true for CPI and r10. that the benchmark forecasts best

than the alternative nonlinear models, this is especially true for the CPI and r10 at

any forecast horizon. For IP the results slightly differ at h = 1, since multivariate

versions of the AR(p) model outperform the benchmark model. But, it is worth

noting that the univariate neural network MLP(6) shows a significant decrease in

the rMSFE of almost ten percent (10%). The results for the forecast combination

schemes suggest that they may provide predictive gains in some cases. Thus, this
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Table 2.2
Relative mean square forecast errors (rMSFE) and GW test

Univariate unrestricted nonlinear models
IP CPI r10

Method h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
ARx1 0.921* 1.234 1.132 1.015 1.054 0.848 1.033 1.132* 1.240*
ARx2 0.762** 0.746 0.869 1.009 1.061 0.842 1.028 1.136 1.397*
ARx3 0.771** 0.713 0.855 1.005 1.099 0.859 1.072 1.087 1.295**
SETAR 1.032 1.353* 1.381* 1.068 1.195* 1.516* 1.042* 1.502* 2.227*
MSARc(1) 0.976 1.056 1.133 1.031 1.377 1.322 1.008 1.115* 1.277*
MLP(6) 0.906** 1.166 1.201* 1.029 1.678* 2.741* 1.017 1.114* 1.242*
Forecast combination schemes

mean 0.762* 0.761* 0.772* 0.954 1.036 1.161 0.963 0.959 0.986
med 0.781* 0.753* 0.794* 0.946 1.065 1.283 0.956 0.982 0.971
mAR 0.801* 0.770 0.846 1.002 1.037 0.809 0.983 0.983 1.078
mST 0.883** 0.934 1.109 1.001 1.104* 0.968 1.113* 1.071 1.509*
mMS 0.751* 0.813* 0.736* 0.954 1.116 1.284 0.935* 0.991 0.941
mMLP 0.816* 0.752* 0.878 1.024 1.192 1.553 0.982 1.014 1.104
tmean 0.761* 0.755* 0.778* 0.953 1.042 1.177 0.957 0.954 0.983
best 1.080 1.595* 1.243 1.195** 1.729* 2.661* 1.053 0.998 0.981
best5 1.083 1.596* 1.243 1.195** 1.725* 2.661* 1.053 0.996 0.980
MSEs90 0.944 0.689** 0.890 0.973 0.959 0.910 0.973 1.081 0.941
MSEm90 0.818* 0.678* 0.750* 1.158 1.075 0.950 0.913* 1.029 0.890
OLSr 1.098 0.796 1.339 1.042 1.113 0.973 1.008 1.075 1.187
MSEw 0.758* 0.732* 0.764* 0.956 1.030 1.103 0.962 0.960 0.957

Notes: Numerical entries in this table are relative mean square forecast errors (rMSFE) with respect to
the AR(p) model (benchmark model). Forecast are monthly for the period 1991.01 to 2014.12. (P = 244).
Numerical values less than unity indicate that the alternative model forecasts best. Where “modxi” is the
label for model “mod” and “xi” for i = 1, 2, 3, indicates the vector xi

t included in the multivariate version
of the model. If no “xi” is attached, then the label refers to the univariate version of the model. The
composite forecasts were made using the entire set of models (i.e., forty one models in total).
(*) Denoting rejection at the 5% level.
(**) Denoting rejection at the 10% level.

exercise supports the view of the literature: (1) nonlinear models are not able to

outperform simple linear models and even if they do, the forecast gains are small or

not statistically significant; and (2) forecast combination schemes usually provide an

overall improvement with respect to single models.

At this stage a forecaster would conclude that the predictive gains of nonlinear

models to forecast these three target variables are limited and probably nonexistent.

Thus predictions for these variables should be made using univariate or multivariate

linear models or forecast combination schemes. In addition, alternative methodolo-

gies should also be explored and evaluated. But, unrestricted nonlinear models are

highly parameterized and their poor performance may be due to parameter estima-

tion error. Thus, the inclusion of restricted nonlinear models may lead to significant

improvements in their performance and Table 2.2 is in some way showing evidence

of this conjecture. The result for IP at h = 1 shows that the univariate neural net-
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work exhibits a small significant improvement with respect to the linear benchmark

model. This result is interesting because neural networks are capable to approximate

any unknown function given enough structure; thus this result may be signaling that

an exploration of the functional form of nonlinear models may identify specifications

capable to offer significant predictive gains for this target variable. The next section

incorporates restricted versions of nonlinear models along with multivariate restricted

versions of them, which allow us to analyze the robustness of results and conclusions

from this part of the analysis.

2.4.2 A comparison of the predictive performance of restricted nonlinear

models, linear models and forecast combination schemes

The full comparison includes the predictions from forty one models (one benchmark

model and forty alternative models) and thirteen forecast combination schemes; a

total of fifty four models for each target variable at each forecast horizon. Table 2.3

reports the relative mean square forecast errors (rMSFE) of each model with respect

to the benchmark and it also highlights the cases for which the null hypothesis of

equal global average predictive ability is rejected according to the GW test.

The main results can be summarized as follow. For IP, results change dramati-

cally with the ones reported before since several restricted nonlinear models are able

to outperform the benchmark model. The evidence for r10 is less conclusive and the

greatest forecast gains for nonlinear models are in longer forecast horizons. Finally,

for CPI the results show that the linear benchmark model outperforms alternative

methods at any forecast horizon, but multivariate versions of the threshold model

show promising results at longer forecast horizons. Thus, these results put in per-

spective the findings from the previous section by showing the potential predictive

gains derived from restricting the functional form of nonlinear models in order to

decrease parameter estimation error and boost their predictive performance.
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Table 2.3
Relative mean square forecast errors (rMSFE) and GW test

IP CPI r10
Method h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
ARx1 0.921* 1.234 1.132 1.015 1.054 0.848 1.033 1.132* 1.240*
ARx2 0.762** 0.746 0.869 1.009 1.061 0.842 1.028 1.136 1.397*
ARx3 0.771** 0.713 0.855 1.005 1.099 0.859 1.072 1.087 1.295**
SETAR 1.032 1.353* 1.381* 1.068 1.195* 1.516* 1.042* 1.502* 2.227*
SETARx1 1.073 1.401* 1.524* 1.071 1.219** 0.954 1.167* 1.197* 1.480*
SETARx2 0.880** 0.842 1.092 1.057 1.186** 0.935 1.292* 1.273* 1.762*
SETARx3 0.978 0.812 1.006 1.109 1.153 1.062 1.338* 1.191** 1.682*
MSARc(1) 0.976 1.056 1.133 1.031 1.377 1.322 1.008 1.115* 1.277*
MSARc(1)x1 0.911 1.246 0.903 1.024 1.333 1.306 1.011 1.170* 1.082
MSARc(1)x2 0.747** 0.771 0.826* 1.064 1.125 1.457 0.921* 1.101 0.972
MSARc(1)x3 0.732 0.646** 0.716* 0.954 1.138 1.319 0.913* 1.010 0.881**
MSARc(2) 0.993 1.010 1.014 1.033 1.036 1.349 1.019 1.132* 1.364*
MSARc(2)x1 1.603 1.325 0.830 1.024 1.302 1.390 1.027 1.853* 0.998
MSARc(2)x2 0.735 0.816 0.834* 1.023 1.305 1.466 1.024 1.228* 0.948
MSARc(2)x3 0.794 0.554** 0.611* 0.916 1.305 1.455 0.900* 1.625* 0.874
MSARc(3) 0.911* 1.040 1.006 1.048 1.224 1.442 0.993 1.117** 1.030
MSARc(3)x1 0.998 1.367 0.830 1.022 1.174 1.311 0.960 1.295* 0.915
MSARc(3)x2 0.717** 0.804 0.817* 0.998 1.175 1.456 0.915* 1.139* 0.911
MSARc(3)x3 0.679** 0.731** 0.685* 0.993 1.137 1.267 0.985 1.026 0.878**
MSARc(4) 0.976* 1.035 0.986 1.037 1.340 1.375 0.992 1.015 1.127**
MSARc(4)x1 0.904 1.341 0.917 1.023 1.302 1.302 1.015 1.124* 0.995
MSARc(4)x2 0.729** 0.817 0.760* 1.023 1.298 1.453 1.012 1.002 0.983
MSARc(4)x3 0.725** 0.644** 0.602* 0.916 1.306 1.217 0.998 0.930 0.931
MSARc(5) 0.911* 1.040 1.006 1.048 1.224 1.442 0.993 1.117** 1.030
MSARc(5)x1 0.916 1.332 0.902 1.024 1.331 1.302 1.087* 1.124* 1.047
MSARc(5)x2 0.715** 0.799 0.817* 0.998 1.135 1.453 0.945 1.075 1.151
MSARc(5)x3 0.712** 0.600* 0.754* 0.993 1.137 1.320 0.983 0.989 1.057
MLP(1)x1 0.922* 0.958 0.990 1.019 1.258** 2.045* 0.992 1.086* 1.166*
MLP(1)x2 0.863** 0.973 0.985 1.122 1.089 1.557 1.057* 1.464 1.184*
MLP(1)x3 0.940 1.332 1.101 1.144** 1.175** 2.288* 1.047 1.229* 1.258*
MLP(2)x1 0.803** 0.807 0.935 0.997 1.216 2.933* 1.046 1.137 1.540*
MLP(2)x2 0.749** 1.077 1.394** 1.210* 1.421 1.537 1.088 1.185 1.361*
MLP(2)x3 1.049 1.109* 1.092 1.019 1.334 1.408 1.019 1.157* 1.264*
MLP(3)x1 1.841* 0.762 1.036 1.062 1.391** 1.696 1.017 1.265 1.434*
MLP(3)x2 0.774 0.637 1.097 1.067 1.537* 1.550 1.074 1.082 1.244
MLP(3)x3 0.865* 1.279 1.091 1.000 1.507* 2.129* 1.054 1.315* 1.313*
MLP(4)x1 0.826 0.892 1.172 1.184** 1.426** 1.701 1.158* 1.153 1.445*
MLP(5)x1 1.071 0.953 0.949 1.209** 1.218** 1.405* 1.103* 1.097 1.422*
MLP(6) 0.906** 1.166 1.201* 1.029 1.678* 2.741* 1.017 1.114* 1.242*
MLP(7) 0.845* 0.949 1.518** 1.250* 1.297* 1.657 1.022 1.065* 1.147*
Forecast combination schemes

mean 0.762* 0.761* 0.772* 0.954 1.036 1.161 0.963 0.959 0.986
med 0.781* 0.753* 0.794* 0.946 1.065 1.283 0.956 0.982 0.971
mAR 0.801* 0.770 0.846 1.002 1.037 0.809 0.983 0.983 1.078
mST 0.883** 0.934 1.109 1.001 1.104* 0.968 1.113* 1.071 1.509*
mMS 0.751* 0.813* 0.736* 0.954 1.116 1.284 0.935* 0.991 0.941
mMLP 0.816* 0.752* 0.878 1.024 1.192 1.553 0.982 1.014 1.104
tmean 0.761* 0.755* 0.778* 0.953 1.042 1.177 0.957 0.954 0.983
best 1.080 1.595* 1.243 1.195** 1.729* 2.661* 1.053 0.998 0.981
best5 1.083 1.596* 1.243 1.195** 1.725* 2.661* 1.053 0.996 0.980
MSEs90 0.944 0.689** 0.890 0.973 0.959 0.910 0.973 1.081 0.941
MSEm90 0.818* 0.678* 0.750* 1.158 1.075 0.950 0.913* 1.029 0.890
OLSr 1.098 0.796 1.339 1.042 1.113 0.973 1.008 1.075 1.187
MSEw 0.758* 0.732* 0.764* 0.956 1.030 1.103 0.962 0.960 0.957

Notes: Numerical entries in this table are relative mean square forecast errors (rMSFE) with respect to
the AR(p) model (benchmark model). Forecast are monthly for the period 1991.01 to 2014.12. (P = 244).
Numerical values less than unity indicate that the alternative model forecasts best. Where “modxi” is the
label for model “mod” and “xi” for i = 1, 2, 3, indicates the vector xi

t included in the multivariate version
of the model. If no “xi” is attached, then the label refers to the univariate version of the model. The
composite forecasts were made using the entire set of models (i.e., forty one models in total).
(*) Denoting rejection at the 5% level.
(**) Denoting rejection at the 10% level.
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Results for IP are quite different from the ones reported in the previous section.

For h = 1, evidence shows that several nonlinear models significantly outperform the

benchmark model. In particular the MSARc(3)x3 model decreases the rMSFE by

almost thirty two percent (32%). To illustrate the performance of the “best” model,

Figures C.2.7 and C.2.8 of Appendix C show the performance of this model and it

highlights the period for which was able to forecast best than the linear benchmark

model. Similar results are reported for h = 3 for the MSARc(1)x3, MSARc(2)x3,

MSARc(3)x3, MSARc(4)x3 and MSARc(5)x3 models with an average improvement

of the order of thirty five percent (35%) in the rMSFE. At this forecast horizon,

the MSARc(2)x3 model clearly outperforms the rest of the models with predictive

gains of the order of forty five percent (45%). For h = 12, fewer models are able to

forecast best than the benchmark model but by no means this imply a loss in the

predictive accuracy of the MSAR type of models. In particular, the MSARc(2)x1,

MSARc(2)x3, MSARc(3)x3 and MSARc(4)x3 models report a decrease of almost

thirty five percent (35%) on average in the rMSFE. At this forecast horizon the

MSARc(2)x3 model clearly dominates the rest of the models. Regarding the forecast

combination schemes, the time-varying combination schemes are able to detect the

superiority of some of these models at each forecast horizon but this is not enough

to outperform the best model at each forecast horizon because they also incorporate

the predictions from less accurate models. Thus, these results provide evidence to

validate the conjecture made in the previous section, the univariate neural network

was able to signal the potential gains of nonlinear models for this target variable;

hence these type of models may be an effective first filter to detect these cases. We

leave this last point open for further research.

The results for CPI are consistent with previous findings since they show that a

simple AR(p) model is able to forecast best than more sophisticated nonlinear models

and combination schemes at any forecast horizon. Thus, predictions should be made
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using autoregressive models or alternative methods not considered in this paper.

The evidence for r10 is not as conclusive as it was for IP, but there are cases

on which alternative models outperform the benchmark. In particular at h = 1,

the MSARc(1)x2, MSARc(1)x3, MSARc(2)x3 and MSARc(3)x2 models report a re-

duction of eight to ten percent (8% - 10%) in the rMSFE; whereas at h = 12, two

methods decrease the rMSFE in twelve percent (12%). On the contrary, no signifi-

cant results are reported at h = 3. Finally, forecast combination schemes with fix and

time-varying combination weights are unable to forecast best than the benchmark at

any forecast horizon; the few cases for which the rMSFE is less than unity are not

statistically significant with the exception of MSEm90 which reports a decrease of al-

most ten percent (10%) in the rMSFE. This mix evidence for this target variable may

be due to the zero lower bound policy conducted by the Fed after the financial crisis.

Most of the interest rates dropped to low (and constant) unprecedented values; thus

in this setting nonlinear models would be unable to forecast this period effectively.

To assess the robustness of these results, in the next section I analyze the average

performance of the models before and after the financial crisis.

2.4.3 Unveiling the Local performance of the models

Figures 2.1 through 2.3 report the FL test for the 1-step-ahead forecast (h = 1) for

the three target variables, results for the remaining forecast horizons are reported in

Appendix 2.C. Each graph shows the sample path of the statistic (Ft,m) along with

its critical values (cvlw, cvup) for a test level of 10%. If Ft,m crosses one of the critical

values then it signals that one of the model was outperformed by the other one at some

point. In particular, if Ft,m < cvlw the alternative model forecasts best, if Ft,m > cvup

the benchmark model forecasts best and if Ft,m ∈ [cvlw, cvup] then both models have

equal out-of-sample performance at each point in time. For ease of exposition, the

models are grouped according to their functional form.
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Figure 2.1

Fluctuation test for the industrial production index (IP)

1-step ahead forecast

Forecasting IP over time. Each point of the solid blue line reports the relative performance of the alternative
model with respect to the benchmark model computed with a rolling windows of five years of data. Red lines
show critical values (cvlw, cvup) for a test level of 10%. If the blue line crosses cvlw then the alternative model
forecasts best, if it crosses cvup then the opposite holds; otherwise no statistical difference exists between the
models.

Figure 2.1 shows that the predictive accuracy between models is quite similar

until 2008 and after this point several alternative models are able to forecast best

than the benchmark model. In addition, results show a systematic decrease in the

performance of threshold models after 2008. Regarding the MSAR type of models, the

local evaluation shows that many of these specifications models are able to forecast

best than the benchmark model at the end of the evaluation window. But there is a

small subset of them on which no significant difference exists in the performance of

the competing models; and two cases on which the benchmark model forecasts best.

Similar results are reported for neural networks. Thus, the performance for these two

type of models (MSAR and MLP) are sensitive to their specification; moreover these

results further validate the argument that an exploration of the functional form of

nonlinear models may lead to significant predictive gains. The evaluation for h = 12
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report similar results but for this case the benchmark model is able to outperform the

vast majority of neural networks. The FL tests for h = 3 show similar results as well,

but there is a decrease in the number of models that are able to forecast best than

the benchmark model after 2008. It is interesting to note that the local performance

of thresholds models increases with the forecast horizon.

Figure 2.2

Fluctuation test for the consumer price index (CPI)

1-step ahead forecast

Forecasting CPI over time. Each point of the solid blue line reports the relative performance of the alternative
model with respect to the benchmark model computed with a rolling windows of five years of data. Red lines
show critical values (cvlw, cvup) for a test level of 10%. If the blue line crosses cvlw then the alternative model
forecasts best, if it crosses cvup then the opposite holds; otherwise no statistical difference exists between the
models.

For CPI, Figure 2.2 shows results that are consistent with the ones reported in

the global evaluation. More precisely, alternative models are not able to predict the

target variable significantly better than the benchmark model in most of the cases;

in addition the evaluation also shows that the benchmark model forecasts best than

some of the alternative models. However, the local evaluation shows that at longer

forecast horizons the multivariate versions of the threshold model report promising

results and further research in this line may reveal significant predictive gains for
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these type of models.

Figure 2.3

Fluctuation test for the 10 year Treasury-bond yield (r10)

1-step ahead forecast

Forecasting r10 over time. Each point of the solid blue line reports the relative performance of the alternative
model with respect to the benchmark model computed with a rolling windows of five years of data. Red lines
show critical values (cvlw, cvup) for a test level of 10%. If the blue line crosses cvlw then the alternative model
forecasts best, if it crosses cvup then the opposite holds; otherwise no statistical difference exists between the
models.

Finally, Figure 2.3 shows the results of the fluctuation test for r10. The FL tests

indicate that in most cases no statistical difference exists between the models with

the exception of few cases on which the benchmark model forecasts best. Finally,

the local evaluation for the remaining forecast horizons show similar results but they

also indicate that the local predictive ability of the alternative models decreases with

the forecast horizon. However, it is worth noting that the fluctuation tests for this

target variable display an erratic path through time and this pattern remain in all

the forecast horizons.
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2.4.4 Forecasting before and after the financial crisis

This section analyze the robustness of the global average predictive ability tests re-

ported at the beginning of this section to the events of 2008, since several economic

variables shown a unique dynamic after the financial crisis. Thus, I divide the eval-

uation sample in two periods: before and after December 2007 (2007.12). Next,

prediction errors are computed for each model at each forecast horizon for each sam-

ple. As before, I compute the rMSFE along with the GW test; however this time the

comparison excludes the time-varying combination schemes because the fewer number

of observations of the second sample (after 2007) make the estimation of the weights

for these schemes too noisy. The results are available in Table B.2.3 and B.2.4 of

Appendix 2.B.

The results for IP quite similar with those reported using the full evaluation

window. The main difference is that some of the GW tests are no longer statistically

significant, but this is explained by the loss of efficiency due to the smaller number of

observations on each subsample. As with the full sample evaluation, the accuracy of

the alternative models decreases with the forecast horizon but at the same time the

greatest predictive gains of these models are reported at these horizons.

For CPI, the results are also consistent with the ones reported using the full

evaluation window. On each subsample, alternative models and composite forecasts

are not able to outperform the benchmark model and in several cases the benchmark

model forecasts best. The multivariate versions of the threshold model also show

promising results at longer forecast horizons but only for the second subsample (after

the financial crisis). In particular, they show a decrease in the rMSFE of almost

eighteen percent (18%), but these results are not statistically significant. However,

as is was mentioned before, these results may be explained by the loss of efficiency

due to the smaller number of observations of this subsample and thus new data may

reveal potential significant improvements from these type of models.



33

Finally, the results for r10 change with those reported using the full evaluation

windows depending on the subsample used for the comparison. In the first subsample,

there is a small subset of alternative models that is able to forecast best than the

benchmark model. In addition, the predictive gains of restricted nonlinear models

increase with the forecast horizons. In particular, the model that forecasts best at

h = 12 decreases the rMSFE by almost twenty percent (20%) whereas at h = 1 only by

eight percent (8%). These results change considerably in the second subsample (after

2008) since the benchmark model outperforms alternative models and combination

schemes in many cases.

2.5 Conclusions

The empirical evidence of this paper yields interesting results about the predictive

performance of nonlinear models for the conditional mean because they are able to

challenge two of the key results from this literature: (1) nonlinear models are not

able to outperform simple linear models and even if they do, the forecast gains are

small or not statistically significant; and (2) forecast combination schemes usually

outperform single (non)linear models.

First, the forecast comparison (considering only univariate restricted nonlinear

models) showed results in line with previous findings in the sense that the benchmark

model or the combination schemes were able to forecast best than the competing

models in most cases. Second, the global evaluation using the full set of models and

combination schemes showed that the predictive performance of the models changed

dramatically in some cases. This is especially true for the industrial production index

since several alternative models were able to significantly decrease the mean square

error with respect to the benchmark model, in some cases by almost fifty percent

depending on the forecast horizon. For the interest rate, the predictive gains were not

as high as in the previous case and only few models were able to beat the benchmark
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model. Finally, no significant gains were reported for the consumer price index at any

forecast horizon, however threshold models showed promising results. Third, the local

evaluation showed results consistent with the global evaluation. For the industrial

production index, the fluctuation tests showed an overall improvement with respect

to the benchmark model after 2008. For the consumer price index and interest rate,

the test showed that the benchmark model forecasted better than alternative models.

Fourth, the evaluation before and after the financial crisis showed that the results from

the global evaluation for the industrial production index and consumer price index

are robust to this unique event. But, this was not the case for the interest rate since

they showed that a small subset of alternative models were able to forecast best than

the benchmark model before the financial crisis, but after the crisis the benchmark

model outperformed most of the alternative models and forecast combination schemes

at any forecast horizon.

In conclusions, this paper supports the view that the out-of-sample forecast perfor-

mance of nonlinear models has being underestimated in previous forecast comparisons

due to a deficient specification of their functional that increases parameter estima-

tion error which in turn decreases their predictive ability. The predictive gains from

these type models can be elusive, but an exploration of their functional may reveal

a dynamic model that vastly outperforms competing models and forecast combina-

tion schemes. A natural extension of this work is to include data reduction methods,

as in Stock and Watson (2002a,2002b), Bai and Ng (2006a) and Kim and Swanson

(2014), to analyze the predictive performance of (un)restricted nonlinear models in

this setting.
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Appendix 2.A: Nonlinear models

Define yt as the endogenous or target variable and object w = (z′t, x
′
t)

′ as a vector of

exogenous variables, where zt = (1, yt−1, ..., yt−p)
′ and xt ∈ Rq as a vector of strongly

exogenous variables. Depending on the vector xt, the univariate or multivariate ver-

sion of each model can be defined. Four type of such vectors are considered: x0
t = ∅,

x1
t ∈ R3, x2

t ∈ R6 and x3
t ∈ R9. Note that x0

t defines the univariate version of the

model. Finally, define εt as a pure stochastic process. A dynamic model with an

additive noise component can be defined as follows:

yt = g (w(zt, xt); θ) + εt (6)

Where g(·) is a generic function that maps exogenous variables and parameters to the

output variable yt. I consider three type of models: The Self-Exciting Threshold Au-

toregressive Model (SETAR), The Markov Switching Autoregressive Model (MSAR)

and The Multilayer Perceptron Network (MLP).

2.A.1. Self-Exciting Threshold Autoregressive Model (SETAR)

The model was first introduced by Tong (1978) and developed with more depth in

Tong and Lim (1980), Tong (1983) and Tong (1990). Following the notation of Tong

(1983) the univariatem-regime SETAR model is denoted as SETAR(m, p1, p2, ..., pm)

where pj denotes the lag order of regime j; and it can be written as:

yt =















































α1 +
∑p1

k=1 β1,kyt−k + ε1t If qt−1 ≤ γ1

α2 +
∑p2

k=1 β2,kyt−k + ε2t If γ1 < qt−1 ≤ γ2
...

αm +
∑pm

k=1 β3,kyt−k + εmt If qt−1 > γm

Where qt−1 is a function of the data and εit ∼ N(0, σ2). Note that qt−1 identifies the



36

regime and therefore it is observable at time t. Define function qt−1 = yt−d; following

Hansen (2000) the SETAR(m, p) model is defined as follows:

yt = β ′
1w(zt, xt)I1t(γ, d) + ...+ β ′

mw(zt, xt)Imt(γ, d) + εt (7)

Define object Ijt(γ, d) = I(γj−i < yt−d ≤ γj) as the indicator function that takes

the unit value if the internal condition holds and zero otherwise, with d as the delay

parameter (d < t) and γ = (γ1, ..., γm) with γ1 < γ2 < ... < γm as the vector of

threshold parameters. Note that if m takes the unit value then the SETAR(1,p)

becomes the AR(p) model. Define θ = (β1, ..., βm, γ, d) as the vector of parameters;

the estimation can be implemented by minimizing the sum of squares of the residuals

(SSR):

θ̂ = argmin
T
∑

t=1

(yt − β ′
1w(zt, xt)I1t(γ, d)− ...− β ′

mw(zt, xt)Imt(γ, d))
2 (8)

The model is restricted in two ways: (1) the number of regimes is set to two

(m = 2); and (2) each regime has the same w(). This setting defines the 2-regime

SETAR model:

yt =















β ′
1w(zt, xt) + ε1t If yt−d ≤ γ

β ′
2w(zt, xt) + ε2t If yt−d > γ

The model has m(p + k) + (m − 1) + 1 parameters; where m(p + k) accounts

for the number of parameters for each regime, (m − 1) accounts for the number of

thresholds parameters and the last term accounts for the delay parameter. Table

A.2.1 summarizes the estimation algorithm for this model:

The variable Z(yt) contains the ordered values from lowest to highest of yt. Ergo

Z(yt) contains all the relevant values that the threshold may take. To speed up the

algorithm a kernel distribution of yt may be used instead. Note take the algorithm

becomes computational more demanding with the sample size and the number of
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Table A.2.1
Pseudo estimation code for SETAR model

1. Let Z(yt) = sort(yt)
2. Define the delay parameter dj .
3. Define γi

j as the α%T − 1 + i element of Z(yt).
4. Conditional on γi

j and dj ; split the sample and compute the OLS estimators of βi
j .

5. Define the estimator candidate as θ̂ij = (βi
j , γ

i
j , dj) and construct SSR(θ̂ij).

6. Repeat (2) - (5), for i = 1, 2, ..., T − 2α%T
7. Repeat (2) - (6), for j = 1, 2, .., w

8. Choose θ̂ such that minimizes the SSR(θ̂ij).

Where T is the sample size, α is the minimum percentage of observations for each regime and w is
the maximum value allowed for the search of the delay parameter (d ≤ p).

regimes. According to Tong (1990) the information criteria for a 2-regime SETAR

model is the sum of the information criteria of each regime.

2.A.2. Markov Switching Autoregressive Model (MSAR)

The model was first introduced in Hamilton (1989) and in its original setting allows for

the parameters of an autoregressive specification to change between states or regimes

according to a hidden markov process. This regime switching process resembles to

the SETAR model, however in this case the states are unobservable and therefore the

model uses the data to make an inference about the state of the world at time t.

The m-state Markov Switching Autoregressive Model of order p id defined as

follows:

yt = β ′
stw(zt, xt) + εt,st (9)

Where st is the state variable that evolves following an independent Markov Chain

and εt,st is distributed as N(0, σ2
st). Following Hamilton (1994), define the conditional

likelihood as:

f(yt|st = j, wt; θ)

Where θ is the vector of parameters that characterized the conditional density. Define

ηt and P (the transition matrix between states) as:
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ηt =

















f(yt|st = 1, Xt; θ)

...

f(yt|st = m,Xt; θ)

















P =

















p11 ... pm1

...
...

...

pmm ... pmm

















The element pij = Pr{st = j|st−1 = i} defines the transition probability from state

i at time t − 1 to state j at time t. Define ξ̂t|t = Pr{st = j|Yt; θ} for j = 1, 2, ..., m;

as the conditional probability that the tth observation was generated by regime j.

Therefore:

ξ̂t|t =
ξ̂t|t−1

⊙

ηt

1′(ξ̂t|t−1

⊙

ηt)
and ξ̂t+1|t = P ξ̂t|t

Given an initial value for ξ̂1|0 and θ, it is possible to iterate over ξ̂t|t and ξ̂t+1|t, to

evaluate the log-likelihood function of the model as follows:

ℓ(θ) =
T
∑

t=1

logf(yt|Xt; θ) (10)

Where:

f(yt|Xt; θ) = 1′(ξ̂t|t−1

⊙

ηt) (11)

Only two-state models are considered (m = 2) since the identification of a higher

number of regimens could be difficult in this setting (not enough data to properly

identify three or more regimes). Nevertheless, the two-regime model provides a flexible

approximation to the DGP process that may lead to significant predictive gains.

The log likelihood function ℓ(θ) is maximized using numerical methods. The initial

values for θ are estimated using a SETAR(2,p); for the transition matrix: pij = 0.5

for all i and j. Finally, for: ξ̂1|0 the unconditional probability of P is used. Note that

ξ̂1|0 will change on each iteration of the algorithm.

2.A.3. Neural Networks: The Multilayer Perceptron Network (MLP)

According to Cybenko (1989) neural networks are highly nonlinear models and they
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are able to approximate almost any function given enough structure; this is known as

the Universal Approximation Theorem. However, the main drawback of these models

is that the number of parameters increase exponentially when more structure is added

to the network16.

The Feedforward Neural Network with i∗ inputs, v∗ hidden units (or neurons )

and one layer is defined according to McNelis (2005) as:

yt = β0 +
p+q
∑

i=1

βiwi +
v∗
∑

v=1

γvNv,t(w(zt, xt)) + εt (12)

Nv,t(w(zt, xt)) =
1

1 + e−nv,t

nv,t = ωv,0 +
p+q
∑

i=1

ωv,iwi

Where wi is the ith component of the vector w(xt, zt) ∈ Rp+q, β0 ∈ R1 and each βi

and γv are in R1. In addition, Nk,t is the logistic squashing (or activating) function.

The Feedforward Neural Network with the logistic activation function defines the

Multilayer Perceptron Network (MLP). Note that wi has a direct and linear impact

on the output variable yt through βi. The linear function nk,t combines the inputs

variables and produces a signal whereas the squashing function transforms this signal

into a hidden unit or neuron (Nk,t). Finally the hidden units are attenuated or

amplified by the weights {γk}v∗k=1 and summed.

The estimation is done by minimizing the SSR of the model. In particular define

Ω as the vector of parameters of the network, then:

Ω̂ = argmin
T
∑

t=1

(

yt − γ0 −
p+q
∑

i=1

βiwi −
v∗
∑

k=1

γkNk,t

)2

(13)

The direct numerical optimization of (12) can perform poorly due to the dimen-

sionality of the problem. Following McNeil (2005), the parameters are estimated by

16This is known as the curse of dimensionality
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minimizing the SSR in a two step procedure; in the first stage the function is opti-

mize using a genetic algorithm, whereas in the second stage the function is optimize

using a Quasi-Newton algorithm that uses the output from the previous stage as the

starting values for the algorithm. A detailed description of the Genetic Algorithm

can be found in McNeil (2005), chapter 3 page 72.
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Appendix 2.B: Tables

Table B.2.1
Data description (1960.01 - 2014.12)

Variable Description Transformation
Industrial production index (IP) Industrial production total (sa) ln∆t(yt+h)
10 year Treasury-bond yield (r10) Long term interest rate ∆t(yt+h)
Consumer price index (CPI) CPI all urban consumers (nsa) ln∆t(yt+h)/h−

ln∆t−1(yt)
Exogenous variable for each target variable

IP

-Federal Funds Rate Effective Federal Funds Rate level
-Leading Economic Index The Conference Board Leading level

Economic Index
-Interest rate spread With respect to the 10 year level

treasury rate

CPI

-Federal Funds Rate Effective Federal Funds Rate level
-Deliveries Index of supplier deliveries level
-Unemployment rate Unemp. rate: all workers, level

16 years and over

r10

-Leading Economic Index The Conference Board Leading level
Economic Index

-3-Month Treasury Bill Short term interest rate level
-Consumer price index CPI all urban consumers (nsa) ln∆t(yt)

Source: Federal Reserve Board of Governors and The Conference Board.
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Table B.2.2
Relative mean square forecast errors and GW test

Alternative CPI transformation: ycpit+h = 1200ln (CPIt+h/CPIt) /h

Method h = 1 h = 3 h = 12 Method h = 1 h = 3 h = 12
ARx1 0.971 0.940 0.841 MSARc(4)x1 0.919 0.914 1.122
ARx2 0.969 0.941 0.825 MSARc(4)x2 0.895 0.924 0.969
ARx3 0.962 0.944 0.822 MSARc(4)x3 0.907 0.907 1.120
SETAR 0.953 1.213** 1.674* MSARc(5) 1.032 1.016 1.250*
SETARx1 1.088 1.196* 1.563* MSARc(5)x1 0.956 0.912 1.170
SETARx2 0.956 1.226** 1.563* MSARc(5)x2 0.915 0.924 1.052
SETARx3 0.961 1.236 1.745* MSARc(5)x3 0.934 0.906 1.364**
MSARc(1) 0.990 1.189 0.979 MLP(1)x1 1.035 1.003 1.251*
MSARc(1)x1 0.953 0.898 1.118 MLP(1)x2 0.995 1.107 1.013
MSARc(1)x2 0.903 0.872 1.038 MLP(1)x3 0.950 0.942 1.098
MSARc(1)x3 0.927 0.880 1.105 MLP(2)x1 0.965 0.977 1.346*
MSARc(2) 1.016 1.123 1.266* MLP(2)x2 1.027 0.949 1.229**
MSARc(2)x1 0.956 0.934 1.166 MLP(2)x3 0.944 0.918 1.151
MSARc(2)x2 0.915 0.932 1.044 MLP(3)x1 0.931 0.900 0.978
MSARc(2)x3 0.907 0.921 1.363** MLP(3)x2 1.007 0.979 1.385*
MSARc(3) 1.032 1.016 1.250* MLP(3)x3 0.993 1.062 1.020
MSARc(3)x1 0.956 0.934 1.402* MLP(4)x1 1.028 0.940 1.088
MSARc(3)x2 0.902 0.934 1.403* MLP(5)x1 0.982 0.887 1.122
MSARc(3)x3 0.927 0.921 1.363** MLP(6) 1.121** 0.932 1.116
MSARc(4) 0.973 0.976 0.840* MLP(7) 0.966 1.006 1.319
Forecast combination schemes

mean 0.906 0.887 0.962 best 1.674* 1.709* 3.242*
med 0.912 0.885 0.946 best5 1.679* 1.708* 3.247*
mAR 0.967** 0.936** 0.822* MSEs90 1.093 0.920** 0.809*
mST 0.925 1.111** 1.526* MSEm90 0.994 0.920 1.067
mMS 0.908 0.903 1.079 OLSr 9.000 9.000 9.000
mMLP 0.953 0.919 0.984 MSEw 0.905** 0.881 0.907
tmean 0.905 0.883 0.943 Mnr 1.760* 1.539* 1.217

Notes: Numerical entries in this table are relative mean square forecast errors (rMSFE) with
respect to the benchmark model. Forecast are monthly, for the period 1991.01 to 2007.12 (P
= 204). Numerical values less than unity indicate that the alternative model forecasts best.
Where “modxi” is the label for model “mod” and “xi” for i = 1, 2, 3, indicates the vector xi

t

included in the multivariate version of the model. If no “xi” is attached, then the label refers
to the univariate version of the model. The composite forecasts were made using the entire set
of models (i.e., forty one models in total).
(*) Denoting rejection at the 5% level.
(**) Denoting rejection at the 10% level.
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Table B.2.3
Relative mean square forecast errors (rMSFE) and GW test, before 2008

IP CPI r10
Method h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
ARx1 0.897* 1.478** 1.452** 1.003 0.949 1.032 1.030 1.103 1.138**
ARx2 0.858* 0.912 1.091 0.999 0.931 1.013 1.006 0.996 1.213
ARx3 0.872* 0.851 1.037 0.984 0.902** 0.991 1.059 1.008 1.056
SETAR 0.904* 1.553* 1.875* 1.033 1.613* 1.960* 1.047* 1.595* 2.209*
SETARx1 0.928 1.345* 1.483* 0.929 1.122 1.231** 1.127* 1.122** 1.428*
SETARx2 0.806* 0.891 1.273 0.949 1.151 1.213 1.284* 1.154* 1.670*
SETARx3 0.892 0.887 1.142 1.084 1.098 1.258** 1.353* 1.161 1.609*
MSARc(1) 0.971 0.980 0.957 1.110** 1.440 1.035 1.003 1.140* 1.322*
MSARc(1)x1 0.936 0.998 0.975 0.990 1.616 0.989 0.988 1.106 0.925
MSARc(1)x2 0.859** 0.850 0.777 1.176** 1.610 1.468 0.920* 1.072 0.857*
MSARc(1)x3 0.885 0.737** 0.726 0.999 1.591 0.929 0.904* 1.015 0.799*
MSARc(2) 0.987 0.990 1.016 0.924** 1.409 1.428 1.030 1.173* 1.434*
MSARc(2)x1 1.276 0.988 1.013 0.990 1.550 1.366 1.036 2.051* 0.901
MSARc(2)x2 0.926 0.871 0.829 0.987 1.538 1.081 0.987 1.131* 0.795*
MSARc(2)x3 1.000 0.676* 0.616* 0.948 1.516 1.045 0.906* 1.138 0.775*
MSARc(3) 0.946* 0.945** 0.989 1.107** 1.448* 0.984 1.008 1.142 1.017
MSARc(3)x1 0.948 1.048 1.013 0.987 1.477** 0.984 0.955* 1.304* 0.827*
MSARc(3)x2 0.847* 0.863 0.774 1.054 1.465** 1.458 0.912* 1.114** 0.808*
MSARc(3)x3 0.835** 0.795** 0.680** 1.063 1.590 0.862 0.953 1.019 0.788*
MSARc(4) 0.976** 0.964 1.042 1.002 1.419 0.891* 0.997 1.024 1.129
MSARc(4)x1 0.915 0.980 1.114 0.990 1.550 0.954 1.016 1.104** 0.907**
MSARc(4)x2 0.857* 0.868 0.746 0.987 1.515 1.448 1.004 0.876* 0.857*
MSARc(4)x3 0.840* 0.726* 0.611* 0.948 1.517 0.827 0.978 0.935 0.803*
MSARc(5) 0.946* 0.945** 0.989 1.107** 1.448* 0.984 1.008 1.142 1.017
MSARc(5)x1 0.939 1.017 1.076 0.990 1.627 0.954 1.081** 1.092 0.863*
MSARc(5)x2 0.847* 0.853 0.774 1.054 1.607 1.447 0.937** 0.908 0.857*
MSARc(5)x3 0.850* 0.693* 0.715** 1.063 1.590 0.932 1.007 1.000 0.788*
MLP(1)x1 0.932* 1.005 0.983 1.092 1.734* 2.715* 1.000 1.113** 1.132*
MLP(1)x2 0.910* 0.993 0.978 1.340* 1.439* 1.140* 1.077* 1.632 1.149*
MLP(1)x3 1.028 1.089 1.468** 1.162** 1.444* 2.856* 1.023 1.205* 1.137
MLP(2)x1 0.872* 0.850 1.138 1.019 1.553* 4.371* 1.012 1.011 1.327**
MLP(2)x2 0.874* 1.316 2.445* 1.380* 1.238 1.304** 1.076 1.048 1.151
MLP(2)x3 1.135 1.221* 1.433 1.036 1.368* 1.069 1.010 1.119** 1.145*
MLP(3)x1 2.265* 0.952 1.273 1.174* 1.695* 1.548* 1.009 1.217 1.155
MLP(3)x2 0.887** 0.911 1.413 1.174* 2.409* 1.224 1.069 1.006 1.010
MLP(3)x3 0.893* 1.140 1.386 1.029 2.345* 3.078* 1.058 1.253* 1.170**
MLP(4)x1 0.965 1.083 1.289 1.375* 1.524* 1.642* 1.217* 1.042 1.183
MLP(5)x1 1.152 1.173 1.663 1.421* 1.540* 1.688* 1.103 0.993 1.154
MLP(6) 0.921* 1.038 1.480** 1.113** 2.596* 4.305* 1.012 1.074 1.145*
MLP(7) 0.812* 0.955 1.143 1.422* 1.531* 1.267* 0.999 1.062 1.117*
Forecast combination schemes

mean 0.810* 0.753* 0.735* 1.008 1.271 0.999 0.966 0.950** 0.893**
mAR 0.842* 0.866 0.922 0.990 0.920* 0.870 0.982 0.961 0.977
mST 0.806* 0.946 1.221 0.942 1.129** 1.146 1.110 1.038 1.435*
mMS 0.801* 0.737* 0.674* 0.983 1.412 0.915 0.938* 0.990 0.872*
mMLP 0.879* 0.802* 1.005 1.149* 1.532* 1.583* 0.985 0.992 0.973

Notes: Numerical entries in this table are relative mean square forecast errors (rMSFE) with respect to the
benchmark model. Forecast are monthly, for the period 1991.01 to 2007.12 (P = 204). Numerical values less
than unity indicate that the alternative model forecasts best. Where “modxi” is the label for model “mod”
and “xi” for i = 1, 2, 3, indicates the vector xi

t included in the multivariate version of the model. If no “xi” is
attached, then the label refers to the univariate version of the model. The composite forecasts were made using
the entire set of models (i.e., forty one models in total).
(*) Denoting rejection at the 5% level.
(**) Denoting rejection at the 10% level.
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Table B.2.4
Relative mean square forecast errors (rMSFE) and GW test, after 2008

IP CPI r10
Method h = 1 h = 3 h = 12 h = 1 h = 3 h = 12 h = 1 h = 3 h = 12
ARx1 0.944 1.020 0.983 1.027 1.100 0.770 1.041 1.202* 1.646*
ARx2 0.668 0.600 0.765 1.019 1.117 0.769 1.076 1.460 2.133*
ARx3 0.672 0.594 0.770 1.027 1.184 0.802 1.100 1.273 2.252*
SETAR 1.158 1.179 1.152 1.102 1.015 1.328 1.030 1.287* 2.300*
SETARx1 1.216 1.450* 1.543* 1.212** 1.261** 0.835 1.251* 1.372* 1.691*
SETARx2 0.953 0.799 1.007 1.164* 1.202** 0.816 1.308** 1.550* 2.129*
SETARx3 1.063 0.747 0.943 1.135 1.177 0.978 1.307 1.263 1.973*
MSARc(1) 0.981 1.123 1.215 0.952 1.350 1.445 1.020 1.056 1.099
MSARc(1)x1 0.886 1.462 0.870 1.058 1.210 1.441 1.060 1.321* 1.710**
MSARc(1)x2 0.635 0.703 0.849** 0.952 0.914 1.451 0.922 1.168 1.428**
MSARc(1)x3 0.581 0.567 0.711** 0.909 0.941 1.485 0.934 0.996 1.209
MSARc(2) 0.999 1.028 1.013 1.140 0.874 1.315 0.996 1.038 1.087
MSARc(2)x1 1.928 1.618 0.745 1.058 1.194 1.400 1.006 1.392** 1.384
MSARc(2)x2 0.547 0.768 0.837* 1.058 1.204 1.630 1.106 1.456 1.558*
MSARc(2)x3 0.590 0.448 0.608** 0.884 1.214 1.629 0.887 2.758* 1.265
MSARc(3) 0.876** 1.122 1.014 0.989 1.127 1.637 0.962 1.059 1.081
MSARc(3)x1 1.047 1.645 0.745 1.058 1.043 1.450 0.970 1.275** 1.265
MSARc(3)x2 0.588 0.753 0.837* 0.942 1.049 1.455 0.921 1.199 1.316**
MSARc(3)x3 0.525 0.674 0.688** 0.923 0.940 1.439 1.053 1.041 1.235
MSARc(4) 0.978 1.096 0.960* 1.072 1.306 1.581 0.981 0.993 1.122
MSARc(4)x1 0.893 1.656 0.825 1.056 1.194 1.450 1.014 1.171* 1.346*
MSARc(4)x2 0.602 0.773 0.767* 1.058 1.204 1.455 1.028 1.292 1.487
MSARc(4)x3 0.611 0.572 0.597** 0.884 1.214 1.383 1.042 0.918 1.442*
MSARc(5) 0.876** 1.122 1.014 0.989 1.127 1.637 0.962 1.059 1.081
MSARc(5)x1 0.893 1.606 0.821 1.058 1.202 1.450 1.099 1.200* 1.778*
MSARc(5)x2 0.585 0.753 0.837* 0.942 0.930 1.455 0.963 1.462 2.327*
MSARc(5)x3 0.575 0.520 0.772* 0.923 0.940 1.485 0.930 0.963 2.128*
MLP(1)x1 0.913** 0.918 0.992 0.946 1.052 1.760 0.974 1.023 1.302*
MLP(1)x2 0.816 0.955 0.989 0.903 0.937 1.735 1.015 1.071 1.324*
MLP(1)x3 0.853 1.543** 0.930 1.126 1.058 2.046* 1.099 1.285* 1.746*
MLP(2)x1 0.734 0.769 0.839 0.975 1.070 2.321 1.118 1.430 2.393*
MLP(2)x2 0.626 0.869 0.903 1.041 1.500 1.636 1.114 1.505 2.201*
MLP(2)x3 0.964 1.013 0.933** 1.002 1.320 1.552 1.037 1.245* 1.739*
MLP(3)x1 1.420 0.596 0.926 0.951 1.259 1.759 1.034 1.376 2.550*
MLP(3)x2 0.662 0.398 0.950 0.961 1.159 1.688 1.083 1.259 2.180*
MLP(3)x3 0.837 1.399 0.954 0.971 1.144 1.726 1.045 1.461** 1.886*
MLP(4)x1 0.688 0.726 1.118 0.995 1.384 1.725 1.032 1.411 2.494*
MLP(5)x1 0.991 0.761 0.615 0.999 1.079 1.285 1.106 1.340 2.497*
MLP(6) 0.892 1.278 1.071 0.945 1.281 2.076 1.028 1.208* 1.630*
MLP(7) 0.879 0.944 1.693* 1.079 1.197 1.822 1.072 1.072 1.267
Forecast combination schemes

mean 0.715 0.769 0.789* 0.901 0.935 1.230 0.957 0.979 1.355**
mAR 0.761 0.687 0.810 1.014 1.087 0.784 0.983 1.036 1.483*
mST 0.960 0.923 1.057 1.060 1.094 0.893 1.121** 1.148** 1.806*
mMS 0.702 0.880 0.765* 0.925 0.987 1.441 0.928 0.994 1.213
mMLP 0.754 0.710 0.818* 0.899 1.045 1.540 0.976 1.063 1.626*

Notes: Numerical entries in this table are relative mean square forecast errors (rMSFE) with respect to the
benchmark model. Forecast are monthly, for the period 2008.01 to 2014.12 (P = 84). Numerical values less than
unity indicate that the alternative model forecasts best. Where “modxi” is the label for model “mod” and “xi”
for i = 1, 2, 3, indicates the vector xi

t included in the multivariate version of the model. If no “xi” is attached,
then the label refers to the univariate version of the model. The composite forecasts were made using the entire
set of models (i.e., forty one models in total).
(*) Denoting rejection at the 5% level.
(**) Denoting rejection at the 10% level.
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Appendix 2.C: Figures
Figure C.2.1

Fluctuation test for the industrial production index (IP)

3-step ahead forecast

Figure C.2.2

Fluctuation test for the industrial production index (IP)

12-step ahead forecast

See notes in Figure 2.1 for more details.
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Figure C.2.3

Fluctuation test for the consumer price index (CPI)

3-step ahead forecast

Figure C.2.4

Fluctuation test for the consumer price index (CPI)

12-step ahead forecast

See notes in Figure 2.1 for more details.
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Figure C.2.5

Fluctuation test for the 10 year Treasury-bond yield (r10)

3-step ahead forecast

Figure C.2.6

Fluctuation test for the 10 year Treasury-bond yield (r10)

12-step ahead forecast

See notes in Figure 2.1 for more details.
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Figure C.2.7

1-step ahead forecast for yIP

Notes: Blue line is the evaluation sample for the 1-step ahead forecast for the
percentage change of IP; whereas red segments indicate the periods on which the
alternative “best” model was more accurate than the linear benchmark model.

Figure C.2.8

Square prediction errors, benchmark model vs “best” model

1-step ahead forecast for yIP

Notes: Comparing the square of prediction error between the benchmark linear
model and the alternative “best” model.
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Chapter 3

Reassessing the effects of foreign monetary policy

on output: new evidence from structural

and agnostic identification procedures

3.1 Introduction

In December 2008, the federal funds rate dropped to the zero lower bound and since

then unconventional monetary policies dominated the scene1. It took almost six years

for the Fed to raise its policy rate and finally the zero lower bound was abandoned by

the end of 2015. The ongoing period of monetary normalization combines two signals:

(i) concrete policy measures and (ii) forward guidance. Currently, several central

banks are evaluating the likely effects that the US monetary normalization may have

in their economies in order to assess potential risks and improve policy decisions

since the propagation of that shock activates different channels (interest rate spread,

exchange rate depreciation, problems of excessive debt burden if debt is denominated

in dollars, etc.) that affect their economies in different dimension. For example,

private debt may have increased significantly due to lower interest rates and thus

an increase in foreign rates can generate a domestic depreciation that amplifies the

burden of foreign debt in domestic currency. Moreover, the current poor performance

in many of these economies could further amplify the impact of the shock over debtors

and the economy overall2.

Thus, this paper investigates the propagation of a foreign monetary policy shock

1The Fed had strong reasons to intervene based on historical reasons; fears of a liquidity crisis
that could lead the economy to another great depression.

2Consider another example to further motivate the discussion. The pass-through of exchange
rate to inflation can trigger an increase in domestic interest rates to contain inflation. However, at
the same time higher foreign rates can be associated with more adverse foreign conditions that can
have a negative impact in output which in turn could help to mitigate the hike in inflation and the
response of central bank. Thus, we spot an interesting policy implication from this analysis.
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over a small open economy, in particular over the Chilean economy. We use a com-

prehensive methodological framework that compares the impulse response functions

(henceforth IRFs) of three models: two Structural VAR models and a DSGE model

tailored for the Chilean economy3. We follow this approach because according to

Canova (2007), Structural VAR models can be used to judge and validate the re-

sponses from DSGE models. Therefore, this comparison provides new lights and

insights about the propagation of a foreign monetary policy shock over the Chilean

economy and in addition it assess the suitability of the microfounded structure be-

hind the DSGE model (i.e., the theoretical model). To this end, we use the recursive

VAR model of Sims (1980a) on which identification of structural shocks is based on

a particular order of the variables in the system; along with an extension of the “ag-

nostic” VAR model of Uhlig (2005) and Arias et al. (2014) for small open economies

following Koop and Korobilis (2010). In this identification scheme, structural shocks

are identified by imposing restrictions directly in the IRF.

Our findings can be summarized as follows. (1) Consistent with several studies

such as Bernanke et al. (2005), Mojon (2008) and Castelnuovo (2015) our analy-

sis of IRFs lead us to conclude that identification of foreign monetary shock is not

straightforward in recursive VAR models. Therefore, the recursive VAR model fails

to provide an informative benchmark to judge the plausibility of results from struc-

tural micro-founded models. (2) On the contrary, the “agnostic” VAR model provides

IRFs with dynamics that are broadly consistent with macroeconomic theory, hence

in our view results provide an informative benchmark to micro-founded models. (3)

Beyond the quantitative differences, we find that the IRFs of the “agnostic” VAR

model are in line qualitatively with those of the DSGE model except for output. The

DSGE model shows an initial hike in activity which is explained by the improving of

3A standard Dynamic Stochastic General Equilibrium (DSGE) model for a small open economy
with nominal and real rigidities that is closely related to models developed by Christiano et al.
(2005) and Smets and Wouters (2003, 2007).
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the current account due to the real and nominal exchange rate depreciation; whereas

the “agnostic” VAR infers a significant drop in output. (4) The transmission of the

shock to the domestic economy in the DSGE model is limited but persistent. At

least two reasons may explain this. First, by construction, there are many micro-

founded restrictions in the model that increase the persistency of the shock (habit

formation in consumption, quadratic adjustment cost for investment, etc.). Second,

there is an excessive simplification in the definition of exogenous processes for foreign

variables (e.g. foreign interest rates follow an AR(1) process). (5) Finally, we spot

different policy implication arising from both models. According to the “agnostic”

VAR model, the central bank do not need to rise its policy rate because the drop in

activity offsets any burst of inflation; whereas in the DSGE model the rise in prices

is partially accommodated by an increase in the policy rate. Thus, this comparison

enriches the discussion for the policy maker.

The results for the recursive VAR model are not new and they have been docu-

mented many times before in the literature. The identification of monetary policy

shocks in this setting has always been a subject of debate and different specifications

and models may lead to different responses. Bernanke et al. (2005) provided several

reasons to understand this result: (1) the policy shock is not properly identified in

the VAR system; (2) variables of the VAR do not represent the real state of the

economy; and (3) the impulse response functions are biased because only a subset of

the state variables of the economy are used to identify the shocks. Similarly, Weber

et al. (2009) argue that structural breaks may be crucial to understand the mone-

tary transmission process. Using data for the Euro area they found two structural

breaks in their sample. They report evidence in favor of an “atypical” interim period

1996-1999, but for the rest of the sample, the monetary transmission process remains

adequate.

The “agnostic” VAR model of Uhlig (2005) imposes sign restrictions to a subset
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of the IRFs which in turn imply nonlinear constraints in the structural parameters of

the model. In this paper, the author studies the impact of a monetary policy shock on

output for the US economy by imposing a set of sign restrictions in all of the variables

but leaving the response of output unrestricted. Thus, he refers to this method as an

“agnostic” identification scheme4. Studies that follow this methodology are Canova

and Nicolo (2002), Uhlig (2005), Rubio-Ramı́rez, Waggoner and Zha (2010) and Arias

et al. (2014). These papers extended the VAR framework to also accommodate zero

restrictions.

More recently, unconventional monetary policies in the US and the Eurozone have

encouraged the use of different frameworks to evaluate the impacts of these shocks (in-

cluding SVARs, Bayesian VARs, DSGE, etc.), such as Carrera et al. (2015), Baumeis-

ter and Benati (2012), Castelnuovo (2012), Christensen and Rudebusch (2012), and

Kapetanios et al. (2012), among others. Normally, the choice of restrictions is pro-

posed by the researcher after a careful analysis based on economic theory. For ex-

ample, if the interest rate differentials increase, then exchange rates are expected to

rise due to adjustments one can anticipate from the uncovered power parity relation-

ship. This expected response might be questioned from several angles (e.g. UIP does

hold). However, our choice is justified with sound economic theory. Other related ap-

plications are presented in Baumeister and Benati (2012) which analyze the effects of

unconventional policies with a time varying structural VAR, while Castelnuovo (2012,

2015) use a micro-founded DSGE approach to assess the macroeconomic impacts of

an increase in interest rates. Finally, Carrera et al. (2015) have studied the impact

of quantitative easing policies on small open economies (a subset of Latin American

countries). That piece of research is a very close application to our paper because it

uses similar identification methodology, while it differs in the details of the calculation

4The key result form this paper is that neutrality of monetary policy is not inconsistent with the
US data. More recently, Castelnuovo (2015) addresses this point to the Euro area and analyzes the
neutrality of monetary policy on inflation. He reports that the neutrality of VAR models may be
due to a deficient identification of the policy shock, omitted variables or structural breaks.



53

of the posterior distribution5.

The rest of the paper is organized as follows; the next section presents the VAR

models. Section three briefly describes the structural DSGE model economy. Section

four reports impulse response functions for each model. Finally, section five concludes.

3.2 Structural VAR models and identification schemes

Structural VAR models were introduced in the seminal paper of Sims (1980a) as an

alternative methodology to large-scale macroeconomic models of system of dynamic

equations. A complete review of this literature is far from the scope of this paper,

but the interested reader may refer to Kilian (2013) and Lütkepohl (2011) for a

comprehensive review of this literature.

According to Canova (2007) Structural VAR models can be used to judge and

validate theoretical models, such as DSGE models. Because VAR models are able

to characterize the joint dynamics of several economic variables with only few as-

sumptions whereas theoretical models rely heavily on a microfounded structure to

identify the dynamics between the variables of the system. Thus, the comparison

of both methodologies enable us to assess the suitability of the microfounded struc-

ture behind a theoretical model if and only if the structural VAR model is properly

identified.

The structural VAR model for a SOE with block exogeneity (henceforth SVAR-

SOE) is defined as:

[y∗t
′ yt

′]









A01 0

A03 A04









=
p

∑

l=1

[y∗t−l
′ yt−l

′]









Al1 0

Al3 Al4









+ c+ [ε∗t
′ εt

′] (1)

5The main difference of Carrera et al. (2015) and our approach is that they estimate the param-
eters of the blocks of the reduced-form VAR model with block exogeneity independently; whereas
our approach remains closer to the original framework of Arias et al (2014) since we estimate the
parameters jointly.
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The zero blocks in the system reflect the block exogeneity assumption of the model

in the spirit of Zha (1999). The (n× 1) vector yt contains the endogenous variables

for the domestic block (i.e., small open economy), whereas the (n∗ × 1) vector y∗t

the endogenous variables for the foreign block. The Ai matrices and the vector of

constants c are the structural parameters, whereas p denotes the lag order of the

model. The inclusion of exogenous variables is straightforward but they are excluded

to simplify the notation. Finally, the vectors εt and ε∗t are Gaussian with mean zero

and variance-covariance matrix In+n∗ (the (n + n∗)-dimensional identity matrix).

The model can be compactly written as:

Yt
′A0 = Xt

′A+ + ξt
′ (2)

Where Y ′

t = [y∗t
′ yt

′], Xt
′ = [Yt−1

′...Yt−p
′ 1], A+

′ = [A1
′...Ap

′ c′]; and the reduced-

form model is defined as:

Yt = Xt
′B + ut

′ (3)

Where B = A+A
−1
0 , u′

t = ε′tA
−1
0 and E [utu

′

t] = Σ = (A0A
′

0)
−1. The estimation of

SVAR models requires the identification of the structural shocks. Several alternative

methodologies are available for the estimation and identification of these type of mod-

els. In particular, the most used methodologies can be grouped in three categories:

recursive identification schemes, nonrecursive identification schemes and sign restric-

tion schemess; in this paper we explore two of these identification schemes. The next

two subsections explain the details of each approach.

3.2.1 Recursive identification scheme

The recursive identification scheme (henceforth recursive scheme or recursive VAR)

was introduced in the seminal work of Sims (1980a) and it has become the conven-

tional benchmark that is used in applied macroeconomics to validate responses of
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micro-founded structural models. The structural model is identified in four steps.

First, the variables of the system are ordered in a specific way being the first variable

the most exogenous and the last one the most endogenous of the system. Second,

the reduced-form model is estimated. Third, the structural innovations are recovered

using a Cholesky decomposition over the variance-covariance matrix of the residuals

of the reduced-form model (i.e., Σǫ = PP ′). Finally, the structural parameters are

estimated using the map of the reduced-form parameters to the structural parameters

defined in the previous subsection:

B = A+A
−1
0 ut

′ = ξt
′A−1

0 Σǫ = PP ′ = (A0A
′

0)
−1

Note that the P matrix depends on the order of variables and hence is not unique,

thus the econometrician needs to rely in some theoretical argument to justify his

identification scheme. One of the main drawbacks of this approach is that economic

theory can not be incorporated directly into the model. Moreover, even in those

cases on which the theory is able to suggest a particular order of causality among the

variables of the system, the model can still generate IRF that are counterintuitive or

to puzzling results6.

The block exogeneity assumption for the recursive VAR model for SOE implies

that the reduced-form model can not be estimated equation by equation using OLS.

Instead, the estimation is performed by quasi-maximum likelihood, see Hamilton

(1994) for a comprehensive discussion of this methodology.

3.2.2 Identification with sign and zero restrictions

The sign restriction scheme follows a different approach to identify the structural

shocks of the model. In this setting, the IRF of the model are restricted directly

according to economic theory. For instance, the contemporaneously dynamic response

6Sims (1980a) defines a puzzle as a situation in which the impulse response functions from an
identification scheme do not match conventional wisdom from theoretical models.
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of inflation is set to be less than zero to a positive monetary policy shock as well as for

the first periods following the shock. The methodology imposes linear and nonlinear

constraints in the structural parameters of the model. In addition, the methodology

does not require the complete identification of the full set of structural shocks of

the model as in the recursive scheme. However, in this case the identification of the

subset of structural shocks can be contaminated with other structural shocks that look

alike. Thus, the full identification of the shocks should generate narrower confidence

intervals for the IRF of the system. Alternatively, the researcher can increase the

number of restrictions to try to minimize the aforementioned problem7.

There are several ways in which sign restrictions can be introduced in VAR mod-

els. For instance, Blanchard and Quah (1989) developed an algorithm to restrict the

long-run response of a set of variables after a structural shock. Other authors have

restricted the joint dynamics of the variables after a structural shock, as in Canova

and Nicolo (2002). A different approach is used in Uhlig (2005) to study the impact

of a monetary policy shock on output for the US economy by imposing a set of sign

restrictions in all of the variables but leaving the dynamic response of output unre-

stricted. The author referred to this method as an “agnostic” identification scheme

since no assumptions were made with respect to the response of output. In this setting

the restrictions are imposed directly over the dynamics of each variable of the system.

More recently, extensions to these approaches can be found in Mountford and Uhlig

(2009), Rubio-Ramı́rez, Waggoner and Zha (2010) and Arias et al. (2014) (hence-

forth ARW). In particular, ARW expands Uhlig’s methodology by incorporating zero

restrictions; thus the dynamic responses of the variables after a shock can be set to

zero, less than zero or greater than zero. In addition, the methodology allows the

combination of these type of restrictions simultaneously in the dynamic response of

7Unfortunately, there is little guide to asses the potential gains from this approach. But, further
research may help to understand the trade-off between these two approaches.
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the variables which in turn should improve the identification of the structural shocks8.

In this paper we extend the methodology of Arias et al. (2014) for SOE; for

ease of exposition we borrow Uhlig’s definition and refer to this method as “agnostic”

scheme or “agnostic” VAR. The block exogeneity assumption implies that the number

of independent variables is not the same between the blocks of the model and thus

we follow Koop and Korobilis (2010) to use a more general framework to estimate

VAR models. The implications of this identification scheme has not been explored

comprehensively in the literature for SOE. This approach enable us to specify an

alternative VAR model on which the identification of structural shocks is based on

a set of restrictions that are driven by theory (or by stylized facts of the data) and

not just by a particular order of the variables as in the recursive scheme. Thus, this

method could potentially provide an interesting benchmark to evaluate and validate

the responses of theoretical models.

In this setting, the identification of the structural shocks relies on Bayesian meth-

ods and the algorithm can be summarized as follows:

1. Draw (B; Σ) from the posterior of the reduced-form parameters.

2. Generate (A∗

0;A
∗

+) by using a mapping between the reduced-form and the struc-

tural parameters9.

3. Draw an orthogonal matrix Q such that (A∗

0Q;A∗

+Q) satisfies the zero restric-

tions10.

8More precisely, the inclusion of zero restrictions to Uhlig’s method was developed in Mountford
and Uhlig (2009) using a penalty function approach. However, according to ARW the method
imposes additional sign restrictions in unrestricted variables which generate narrower confidence
intervals for the responses of the variable. Thus, ARW shows a new framework to correctly combine
the two type of restrictions.

9The mapping between structural and reduced-form parameters can be implemented by us-
ing a function h() such that h(X)′h(X) = X , i.e. Cholesky decomposition: (A∗

0;A
∗

+) =
(h(Σ)−1;Bh(Σ)−1)

10Using the QR decomposition (X = QR) which holds for any n × n random matrix on which
each element is i.i.d. from a N(0, 1). In addition, ARW describes an algorithm to obtain recursively
each column of Q, which improves the efficiency of the algorithm significantly when the researcher
is interested in identifying more than one structural shock.
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4. Keep the draw if sign restrictions are satisfied.

5. Repeat 1 to 4 until the desired number of simulations is reached.

6. Compute the median and confidence bands for the full set of IRF that satisfy

the restrictions.

If no restriction are imposed over the blocks of the SVAR-SOE, then each equation

of the model has the same number of variables. In this case the draws from the

posterior of the reduced-form parameters can obtained using the Normal-Wishart

Prior (conjugate prior) and the posterior of the parameters are given by11:

b|Σ, y ∼ N(B̄, Σ̄⊗ V̄ ) and Σ−1|y ∼ W (S̄−1, ν̄)

and:

S̄ = S + S + B̂′X ′XB̂ + B′V−1B− B̄′(V−1 +X ′X)B̄

The Normal-Wishart prior imposes a Kronecker structure in the variance-covariance

matrix of b which in turn implies that for each element of b, say bi the cov(bi, bj) 6= 0

for all i 6= j. Unfortunately, the block exogeneity assumption requires a block of

zeros in the reduced-form model which means that these set of parameters must be

independent from the rest of the parameters. Therefore, the Normal-Wishart prior is

not suitable to estimate the SVAR-SOE model. Instead, we need to specify a prior

that breaks the Kronecker structure in the variance-covariance matrix of b.

Following Koop and Korobilis (2010), we use the Independent Normal-Wishart

Prior that defines the posterior of the parameters as follow12:

11Where ν̄ = T + ν; b = vec(B̄) and B̂ is the OLS estimator of B; V̄ =
[

V−1 +X ′X
]−1

and

B̄ = V̄
[

V−1B+X ′XB̂
]

−1

; the hyperparameters α, V and S characterized the prior distributions

of the parameters:

b|Σ, y ∼ N(B,Σ⊗V) and Σ−1|y ∼ W (S−1, ν)

12Where: ν̄ = T + ν; B̄ = V̄
[

V−1B+
∑

T

t=1
Z ′

t
Σ−1yt

]

and V̄ =
[

V−1 +
∑

T

t=1
Z ′

t
Σ−1Zt

]

−1

; the

hyperparameters α, V and S characterize the prior distribution of the parameters: b ∼ N(B,V) and
Σ−1 ∼ W (S−1, ν) with p(b,Σ−1) = p(b)p(Σ−1)
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b|Σ, y ∼ N(B̄, V̄ ) and Σ−1|y, b ∼ W (S̄−1, ν̄)

and:

S̄ = S +
T
∑

t=1

(yt − Ztb)(yt − Ztb)
′

Thus, the main methodological contribution of this paper is to combine the meth-

ods of Koop and Korobilis (2010) and Arias et al. (2014) to identify the SVAR-SOE

model. In this setting, the model needs to be redefined in the following way. First,

rewrite (3) as:

ymt = z′mtbm + εmt

Where t is the time index andm indicates the variable (i.e., equation); ymt specifies

the tth observation of themth variable and zmt is a vector that contains the explanatory

variables for the mth equation at time t. Second, define bm as the vector that contains

the parameters of the mth equation and M as the total number of equations. Note

that in this case the zmt vector can vary across equations or blocks of the model.

Third, stack the bi vectors and z
′

mt matrices as:

b =
























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...

bM

























Zt =

























z′1t 0 . . . 0

0 z′2t
. . .

...

...
. . .

. . . 0

0 . . . 0 z′Mt

























Next, define yt = (y1t, ..., yMt)
′, εt = (ε1t, ..., εMt)

′ and write the model more

compactly as:

yt = Ztb+ εt

The total number of parameters is given by k =
∑M

j=1 kj and εt ∼ N(0, 1). Note

that b is a k × 1 vector and Zt is an M × k matrix. Finally, stack yt, εt and Zt as

column vectors and define ε ∼ N(0, I ⊗ Σ) to write the model as:

y = Zb+ ε (4)
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The notation in equation (4) is consistent with the notation of Koop and Korobilis

(2010) for the Independent Normal-Wishart Prior. Note that the posterior of Σ is

not independent from the draw of b and hence direct sampling from the posterior is

not feasible. Instead, A sequential algorithm can be used on which sequential draws

are taken from the conditional posterior distributions of p(b|y,Σ) and p(Σ−1|y, b), i.e.

a Gibbs sampling algorithm13.

3.3 A DSGE model for Chile

In this section we briefly describe the DSGE model for Chile. We use the model of

Medina and Soto (2007a) to compute the impulse response to a 1% foreign monetary

policy shock. The model is a new Keynesian small open economy model which is

closely related to the framework of Christiano et al. (2005) and Smets and Wouters

(2003, 2007), but has additional and specific features to describe the Chilean economy,

such as a representative commodity-exporting firm, a “structural” fiscal policy rule

and a monetary policy rule that responds to changes of headline CPI inflation (we

refer to Medina and Soto (2007a) for a more detailed description of the model).

This model has been extended in several directions to address specific questions

and has also been reestimated to take advantage of recent data. Examples are the

learning extension to replicate the Current Account dynamics of Chile as Fornero

and Kirchner (2014) and Fornero et al. (2015) conduct several policy experiments

simulating a copper price shock. In the current version, we abstract from these

additions14.

A full description of the model is beyond the scope of this paper. Therefore, in the

remainder of the section, we briefly describe main features. The domestic economy is

13We use a burn-in period to achieve convergence to the posterior distribution. In particular, we
made 5500 simulations and burned the first 500 simulations. We also tried with different number of
simulations but the results did not change significantly.

14Robustness exercises were done using the model of Fornero and Kirchner (2014) and Fornero et
al. (2015) and we did not find any relevant advantage of adding an endogenous commodity-exporting
sector in order to compute the IRFs to a foreign monetary policy shock.
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composed by a continuum of households, where a fraction are non-Ricardians without

access to capital market. These non-Ricardian households consume entirely their

wage income. The remaining Ricardian households make intertemporal consumption-

savings decisions in a forward-looking manner, so as to maximize the present value

of utility.

There are three types of sectors in the domestic economy. First, there is a contin-

uum of firms producing differentiated varieties of intermediate tradable goods, with

monopoly power and sticky prices à la Calvo (1983). These firms use labor, capital

and oil as inputs and sell their goods to competitive assemblers that produce final

domestic goods, which are sold in the domestic and foreign market. There is a repre-

sentative capital goods producer that rents capital goods to the intermediate goods

producing firms. The optimal investment composition is determined through cost

minimization, where we assume costs of adjusting investment, following Christiano

et al. (2005). All firms are owned by Ricardian households. Second, there is an

imported goods sector with a continuum of retail firms that repackage a homogenous

good from abroad into differentiated imported varieties. There is a large set of firms

that use a CES technology to assemble final imported goods from imported varieties.

These firms also have monopoly power and set their prices infrequently. All firms

are also owned by Ricardian households. Third, there is an exogenous commodity-

producing sector composed by a unique representative firm. The entire production

is exported abroad and the international price of the commodity is taken as given.

A fraction of the assets of that firm is owned by the government and the remaining

fraction is owned by foreign investors, where the revenue is shared accordingly.

Monetary policy is conducted through a simple Taylor-type feedback rule for the

nominal interest rate, where the central bank responds to headline CPI. The fiscal

policy follows a structural balance fiscal rule, where government expenditure (gov-

ernment consumption and transfers to households) depends on cyclical adjustments
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of commodity price and output gap. Also, the model includes distortional taxes in

consumption, income and capital gains.

There is a foreign sector which is composed by 5 exogenous variables (GDP, infla-

tion, interest rate, oil price and commodity price). We assume that the dynamics of

these foreign variables are described by independent autoregressive processes of order

one, AR(1), as in Medina and Soto (2007a) and Fornero and Kirchner (2014). We

choose this framework instead of a foreign SVAR block (as in Fornero et al. (2015))

to avoid selecting a SVAR identification scheme in the DSGE model15.

Finally, the model is parameterized using estimates from Bayesian estimation

techniques with quarterly data covering the period 2001Q3-20107Q4 and 2001Q3-

2014Q4 to analyze the robustness of the results. We use their posterior mean to

compute the impulse responses to a foreign interest rate shock16.

3.4 Results

This section is divided in four parts for ease of exposition. The first part describes

the data used to estimate the VAR models along with the set of identify assumptions

behind the recursive and “agnostic”’ schemes. The second part shows the comparison

of the IRFs for both identification schemes and it highlights their similarities and

differences. The third part shows the IRF from the DSGE model for the Chilean

economy. Finally, the last part compares the IRFs of the VAR and DSGE models.

Thus, this comparison between models provides new lights and insights about the

propagation of a foreign monetary policy shock over the Chilean economy and in

addition it assess the suitability of the DSGE model (i.e., the theoretical model).

15In this case, the impulse responses computed by the DSGE would be influenced by the identifi-
cation scheme chosen for the foreign SVAR block

16Details of the Bayesian estimation are available on request. In particular, the persistence of the
shock is calibrated to 0.87 following Medina and Soto (2007a). This value arises when the AR(1)
process is estimated with a sample that ends before the Subprime Crisis.



63

3.4.1 Data and identification schemes for SVAR-SOE models

The data are monthly observations covering the period from January 1996 to De-

cember 200717 (1996.01 - 2007.12). The same data set is used in both recursive and

“agnostic” identification scheme. Table 3.1 shows the variables for each block of the

SVAR-SOE model.

We transform price indexes in nominal US dollar terms (original sources) to real

prices by dividing (deflating) by an external price index constructed to reflect the

foreign Chilean trade structure. Domestic real GDP, investment and price indexes

are seasonally adjusted using the Census X-12 procedure when they are not available

in seasonally adjusted form the original source. The interest rates are defined in levels

and the rest of the variables in logs. We choose a 2-month lag based on standard

information criteria and also following the recommendation of Castelnuovo (2015).

Table 3.1
Set of variables for the SVAR-SOE models

Foreign block US) Domestic block (Chile)
- Industrial production index (y*) - Index of economic activity (y)
- Consumer price index (CPI*) - Real machinery and equipment investment (Ime)
- US Federal Funds rate (r*) - Real construction investment (Ic)
- (US Shadow Federal Funds rate) - Core consumer price index (CPIx1)
- (Real price of oil) - Nominal monetary policy rate (r)

- Real exchange rate (RER)

We use the Chow Lin procedure to transform quarterly to monthly frequency (e.g. domestic invest-
ments). Variables in parentheses in the foreign block are considered only for robustness exercises and
not for the baseline model (exercises not reported). For further details concerning variables, sources
and transformations see Table A.3.1 in Appendix 3.A.

We do not include cointegration relationships in the SVAR-SOE because we ana-

lyze the short-term dynamics and not the long-run behavior of the model. The main

drawback of this approach is that we need to rely in simulation methods to make

valid inference over the IRFs of the models, see Sims et al. (1990) for a comprehen-

17The data after December 2008 is excluded because we want to isolate the propagation of the
shock during a “normal” monetary regime and clearly this was not the case after December 2008
since the federal funds rate experienced a unique path compared to its historical behavior (from
September 2007 to April 2008, the policy rate decreased from 5.25% to 2%). But we also estimate
the models using the implicit foreign interest rate (shadow federal funds rate) covering the period
from January 1996 to December 2014 to analyze the robustness of our results since this rate is not
bounded below by zero.
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sive discussion of this issue. Finally, we control for the real price of copper, linear

time trends and add a constant term to each equation of the model.

The recursive VAR model is specified as in Fornero et al. (2015), the variables for

each block were ordered according to Table 3.1 (i.e., most exogenous variables from

top to bottom). In particular, this setting assumes that the domestic policy rate

reacts contemporaneously with the rest of the variables in the system except with

exchange rate and that it can not have a contemporaneous impact in the rest of the

variables of the domestic block except the exchange rate; whereas the foreign policy

rate has a contemporaneous impact over the domestic block but not over the rest of

the variables of the foreign block.

Table 3.2 shows the set of restrictions for the “agnostic” VAR model. In addi-

tion, the table also describes two alternative “agnostic” models in order to assess the

robustness of the base model. The foreign monetary policy shock is assumed to be

positive for at least 1 month. The shock does not have a contemporary impact on the

foreign block, neither in domestic output and investment (both type of investment).

We remain agnostic with respect to the contemporaneous response of the domestic

policy rate and CPI but we assume a real depreciation that last for at least one month.

Finally, we assume that the variables of the foreign block react to the shock with a

lag as well as domestic investment; but we assume a more persistent impact over

the later variable based on empirical data18. The two alternative “agnostic” VAR

models explore the sensitivity of the results to the restrictions imposed over domestic

investment which are perhaps the more controversial of the restrictions. In particular

they consider two cases, one on which negative sign restrictions only last one period

(Mod A) and a second case on which these restrictions last for at least three periods

18A different approach would be to rely on a “agnostic” VAR that restricts heavily the foreign
block while minimizing the number of restriction in the domestic block or in the extreme case by
leaving it completely unrestricted. However, the short sample of the data available for the Chilean
economy makes this approach unsuitable since there is not enough information (data) to unveil the
propagation of the shock.
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(Mod B). Thus, the base model lies between these two alternative cases. We also

consider two additional alternative models on which we increase the restrictions over

the foreign monetary policy and the real exchange rate for the base model, see Table

A.3.2 of Appendix 3.A for further details of these two cases.

Table 3.2
Sign and zero restrictions for ”agnostic” VAR models

Base Model Mod A Mod B
h = 0 h > 0 h > 0 h > 0

Foreign block

-US Federal Funds rate (rus) 1 ? ? ?
-Industrial production index (Yus) 0 -1 -1 -1
-Consumer price index (CPIus) 0 -1 -1 -1

Domestic block

-Interest rate (r) ? ? ? ?
-Monthly production index (Y) 0 ? ? ?
-CPI core ? ? ? ?
-Investment (I) 0 -2 -1 -3
-Real Exchange Rate (RER) 1 ? ? ?

Restrictions are imposed over the monthly IRFs of the model after a positive foreign monetary policy
shock. Positive or negative entries indicate the length of the sign restrictions, whereas zero entries
indicate zero restrictions. Finally, question marks (?) indicate that no restrictions were imposed over
the IRF of the variable at that horizon. We also consider two additional alternative set of restrictions
for the base model, see Table A.3.2 in Appendix 3.A for more details.

The IFRs for the three cases are computed using monthly data but we aggregate

the monthly responses to quarterly responses in order to make the results comparable

to the IRFs of the DSGE model, Alternatively, the IRFs can be estimated using

quarterly data directly but we argue that the identification of the foreign monetary

policy shock is more reasonable at monthly frequency, since at quarterly frequency the

restrictions constraint the contemporaneously response of the variables which at this

time frequency would imply stronger identifying assumptions. The same argument

applies to the recursive scheme.

3.4.2 Results for SVAR-SOE models

To begin with, we illustrate in Figure 3.1 the impulse responses of the domestic

blocks to a 1% positive shock to the foreign interest rate (100 basis points) for the
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SVAR-SOE model according to the recursive (left panel) and “agnostic” (right panel)

identification schemes. The responses for the foreign blocks are reported in Figure

B.3.1 of Appendix 3.B.

In general, the identification of the recursive VAR model yields puzzling responses.

In particular, the monetary policy shock is associated with expansionary conditions

in the world economy (a boost in trade partners’ activity increases in foreign prices

and in real commodity prices). In the domestic economy, the effect on investment are

slightly positive and at the same time the impact in local activity is not significant.

The fluctuations of RER anc CPIx1 turn out to behave inconsistently because the

appreciation of the real exchange rate should be associated with higher inflation, but

the CPI drops. The drop on inflation can be associated to the local response of the

interest rate.

Figure 3.1

Impulse responses for the recursive and “agnostic” identification schemes

for the domestic block to a foreign monetary policy shock

Recursive VAR in the first two columns; “agnostic” VAR in the last two columns for the base line model. The figure
shows the quarterly responses to a 1% positive shock to the foreign monetary policy rate at the monthly frequency.
The quarterly responses were computed by aggregating the monthly responses of the model.
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Thus, according to these results the foreign shock has a small and limited impact

over the domestic economy. In addition, the identification infers that the Central

Bank reacts aggressively to contain any burst in inflation due to the pass-through

of RER to inflation. However, at the same time the recursive identification scheme

infers almost no impact over the local activity and investment19. There are at least

two problem with this interpretation. First, according to the dynamics of the foreign

block the recursive VAR model is not able to properly identify the shock, and thus

the previous analysis for the domestic block is not correct. Second, even if we are

willing to believe that the model was able to identify the foreign shock, the results

suggest that the shock has an extremely limited impact over the domestic economy

which seems unrealistic in light to the magnitude of the shock. Thus we conclude

that in this case, the recursive VAR model fails to provide an informative benchmark

to judge and validate the IRFs of our structural micro-founded model.

The results for the “agnostic” VAR model offer a completely different view of

the propagation of the shock. Overall, the impulse responses show results in line

with macroeconomic theory. Besides, they are statistically significant at conventional

levels (with the exception of inflation and the domestic policy rate). The responses

for foreign variables show dynamics that are consistent with those expected after

a negative policy shock (i.e., a contractionary effect in foreign prices and activity).

It is worth noticing that the responses in the foreign block go further beyond the

restrictions that were specified in this identification scheme and thus these results

suggest that the shock is properly identified. In the domestic block, the shock has a

strong negative impact over output and the two type of investment in the short run

(around ten quarters). Moreover, the responses are significant at conventional levels.

The fall of investment is mainly due to the large real exchange rate depreciation in line

19We explored several alternative specifications to confirm these results. The first exercise consists
of changing the order of variables (we assume the interest rate to be the most exogenous variable in
the foreign block) and the results are qualitatively very similar.
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with tighter monetary conditions abroad (outflow of capitals, etc.). Finally, results

show no impact over domestic prices due to the strong drop in the domestic activity

that compensates the pass-through of the exchange rate to prices in the short run

which would also explain the lack of response for the domestic rate. However, there

is a small drop in prices in the median-run due to the normalization of the exchange

rate and depressed domestic activity.

Therefore, we argue that the “agnostic” VAR model is able to proper identify

the foreign monetary policy shock and the responses from this identification scheme

can be use to validate the responses of our DSGE model. The comparison of these

two models will enable us to give new lights and insights about the propagation of

the foreign monetary policy shock over the domestic economy. In particular, we can

compare and analyze the different policy implications for the domestic Central Bank;

as well as the short/long-run dynamics and the convergence toward the equilibrium

implied by both models in order to better characterize the propagation of the shock.

To analyze the robustness of the results for this identification scheme we consider

four alternatives set of sign restrictions, see Table 3.2 from the previous subsection

and Table A.3.2 in Appendix 3.A for more details. The IRFs of these four alternative

models are reported in Figure B.3.2 and Figure B.3.3 of Appendix 3.B. In particular,

Mod A and B show that restrictions in investment have a significant impact in the real

variables but nominal variables show similar dynamics between the alternative cases

and base model. Thus, our conclusions hang on the plausibility of these restrictions.

Finally, additional restrictions in foreign policy rate and real exchange rate do not

change the responses of the variables significantly with respect to those reported for

the base model.
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3.4.3 Results for the DSGE model

DSGE models are highly parameterized and thus we estimate the model using data

covering the period 2001Q3-2014Q4 in order to improve the identification of the pa-

rameters of the models. Figure 3.2 illustrates the responses of the DSGE model to a

1% positive shock (100 basis points) to the foreign interest rate.

Figure 3.2

Impulse responses with a DSGE model for Chile to a foreign monetary policy shock

Model is parameterized using estimates from Bayesian estimation techniques with quarterly data covering the
period 2001Q3-2014Q4. The figure shows the Bayesian impulse responses to a 1% positive shock (100 basis points)
to the foreign interest rate. We assume that the dynamics of the foreign variables are described by independent
autoregressive processes of order one, AR(1), as in Medina and Soto (2007a) and Fornero and Kirchner (2014).

The tightening of foreign monetary conditions will lead to capital outflows away

from Chile. This will endogenously influence the country risk premium (the debt

burden increases if the country is net borrower). Because of this, there will be a

depreciation of the local currency both in nominal and in real terms20. To fight

20Notice that we take a conservative stance regarding the implications of the financial tightening
in the U.S.. We can expect additional financial distress triggered by larger volatility in emerging
economies such as: (i) an increase of default probabilities of these countries yielding to a boost of
country risk premiums; (ii) the appreciation of the U.S. dollar worldwide leading to unfavorable
dynamics in commodity prices and in terms of trade of emerging economies. These further effects
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against inflationary pressures, the central bank raises the policy rate. The latter

causes a large fall in activity, particularly in investment that decreases slightly more

than 1% below its steady state value.

The real exchange rate rises persistently and, during the first periods, roughly

depreciates by one and a half percent. In consequence, marginal costs increase caus-

ing inflationary effects (around 0.2% on impact). As nominal prices are rigid, the

inflationary peak is reached at the end of the first year. Also, the results suggest that

the immediate pass-through is 0.18 and it increases towards the end of the first year.

Moreover, consumption expenses also fall due to the increase in real interest rates

(not shown in the figure). Consequently, the model predicts a modest but persistent

contraction in output. Notice that the large persistence of the foreign monetary pol-

icy shock drives these important fluctuations. Finally, the persistence of the shock

contributes to a large improvement of the current account which explains the initial

hike in output.

3.4.4 Comparing the results of SVAR-SOE and DSGE models

The main results from the IRFs analysis showed that the recursive VAR model was

not able to identify the foreign monetary policy shock and thus this identification

scheme is excluded from the comparison.

Before jumping into the comparison of the responses between the “agnostic” VAR

(right panel Figure 3.1) and DSGE model (Figure 3.2), there are two points that

we need to address. First, responses for VAR models were constructed by aggregat-

ing monthly responses to quarterly frequency and hence their confidence intervals

are wider than they should be because variables are smoother at higher frequencies.

Thus the sensitivity of the responses to the restrictions in investment should be re-

can be captured by setting a SVAR for these foreign variables instead of an AR(1) model for each
variable. We avoid implementing that SVAR due to strange implications arising from the Cholesky
identification discussed above.
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considered. Second, the DSG model uses data from the period after 2008 whereas

VAR models do not, hence the comparison of the results may not be straightforward.

Thus, we also estimated an alternative DSGE model using a more comparable data

set but the results did not change significantly21. Figure 3.3 summarizes the results

for the “agnostic” VAR and DSGE model.

Figure 3.3

Impulse responses for the “agnostic”VAR and DSGE model

Responses to a 1% positive shock to the foreign interest rate

“Agnostic” VAR in the first two columns for the base line model (quarterly responses were computed by aggregating
monthly responses). DSGE model in the last two columns (bayesian impulse responses). The figure shows the 68%
and 90% confidence bands for the VAR and DSGE model, respectively.

Beyond the quantitative differences, we find that the impulse responses of the

“agnostic” VAR model are in line qualitatively with the results of the DSGE model

except for output. In the DSGE model the initial hike is explained by the improving of

the current account due to the real and nominal exchange rate depreciation; whereas

the “agnostic” VAR infers a drop of almost two percent in output.

There are three key issues in the dynamics of the responses inferred by the DSGE

21See Figure B.3.4 of Appendix 3.B for the complete set of responses for this alternative DSGE
model. The main difference is that the responses are exacerbated in this case.
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model that we want to highlight. First, the model infers a limited propagation of the

shock to the domestic economy which may seem problematic in light of the size of

the shock. Second, the peak of the shock over activity occurs during the second and

third year after the shock (impact of the shock accumulates in time slowly). Finally,

convergence toward the steady state is reached only in the long-run. The last two

issues may be due to the many micro-founded restrictions that are included in the

model22. Ironically, these mechanisms are added to better-fit the persistence observed

in the data. On the contrary, the “agnostic” VAR offers a slightly different view about

the propagation of the shock. In particular, it clearly indicates that the shock is much

less persistent but at the same time it has a greater impact in the short-run. Finally,

policy implications from both models turned out to be different, according to the

“agnostic” VAR model, the central bank do not need to rise its policy rate because

the drop in activity helps to contain any burst in inflation; whereas in the DSGE

model the rise in prices is partially accommodated by the increase in the policy rate.

Of course, both models are approximation and thus we favor the view that the

responses will lie between the responses of both models. The main advantage of the

DSGE model is that it offers a comprehensive description of the propagation of the

shock that enriches policy discussions. However, this comparison enable us to: (1)

validate the responses of the theoretical model (i.e., DSGE model) for the Chilean

economy; (2) better understand the propagation of the shock over the domestic econ-

omy, in terms of duration, length and deep; (3) help us to develop potential improve-

ments to the structure behind the DSGE model in order to address the key three

issues outlined in the previous paragraph; (4) offer a richer policy discussion for the

policy maker.

22One example of these micro-founded restrictions is the delay in domestic consumption because
of the assumption of consumption habits.
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3.5 Conclusions and further discussion

This paper investigates the propagation of a foreign monetary policy shock over a

small open economy, in particular over the Chilean economy. Our motivation is base

on the ongoing period of monetary normalization already started by the Fed. We

use a comprehensive methodological framework (i.e., two Structural VAR models and

a DSGE model tailored for the Chilean economy) in order to give new lights and

insights about the propagation of the shock. We use this approach because according

to Canova (2007), Structural VAR models can be used to judge and validate the

responses from DSGE model. This exercise is important because the main advantage

of DSGE models is that they provide a comprehensive description of the economy.

Our main methodological contribution is to combine the methods of Arias et al.

(2014) and Koop and Korobilis (2010) to develop an “agnostic” VAR model for SOE.

The results suggest that the recursive VAR model is not able to identify the shock

since some of the responses are counterintuitive (specially for the foreign block).

These results are in line with Bernanke et al. (2005), Mojon (2008) and Castelnuovo

(2015). Thus, this identification scheme can not be used to judge the responses of the

DSGE model. On the contrary, the “agnostic” VAR model shows results in line with

macroeconomic theory. The comparison between the “agnostic” VAR and DSGE

model show that both approaches infer similar responses for the economy, except for

output. In addition, we identify three points that deserve further attention in the

dynamics of the DSGE model: (1) the impact of the shock, (2) peak of the shock

and (3) the convergence toward the steady-state. Finally, we spot different policy

implication arising from both models. According to the “agnostic” VAR model, the

central bank do not need to rise its policy rate because the drop in activity offsets

any burst in inflation; whereas in the DSGE model the rise in prices is partially

accommodated by the increase in the policy rate. Thus, this comparison enriches the

discussion for the policy maker.
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Therefore, our results suggest that there is a gap in the interpretation of the

propagation of the foreign monetary policy shock in these models. Further research

is needed to develop a better propagation mechanism in the DSGE model to solve

or improve the short and long-run propagation mechanism of the shock. We leave

these issues to further work. However, we recognize and propose two potential im-

provements for the DSGE model. First, significant gains could be made by improving

the time series properties of the foreign shocks in these type of models; the DSGE

model combines an AR(1) process to describe the foreign interest rate, which is, ad-

mittedly, extremely simple. The lack of a foreign propagation mechanism can help to

explain the observed responses in this model. Second, the lack of financial restrictions

mitigates the propagation of the shock; the model can be improved by including a

financial accelerator as in Bernanke (1999). In brief, these improvements provide an

opportunity to investigate the causes of the differences between the “agnostic” VAR

and DSGE model.

Finally, we do recognize that our comparison does not have a real benchmark to

judge each model independently. A more elegant approach to perform the compar-

ison would be to specify a more general DSGE model and simulate data from it.

Then, we can compute and compare the responses of each model according to a loss

function. However, our approach remains valid since it fosters the discussion for the

policy maker. In addition, the specification of a true model is always a controversial

assumption and in this case it would be similar to the DSGE model and thus the

comparison can be biased toward this model.
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Appendix 3.A

Table A.3.1
Data used for the estimation of SVAR models

Variable Description
-Log World real GDP World real GDP index, US index of industrial

production (both SA)
-Log foreign price index Chilean external price index (IPE) and

US consumer price index (both SA)
-Foreign interest rate Fed Funds rate
-Log real copper price Real copper price
-Log real oil price Real WTI oil price
-Log domestic real GDP Monthly economic activity indicator (IMACEC) (SA)
-Log domestic price index Consumer price index (IPC, 2013=100) (SA)
-Log real exchange rate Multilateral real exchange rate
-Domestic interest rate Monetary policy rate
-Log real investment in machinery Real gross fixed capital formation in machinery
and equipment and equipment (SA)
-Log real investment in construction Real gross fixed capital formation in construction (SA)

Sources: The Central Bank of Chile and Federal Reserve Economic Data - FRED - St. Louis Fed. The Log World
real GDP constructed using the Chow-Lin procedure with monthly world production index for the World real GDP
index, the Log real copper price and oil price were deflated with international price index (IPE, 2005=100). Finally,
an increase in the exchange rate denotes a depreciation.

Table A.3.2
Alternative “agnostic” VAR models

Sign and zero restrictions

Base Model Mod C Mod D
h = 0 h > 0 h > 0 h > 0

Foreign block

-US Federal Funds rate (rus) 1 ? 2 2
-Industrial production index (Yus) 0 -1 -1 -1
-Consumer price index (CPIus) 0 -1 -1 -1

Domestic block

-Interest rate (r) ? ? ? ?
-Monthly production index (Y) 0 ? ? ?
-CPI core ? ? ? ?
-Investment (I) 0 -2 -2 -2
-Real Exchange Rate (RER) 1 ? ? 2

Restrictions are imposed over the monthly IRFs of the model after a positive foreign monetary policy
shock. Positive or negative entries indicate the length of the sign restrictions, whereas zero entries
indicate zero restrictions. Finally, question marks (?) indicate that no restrictions were imposed over
the IRF of the variable at that horizon. We also consider two additional alternative set of restrictions
for the base model; Mod C considers the foreign monetary policy to be positive for at least 3 months.
Mod D considers the foreign monetary policy and the real exchange rate to be positive for at least
3 months. Thus, these two alternative “agnostic” schemes are incremental cases of the base model.
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Appendix 3.B

Figure B.3.1

Impulse responses for the recursive and “agnostic” identification schemes

for the foreign block to a foreign monetary policy shock

Recursive VAR first two column; “agnostic” VAR last two column for the base line model. The figure shows the
quarterly responses to a 1% positive shock to the foreign monetary policy rate at the monthly frequency. The
quarterly responses were computed by aggregating the monthly responses of the model.
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Figure B.3.2

Impulse responses for alternative “agnostic” VAR models

for the domestic block to a foreign monetary policy shock

Responses for the alternative restrictions over investment for “agnostic” VAR models: (1) Mod A: negative sign
restrictions only last one month (left panel); (2) Mod B: negative sign restrictions last for three months (right
panel). The figure shows the quarterly responses to a 1% positive shock to the foreign monetary policy rate at the
monthly frequency. The quarterly responses were computed by aggregating the monthly responses of the model.
The responses for the foreign blocks do not change in these two cases and thus they are not reported.
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Figure B.3.3

Impulse responses alternative “agnostic” VAR models

for the domestic block to a foreign monetary policy shock

Responses for the alternative “agnostic” VAR models: (1) Mod C: foreign monetary policy is positive for at least
3 months (left panel); Mod D: foreign monetary policy and real exchange rate are positive for at least 3 months
(right panel). Thus, these two alternative “agnostic” schemes are incremental cases of the base model. The figure
shows the quarterly responses to a 1% positive shock to the foreign monetary policy rate at the monthly frequency.
The quarterly responses were computed by aggregating the monthly responses of the model. The responses for the
foreign blocks are the same as those in the base model and thus they are not reported.
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Figure B.3.4

Impulse responses with a DSGE model for Chile to a foreign monetary policy shock

Model is parameterized using estimates from Bayesian estimation techniques with quarterly data covering the period
2001Q3-2014Q4 and 2001Q3-2007Q4. The figure shows the bayesian impulse responses to a 1% positive shock (100
basis points) to the foreign interest rate. We assume that the dynamics of the foreign variables are described by
independent autoregressive processes of order one, AR(1), as in Medina and Soto (2007a) and Fornero and Kirchner
(2014).
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