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Abstract—The dramatic growth in cellular traffic volume
requires cellular network operators to develop strategies to
carefully dimension and manage the available network resources.
Forecasting traffic volumes is a fundamental building block for
any proactive management strategy and is therefore of great
interest in such a context. Differently from what found in the
literature, where network traffic is generally predicted in the
short-term, in this work we tackle the problem of forecasting
busy hour traffic, i.e., the time series of observed daily maxima
traffic volumes. We tackle specifically forecasting in the long term
(one, two months ahead) and we compare different approaches
for the task at hand, considering different forecasting algorithms
as well as relying or not on a cluster-based approach which first
groups network cells with similar busy hour traffic profiles and
then fits per-cluster forecasting models to predict the traffic loads.
Results on a real cellular network dataset show that busy hour
traffic can be forecasted with errors below 10% for look-ahead
periods up to 2 months in the future. Moreover, when clusters
are available, we improve forecasting accuracy up to 8% and
5% for look-ahead of 1 and 2 months, respectively.

Index Terms—Mobile Data Analysis, Clustering, Traffic Fore-
casting, Traffic Peak Detection

I. INTRODUCTION

In recent years cellular networks have witnessed a dramatic

growth of traffic volume, which is estimated to reach 226

EB per month in 2026. This is mainly due to the prosperity

of mobile subscriptions (which are expected to overcome 9

billions in 2026), the improved device capabilities and an

increase of data-intensive contents [1]. To cope with this

situation, Mobile Network Operators (MNOs) are gradually

implementing efficient resource management strategies. How-

ever, the increased complexity of mobile network dynamics

has raised MNOs awareness that the efficiency of network

planning and dimensioning interventions depends on how well

mobile data traffic can be analysed, understood and modeled

especially in urban contexts.

A way MNOs have to implement proactive resources al-

location strategies is to design traffic load forecasting algo-

rithms, with look-ahead horizons (i.e., how far in the future

traffic is forecasted) which go from several hours to several

months [2]–[5]. On the one hand, the development of powerful

hardware capable of dealing with the massive amount of data

coming from cellular networks have enabled the optimisation

of traffic forecasting models. On the other hand, making the

network aware of traffic demands and capable of pro-actively

responding to traffic dynamics is yet a complex task.

At the same time, it has been shown [6]–[8] that there is

a strong relationship between users mobile communication

activity and the characteristics of the underlying urban area

where such activity takes place. The goal of grouping network

sites according to the spatial and temporal dynamics of the

served traffic is typically addressed through the design of

clustering algorithms. From a spatial domain perspective, the

knowledge of a clustering configuration can be crucial for

MNOs considering that traffic loads are often characterised by

geographic shifts between precise urban areas during a day and

during weekday-to-weekend transitions [6]. Considering the

time domain, the similarity of mobile traffic dynamics within

a cluster can be exploited to improve the accuracy of traffic

modeling techniques and thus discover regularities of traffic

demand peaks.

In this paper we focus on forecasting traffic volumes start-

ing from a real dataset collected from the Vodafone mobile

network of a middle-sized city in northern Italy. Differently

from related works, we consider as forecasting target the time

series of downlink traffic at the busy hour, i.e., the time

series of daily maxima traffic loads. We compare different

forecasting algorithms (time series decomposition, ARIMA

and Long Short Term Memory networks), also considering

the possibility of clustering network cells prior to computing

forecasts. Results show that busy hour traffic can be forecasted

with errors below 10% for look-ahead periods up to 2 months

in the future. Moreover, when clusters are available, we

improve forecasting accuracy up to 8% and 5% for look-ahead

of 1 and 2 months, respectively.

The rest of this paper is structured as it follows: Section II

summarises related works about clustering and traffic forecast-

ing in cellular networks, while Section III describes the dataset

available for this work and the approach we follow to both sites

clustering and forecasting. Section IV comments the designed

clustering configuration as well as the results obtained from

forecasting busy hour downlink traffic, when either clusters

are unknown or when the produced clustering configuration is

available. Finally, Section V concludes the paper.

II. RELATED WORKS

Several works in the literature have analysed cellular net-

works traffic traces to understand and model traffic patterns,

especially in urban environments [6], [7] . In [6] a hetero-

geneous dataset containing mobile traffic of ten international
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cities is investigated with the goal of i) summarising the mobile

traffic activity in each area and ii) grouping similar area signa-

tures into a limited representative set. In particular, leveraging

the k-means algorithm, the authors recognise five different area

types, namely residential, office, transportation, touristic and

leisure. With similar aims, in [7] authors consider a large-scale

cellular network in Shangai (9K base stations for a total of

3M users) and propose a model to cluster traffic profiles with

the goal of assisting MNOs in network planning operations.

Again, results show that 5 clusters are recognised which the

authors label as residential, transport, office, entertainment and

comprehensive (the latter grouping those base stations not

associated to the other clusters). In many cases, clustering

models are used to improve the performance of traffic load

forecasting algorithms. In fact, a common approach to traffic

forecasting is first to cluster network sites with respect to

weekly or monthly traffic distribution (in space or time) and

secondly fit a prediction model within each cluster [4], [5],

[7]. Authors in [7] show that clusters knowledge improve the

average forecasting accuracy up to 20% with respect to the

case when no clustering is available. This is also shown in [5],

where authors leverage a clustering algorithm to improve the

performance of several forecasting methods. After training the

selected models i) on the cumulative traffic load and ii) on each

cluster’s cumulative load, results show that clusters knowledge

benefits the training process and improve the average accuracy

by 25%. This comparison is also performed in [4], with similar

conclusions: forecasting performance improve when an ad-hoc

model is developed per each recognised cluster.

Differently from the aforementioned works, we consider as

target the busy hour traffic, with forecasting horizons larger

than 1 month. This is of great interest for MNOs, which often

focus on the implementation of dimensioning and resources

allocation strategies in a pro-active rather than reactive fashion.

III. METHODOLOGY

This work considers a dataset coming from Vodafone, one

of the major European mobile operators. The dataset contains

radio access network measurements relative to the period

T={06/01/2020, 31/07/2020} and referring to about 1.500

eNodeBs of the Vodafone LTE network in the city of Milan,

Italy. In particular, for each eNodeB, we exploit the availability

of several network Key Performance Indicators (KPIs) (e.g.,

cumulative downloaded and uploaded data volumes, n. of

handovers, etc.) and the congestion level at the cell site (e.g.,

n. of active connections, n. of PRBs used, etc.) in the form

of hourly sampled time series. In this work, we consider the

cumulative traffic downloaded at each cell site with a focus

on the traffic served during the busy hour, as detailed in the

next Section.

A. Definition of Busy Hour

Let ve(t) be the time series representing the hourly traffic

volume downloaded from the e-th eNodeB. The total hourly

downlink traffic can be written as:

v(t) =
∑

e

ve(t) (1)

From this time series we build a new time series vb(d)
containing only daily busy hours samples, by picking, for each

day d, the traffic sample having the maximum value1.

Figure 1 depicts the evolution of vb(d) in the period of

interest, where traffic volumes have been normalised for pri-

vacy reasons. As one can see, the time series is characterized

by a slightly increasing trend from January 2020 to March

2020 while the trend is decreasing from March 2020 onwards.

Also, a strong weekly seasonality can be observed before

09/03/2020 and after 01/06/2020, while traffic patterns ap-

pear unregular between these two dates2.

B. Forecasting Methods

Considering the interest of MNOs in predicting when the

next peak of traffic demand will occur, in this work we focus

on the forecast of vb. We compare the performance of three

different forecasting methods:

• Additive Time Series Decomposition (AD): we assume vb

to equal the sum of three independent components:

vb = S + T + E (2)

where S, T and E are the Seasonal, Trend and Noise

components, respectively. While E is by nature not pre-

dictable, S and T can be independently forecasted through a

traditional naı̈ve decomposition model and the concatenation

of a STL3 decomposition model and a non-seasonal ARIMA

[9], respectively. Note that this procedure requires in input

the expected periodicity τ of the time series, which can be

retrieved observing the time plot of the data.

• Seasonal ARIMA (SA): a well-known approach for stationary

seasonal time series forecasting is to model the forecast

target as the combination of two independent ARIMA

models, one for the non-seasonal part of the time series and

the other one for the seasonal part. The combined model is

denoted as ARIMA(p, d, q)×(P,D,Q)S where (p, d, q) are

the AR, Integration and MA order of the non-seasonal part

while (P,D,Q) are the corresponding seasonal versions,

being S the period of the repeating seasonal pattern [10].

A crucial step for modelling a time series through ARIMA

is to estimate the different orders which characterise the

model: we will detail this aspect later in Section IV-1.

• Long Short-Term Memory (LSTM): another way to fore-

cast time series is to assume a more complex, non linear

relationship between data samples and learn it by means

1Beside the considered traffic-based definition of the busy hour, this can also
be defined as the hour of the day which maximizes the number of connected
users. In this work we will not consider this second option, as the downlink
traffic sampled at the corresponding busy hours is in our case always lower
in volume than the one sampled in the traffic-based busy hours.

2In Italy, full lockdown has been established between 09/03/2020 and
01/06/2020 due to COVID-19 pandemic.

3The acronym stands for Seasonal and Trend decomposition using Loess,
a model used for time series decomposition.
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Fig. 1. Normalised cumulative downlink traffic time series (blue) and the corresponding busy hour time series (red) for all the eNodeBs of the network, on
the whole period T .

of Recurrent Neural Networks (RNNs) [10], [11]. LSTM

structures are characterized by the concatenation of h hidden

layers, where each layer is formed by nh cells. A common

approach is to concatenate at the end of the LSTM structure

k fully connected hidden layers (with mk neurons each) and

a final layer (with O output units) to output the forecasted

samples [10]. Note that the size O of the output layer

represents the look-ahead forecast horizon, i.e., how far in

the future the network is able to forecast. Details on the

tuning of these hyper-parameters are given in Section IV-1.

C. Clustering Procedure

The forecasting methodologies presented before can be

applied directly on the aggregate busy hour time series vb

to perform prediction. An alternative approach is to cluster

together eNodeBs having similar busy-hour traffic behaviour,

perform forecasts for each cluster and finally sum the ob-

tained prediction together. We refer to the former approach

as Cluster-Unaware (CU), while the latter is named Cluster-

Aware (CA).

The Cluster-Aware approach relies on k-means clustering,

grouping together eNodeBs based on the Euclidean distance

among their Median Weekly Signatures (MWS). In details, the

MDS of an eNodeB is computed as it follows:

• First, we compute the Median Daily Signature (MDS) for

work days (Mondays to Fridays), Saturdays and Sundays.

In a nutshell, the MDS for week days is computed hourly

by taking the median of the downlink traffic observed at

each hour for each day in the dataset. The same is repeated

independently for Saturdays and Sundays.

• Then, we compute the MWS by stacking five copies of the

work days MDS plus the MDS for Saturdays and Sundays.

As an example, we plot in Figure 2 the (normalised) MWS

of one eNodeB taken as example: as one can see, the traffic

pattern is the same from Monday to Friday whereas the

pattern changes during the week end.

Repeating this process for each eNodeB in the network

allows to perform k-means clustering with the MWS as input.

Note that each MWS is normalised before being used, as

our interest is to group eNodeBs regardless of the amplitude

of the observed download traffic. Also, considering that the
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Fig. 2. Normalised MWS for one eNodeB of example: working day MDS is
repeated from Monday to Friday while Saturday and Sunday have different
MDS.

first COVID-19 infection case was registered in Italy on

15/02/2020, to avoid biasing errors due to the extraordinary

traffic behaviour that has been observed afterwards, we com-

pute the MWSs considering only the 4-weeks season observed

in January 2020.

There is no a-priori knowledge about the number of clusters

k to use: therefore, we take a data driven approach which

consists in a grid search over the set of candidate values

k = [1, . . . , 10]. For each candidate value, we perform

clustering and compute for each eNodeB the corresponding

Silhouette coefficient [12]. The higher the coefficient of a

signature, the better it matches its own cluster, such that a

clustering configuration is appropriate if most of the signatures

have a high Silhouette value. At the end of this process, we

set k = 5, which is also the most likely choice for urban

scenarios [6], [7]. We plot in Figures 3-7 the centroids of

the recognised clusters, i.e., the representatives of the MWSs

of the eNodebs of each cluster. The MWS shown in Figure

3 is characterized by two traffic peaks during Week Days,

one weaker peak in the morning between 8:00 a.m. and 9:00

a.m and a second sharper peak in the evening between 9:00

p.m. and 10:00 p.m., whereas during Saturday and Sunday

only the evening peak survives. In fact, this cluster (which we



TABLE I
DISTRIBUTION OF CLUSTERED ENODEBS AND PER-CLUSTER

CUMULATIVE SERVED TRAFFIC DEMAND.

Type Size (%) Served Traffic (%)

R1 37.1 48.6

R2 30.2 29.1

B 20.6 13.9

T 7.8 8.3

U 4.4 0.1

label as R1) is associated to residential areas of the considered

city, where traffic demand is uniform in time but lower loads

are observed during working hours. Similar observations can

be made if we look at the centroid represented in Figure

4 (R2), a secondary residential cluster where morning and

evening peaks are less evident during Week Days whereas

Saturday and Sunday profiles are close to those observed in

3. A different behaviour is instead shown in Figure 5, where

traffic is heavier during working hours in Week Days while

it is consistently lower in volume otherwise. We therefore

associate this cluster (B) to the business areas with a typical

European working time during Week Days from 9:00 a.m. to

6:00 p.m. A further different trace is depicted in Figure 6,

which represents the cluster associated to transport hubs and

transportation network in the city (T ). In fact, the eNodeBs of

this cluster are characterised by high traffic demands during

commuting rush hours in the Week Days (i.e., at 8:00 a.m. and

6:00 p.m.) while very weak traffic activity is observed in the

week end. We summarise in Table I the fraction of eNodeBs

of the network grouped in each cluster and the corresponding

served traffic demand. As one can see, more than 65% of

the eNodeBs are deployed in residential areas and generate

more than 75% of the mobile traffic. Next most serving cluster

is those active in business areas, which groups 20% of the

eNodeBs for a total served demand of 14%, while Transport

cluster contains sligthly less than 8% of the eNodeBs which

overall serve sligthly more than 8% of the traffic demand.

Finally, we observe that a small group of eNodeBs (4.4%)

is represented by a MWS which resembles a noisy process

(depicted in Figure 7 and referred to as U) and is associated

with a negligible portion (0.1 %) of the overall generated

traffic.

IV. FORECASTING RESULTS

In this Section, we comment on the tuning of AD, SA and

LSTM and on the corresponding performance when they are

applied to forecast vb. On the one hand, each model will have

a look-back window of 2-weeks (i.e., will take in input 14 past

daily samples of vb). This choice comes after a grid search

tuning and represents a good compromise between size of the

training data and freshness of the information. On the other

hand, we set the models basic look-ahead horizon to 7 days,

such that if predictions further than 1 week ahead are targeted

the models will recursively use forecasted samples as input

for further iterations (i.e., to feed the look back window of

14 samples when ground truth data are not available). Note
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Fig. 3. Centroid representative of R1 cluster.
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Fig. 5. Centroid representative of B cluster.
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Fig. 7. Centroid representative of U cluster.

that both training and test data are first transformed through a

box-cox normalisation before feeding the forecasting models,

as it is commonly done in the field of time series forecasting

for variance stabilisation purposes [9].

1) Model Tuning: The selected models require the tuning of

several parameters. For what regards AD, considering that vb

is characterised by a weekly seasonality, we set the periodicity

τ equal to 7 days. For what regards SA, after the inspection

of the Auto-Correlation and the Partial Auto-Correlation Func-

tions (ACF and PACF respectively) of vb, we select a model

of type (1, 1, 0) × (1, 1, 0)7. This is because: i) the cascade

of two differencing operations of orders d = 1 and D = 1
returns a stationary time series, ii) the seasonality of vb has a

period of S = 7 days, iii) the presence of a sharp correlation

peak at lag=1 in the PACF suggests the autoregressive orders

are p = 1 and P = 1 and iv) the presence of several modest

correlation peaks in the ACF suggests that moving average

processes should be excluded from the model (i.e., q = 0 and

Q = 0). Finally, considering the LSTM model, we manually

design a encoder-decoder based network structure composed

by: i) a couple of encoder-decoder layers of n1 = n2 = 200
cells; ii) a bi-dimensional fully connected layer characterised

by k = 7 parallel hidden layers of m1 = · · · = m7 = 100
neurons each; iii) an output layer of size O = 7. Cells and

neurons of the network are activated through ReLu activation
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Fig. 8. MAPE, CU: TL vs LA.
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Fig. 9. MAPE, CA: TL vs LA.

functions, while MSE is chosen as loss metric.

2) Performance: To compare the forecasting performance

of the selected methods, we retain the period T train =
{06/01/2020, 31/05/2020} for training, while the period

T test = {01/06/2020, 31/07/2020} is left aside for testing.

The performance are evaluated in terms of Mean Absolute

Percentage Error (MAPE) and Mean Percentage Error on Peak

(MPEP), which are defined as it follows:

MAPE =
100%

n

∑

t∈T test

∣

∣

∣

∣

vb(t)− v̂b(t)

vb(t)

∣

∣

∣

∣

MPEP = 100%

max
t∈T test

vb(t)− max
t∈T test

v̂b(t)

max
t∈T test

vb(t)

where v̂b denotes the forecasted time series. Note that MPEP

measures the capability of a model to predict the maximum

value of the forecast target, which is a crucial information

when the model is used by a MNO for dimensioning purposes.

To study the impact of both the training period length (which

we refer to as TL) and the look-ahead horizon (namely,

LA) on the forecasting performance, we compare the results

varying TL in [1, 2, . . . , 5] and LA in [1, 2] months.

As said before, to produce v̂b we consider two different

approaches, Clustering Unaware (CU) and Clustering Aware

(CA) respectively. According to the former approach, we train

each forecasting model on vb as defined in Section III-A.

Differently, according to the latter approach we proceed as it

follows:

1) We fix the timestamps tb from the vector of busy hours

traffic samples vb;

2) Considering the set of clusters C = [R1,R2,B, T ], we

compute the busy-hour per-cluster cumulative downlink

traffic v
c

b
in td

b
∈ tb for each day d ∈ T train, for

TABLE II
MAPES OBTAINED FOR A 1-MONTH LOOK-AHEAD AND TL≤2.

LA=1 CU CA

Model

TL
1 2 1 2

AD 5.55 7.92 5.27 7.82

SA 3.90 3.90 3.60 4.85

LSTM 4.87 7.32 8.00 7.85

TABLE III
MAPES OBTAINED FOR A 2-MONTHS LOOK-AHEAD AND TL≤2.

LA=2 CU CA

Model

TL
1 2 1 2

AD 4.97 8.10 4.72 7.65

SA 4.88 4.87 5.46 4.66

LSTM 4.95 7.76 8.5 7.84

c ∈ C. This generates 4 different time series, namely:

v
R1

b
,vR2

b
,vB

b
,vT

b
;

3) We train the forecasting models on each of the four newly

defined time series, independently;

4) We compute v̂b as:

v̂b =
∑

c∈C

v̂
c

b
. (3)

We plot in Figures 8 and 9 the MAPEs obtained when either

CU or CA approach is adopted, respectively. On the one hand,

considering Figure 8, for both LA=1 (left) and LA=2 (right)

errors are below 10% and the best performing model is SA.

In particular, when SA predicts one month in advance the

errors are below 5%, with the best performance of 3.90%

obtained for a TL≤2 months. Differently, when LA=2, SA

performs at par for different training period lengths, with

an average MAPE of 4.70%. Performance decrease at least

by 20% when either AD or LSTM are used, with the only

exception of the case (TL=1,LA=2) where their MAPEs are

comparable to the one yielded by SA. On the other hand, when

the knowledge about the clusters configuration is included in

the forecasting process (Figure 9), SA model confirms to be

the best performing for both LA=1 and LA=2. In particular,

best MAPE of 3.60% is observed when SA is used with TL=1

and LA=1. Good results are also observed when TL=2 for

both L=1 and L=2, where SA yields a MAPE of 4.85% and

4.66% respectively. Viceversa, when TL≥2 SA deteriorates

its performance and yields results which are comparable to

the ones of the other forecasting methods (with errors above

7%). To compare the performance of the two forecasting

approaches, we report in Tables II and III the MAPEs obtained

when TL≤2 for LA=1 and LA=2, respectively. As one can see

in Table II, CA approach improves by 8% the best performance

obtained when clusters are not computed. Fixing the training

period, we also observe a performance improvement of 5.5%

when AD model is used, while forecasting errors increase

when clusters are available if LSTM is used (regardless of

TL). Similar conclusions can be drawn if we consider a look

ahead of 2 months (as shown in Table III), where CA approach
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Fig. 10. MPE, CU: TL vs LA.
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Fig. 11. MPE, CA: TL vs LA.

improves by 5% the best performance obtained with CU

approach (for TL=2). Regardless of the approach and the look-

ahead capability, we observe a decreasing trend in forecasting

performance with the increasing of TL, for all the tested

methodologies. This is due to the particular characteristics

of the period under study, as users network usage (and thus

cellular traffic behaviour) has been rapidly changing during

COVID-19 pandemic breakout. This suggests that in such

cases it is preferable to frequently update traffic forecasting

models to capture more recent variations in traffic and discard

older data patterns. To conclude, we plot in Figures 10 and

11 the forecasting performance with respect to the maximum

busy hour downlink traffic value observed in the test period,

for CU and CA approach respectively. Regardless of the

forecasting approach, we observe that: i) errors are positive

in sign, meaning that our models under-estimate the overall

network traffic peak; ii) peak detection performance improve

on average of 50% when LA=1 with respect to LA=2. On the

one hand, when LA=1, the best MPEP (7.4%) is achieved by

LSTM model for TL=1 when CU approach is adopted (11%

better than CA approach). On the other hand, when LA=2

traffic peaks are better detected (MPEP=11.88%) when CA

approach is implemented (7% better than CU approach) and

SA model is used with TL=1.

V. CONCLUSIONS

Traffic forecasting is an important tool for MNOs to an-

ticipate the knowledge of traffic demand peaks and thus

enhance the efficiency of network dimensioning and planning

operations. In this paper, we consider as target the busy hour

downlink traffic and we compare the performance of different

forecasting methods when either no network sites cluster-

ing is performed before training the models or a clustering

configuration is designed and leveraged during the training
phase. Beside the insights which the knowledge of a clustering

configuration provides with respect to mobile users activity

in a cellular network, our results show that it also benefits

the forecasting performance, improving the accuracy by more

than 5% up to a forecasting horizon of 2 months. To conclude,

we recall that the data used in this study refers to the period

January-July 2020 in the country of Italy. Considering that

since March the 9th Italy was in lock-down due to Covid-19

pandemic, part of the data refer to an extraordinary behaviour

of the mobile network. In particular, the decreasing trend of

downlink traffic is due to the reduced mobility of the users

in such period: we plan to perform new experiments once the

pandemic is over.
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