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Abstract

Background: Chikungunya virus (CHIKV) is endemic to Africa and Asia, but the Asian genotype invaded the

Americas in 2013. The fast increase of human infections in the American epidemic emphasized the urgency of

developing detailed predictions of case numbers and the potential geographic spread of this disease.

Methods: We developed a simple model incorporating cases generated locally and cases imported from other

countries, and forecasted transmission hotspots at the level of countries and at finer scales, in terms of ecological

features.

Results: By late January 2015, >1.2 M CHIKV cases were reported from the Americas, with country-level prevalences

between nil and more than 20 %. In the early stages of the epidemic, exponential growth in case numbers was

common; later, however, poor and uneven reporting became more common, in a phenomenon we term "surveillance

fatigue." Economic activity of countries was not associated with prevalence, but diverse social factors may be linked to

surveillance effort and reporting.

Conclusions: Our model predictions were initially quite inaccurate, but improved markedly as more data accumulated

within the Americas. The data-driven methodology explored in this study provides an opportunity to generate descriptive

and predictive information on spread of emerging diseases in the short-term under simple models based on open-access

tools and data that can inform early-warning systems and public health intelligence.
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Background

Chikungunya virus (CHIKV; genus Alphavirus) is en-

demic to Africa and Asia. It comprises three geno-

types (East-Central-South African, West African,

Asian); the Asian genotype invaded the Americas in

2013, quickly developing autochthonous transmission

[1, 2] (Fig. 1). CHIKV is transmitted by several mos-

quito species, but Aedes albopictus and A. aegypti are

the principal vectors, and have proven highly compe-

tent for CHIKV transmission across the Americas [3].

These vector species have broad potential geographic

distributions across the Americas under current and fu-

ture climate conditions [4], such that the virus sees enor-

mous opportunities for spread.

In the early stages of the spread of this disease in

the Americas (Fig. 1), the spatial structure of CHIKV

occurrences in the Caribbean was explicable in terms

of distances between countries [5]. However, consider-

ing the broad current extent of the epidemic, a more

detailed biogeographic and ecological approach may

be needed to identify and anticipate current and fu-

ture trends in the CHIKV epidemic. However, the

data necessary for correlative ecological niche models

at coarse scales are still highly biased spatially (e.g.,

collected along roadsides) [6, 7], such that compre-

hensive risk maps are probably not feasibly developed

by those methods solely. With more than a million

cases to date in the Americas, Cauchemez et al. [5]

* Correspondence: qiaohj@ioz.ac.cn
†Equal contributors
4Key Laboratory of Animal Ecology and Conservation Biology, Institute of

Zoology, Chinese Academy of Sciences, Beijing, China

Full list of author information is available at the end of the article

© 2016 Escobar et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Escobar et al. Parasites & Vectors  (2016) 9:112 

DOI 10.1186/s13071-016-1403-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-016-1403-y&domain=pdf
http://orcid.org/0000-0001-5735-2750
mailto:qiaohj@ioz.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


found that CHIKV models based on the first 1–3 months

of data changed considerably in terms of predicted inci-

dence as more data became available. Furthermore, differ-

ences in quality of CHIKV reporting among countries

across the Americas suggest that some countries report

individual cases in detail, whereas others accumulate hun-

dreds of cases before reporting begins [5]. Finally, because

more than 25 % of CHIKV-infected individuals may be

asymptomatic [8], and CHIKV symptoms may be con-

fused with dengue fever [9], reporting can be incomplete

or irregular, further complicating modeling efforts.

The CHIKV epidemic in the Americas represents

an impressive case of an emerging infectious disease

at continental scales that demands detailed under-

standing and prediction of its spread (Fig. 1). This

epidemic provides an opportunity to explore the util-

ity and importance of novel computational tools and

data streams in disease risk mapping during epi-

demics. We aimed to explore a data-driven, ecological

approach to forecast CHIKV spread across the Ameri-

cas. In this paper, to assess model performance from

weekly CHIKV reports, we integrate air travel infor-

mation, geographic distance and connectivity, and cli-

matic suitability for vector species to understand and

anticipate the spread of CHIKV in the Americas.

Considering that a simple approach is appropriated

when there is no detailed knowledge of an infectious

disease, our CHIKV model is developed based on few

parameters to minimize the need for assumptions;

additionally, our model is based on open-access data

and tools, which may permit further implementation

of our methodology as an alternative in exploring in-

fectious diseases systems affecting broad geographic

areas and lacking in the understanding of the basic

biology necessary for models requiring complex

parameterization.

Methods
Exploring patterns of surveillance

Overall case numbers

With large numbers of cases diagnosed in many countries,

and so many exported cases [10], probabilities of dispersal

and establishment are relatively high. Thus, a determinis-

tic approach was used in this exploration. Hence, we ex-

plored CHIKV case numbers in each country in one-week

time steps, considering the sum of pre-existing CHIKV

cases at the time of prediction, number of cases imported,

and number of cases generated locally by autochthonous

transmission. We integrated these components in Eq. (1)

as follows:

NT i;j ¼ NT i−1;j þ NI i;j þ NLi;j ð1Þ

where NTi,j is the cumulative number of individuals in-

fected by week i in country j, as reported by the Pan

American Health Organization (PAHO; [11]); simulating

a scenario of an ongoing epidemic requiring immediate

predictions our model estimates started in week 35 of

the outbreak in the Americas (i.e., August 2014 repre-

sents i = 0). NIi,j, is the number of cases imported in

week i into country j. Finally, NLi,j is the number of

cases generated within country j in week i by local

transmission.

Imported cases

Imported cases were based on a population-growth-via-

immigration approach. Cases were estimated from a de-

tailed evaluation of connectivity among cities of the

Americas via air travel. At this early stage of the out-

break, and given the insular nature of the initial suite of

countries infected, we were comfortable in neglecting

ship and ground travel, which may not be tenable in

later stages of the outbreak. Our air travel connectivity

Fig. 1 Geographic distribution of Chikungunya case concentrations worldwide. Snapshots of Chikungunya distribution between September 2012

and August 2014, according to ProMed data from [68]
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model was based roughly on Brockmann and Helbing

[12]. However, the principal data source for Brockmann

and Helbing [12] was the Official Airline Guide, Ltd. [13],

which is restrictive to the scientific community as it tar-

gets the travel industry as customers and clients, and is

enormously expensive. To overcome this obstacle, via cor-

relative approaches, we derived a data set that correlates

closely with the closed-source industry data, but that was

derived from openly available sources, appears representa-

tive of numbers of passengers on flights, and is free of

cost, as follows.

We estimated passenger flow via a correlative model

relating airport and route characteristics to passenger

data, all information that could be obtained openly.

Specifically, we collected air travel route characteristic

data from the OurAirports data repository [14]. We

focused on 65,247 air travel routes, and assembled in-

formation including origin, destination, flight distance,

aircraft type, and number of seats by aircraft. We

mapped 2,632 airports using their longitude, latitude,

number of runways, and runway area, for a total of

364 locations and 39,376 runways, at the level of city

or province in 114 countries globally, (Additional file

1). We estimated passenger flow by associating flight

flow and aircraft-specific passenger capacity. Data re-

garding aircraft characteristics (i.e., numbers of seats)

were drawn from Wikipedia [15]. Once aircraft routes

and passenger data were collected, collated, and for-

matted, we developed a random forests model to re-

late route, airport, region, and runway data to

passenger flow in the United States-connected flight

dataset as follows (see details in Additional file 1).

We validated the travel connectivity model by (i)

comparing model predictions with detailed numbers

of passengers per month on routes city-to-city across

the United States (U.S.) using more limited traffic

data provided by the U.S. Department of Transporta-

tion ([16]; see Additional file 1) and (ii) worldwide

using an independent data set (i.e., the top 10 routes

in the world, sourced from [17]). We assumed that

sources of CHIKV for further spread in the Americas

would be the regions of the Americas already in-

fected, and thus neglected the possibility of additional

introductions from Europe, Asia, or Africa.

NIi,j was estimated in Eq. (2) based on passenger flow

from all 51 countries in the Americas with non zero on-

going local transmission as

NI i;j ¼ k
X51

x¼1
pi;j ti;j ð2Þ

where pi,j is the prevalence of CHIKV infection at

time i from country j. This prevalence was calculated

in Eq. (3) as:

pi;j ¼
NT i−1

y
ð3Þ

where NTi-1 is the number of cases and y represents

the total population of the country (source: [18]). The

second part of equation 2, (ti,j), represents human move-

ments (by air, in this case) from the infected country j to

other countries at time i, derived from our passenger

traffic flow calculations (Additional file 1). Finally, as an

element of equation 2, we derived k, a scalar value de-

rived empirically, based on the assumption that case oc-

currences in the United States will have been detected

and reported rather comprehensively. Specifically, we

compared our raw estimates of numbers of passengers

coming into the United States (where reporting appears

to have been constant and more or less complete) over

weeks 30–35 against numbers of imported cases re-

ported in the United States, which corresponds roughly

to an estimate of “ease of infection” from travelers. We

calculated the proportion of incoming travelers that

translated into reported infections as k = 0.001269, and

used this parameter value to correct imported case esti-

mates for all countries.

Local transmission

NLi,j in equation 1 was approximated using a simple

data-driven, population-growth approach for countries

with ongoing local transmission, based on patterns of ac-

cumulation of case reports in the PAHO dataset. To es-

timate local CHIKV transmission rates for each country

j, we fitted a diverse family of curves to reported num-

bers of human cases, and assessed each for fit in terms

of proportion of variance explained. Population-growth

response shapes were chosen according to the diverse

trajectories of increase of numbers of human cases in

each country. We assumed that each model would take

into account the reporting biases of its country. Models

included linear as Eq. (4), logarithmic Eq. (5), exponen-

tial Eq. (6), and polynomial Eq. (7) regressions as

NLi;j ¼ aþ bi ð4Þ

NLi;j ¼ aþ b lni ð5Þ

NLi;j ¼ abi ð6Þ

NLi;j ¼ aþ b1iþ b2i
2 ð7Þ

were i is the week of forecast in country j, a is the

intercept, b is the constant slope of the line, and ln is

the natural logarithm.

Predictions were evaluated via comparisons with real

PAHO reports for each country. After an initial predic-

tion (i.e., August or week 35 of the epidemic), models

were re-calibrated by adding cases generated in the fol-

lowing weeks from August 2014 to January 2015. We
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assessed model performance via estimating the percent

of NT deviation of model predictions from actual NTi,j

values according to PAHO reports. Failure rate was de-

termined by comparing predictions against number of

cases reported by February 2015, calculated in Eq. (8) as

F i;j ¼ 100
N̂T i;j−NT i;j

NT i;j

 !

ð8Þ

where Fi,j is the percent failure for predictions in week

i in country j. N̂T i;j is the number of CHIKV cases pre-

dicted by models in week i and NTi,j is the number of

cases observed according to PAHO reports by February

2015.

Transmission hotspots

To explore CHIKV potential in the Americas further

and in detail finer than the country level, we focused on

the ecology of the vectors and developed ecological

niche models (ENM) for the two relevant mosquito spe-

cies. Thus, we attempted to estimate the environmental

conditions where mosquitoes occur, as an approximation

of the fundamental niche [19]. To provide biological in-

terpretation to model outputs, we assumed that funda-

mental niches should have a multidimensional ellipsoid

form as described previously theoretically and empiric-

ally [20–25]. We also assumed that transmission is lim-

ited at least in broad terms by climatic considerations

[26, 27]. CHIKV basic reproductive number R0 tends to

be highest at around 25 °C temperature and 200 mm

precipitation [27], which were central values of the cli-

mate conditions studied. Thus, we assumed that ideal

conditions for high CHIKV transmission would be found

at central values of suitable conditions identified in the

ENM for the vectors. We further assumed that transmis-

sion of the virus depends on its vectors, in terms of their

activity, abundance, and dispersal capability [26]. We

used this knowledge to explore the most suitable areas

at global scales in terms of niche centrality, as a proxy of

high R0 of mosquito populations [28], and then extracted

such information for the Americas. These niche central-

ity ideas have seen considerable exploration and testing

in previous studies [20–22, 28, 29], and suggest that

spatial variation of vector abundance can be explained

by niche requirements [23, 24]. Thus, ecological niches

were estimated using a climate envelope, based on a

minimum-volume ellipsoid describing ecological features

of vector occurrence based on the environmental range

occupied by the species [24, 30, 31], instead of the clas-

sic correlative ENM methods of difficult biological inter-

pretation [19]. Our approach is described in the

paragraphs that follow.

Geographic coordinates of focal species of mosquitoes

were used to calibrate ENMs to characterize climate

conditions within which they are able to establish and

maintain populations [32]. As we aimed to establish a

best proxy of the species’ fundamental niche from which

to estimate its centroid, we used vector occurrence data

across the entire geographic distributions of the species

[29]. Primary occurrence data (i.e., data documenting oc-

currences of individual animals at points in time and

space) for Aedes aegypti and A. albopictus were drawn

from Campbell et al. [4], who in turn had obtained them

from 4 open-access data sources: VectorMap [33], Atlas

of Living Australia [34], speciesLink [35], and the Global

Biodiversity Information Facility [36]. Data for the two

focal species (2,108 and 8,040 records, respectively) were

used to calibrate ENMs. We characterized mosquito re-

sponses to climate patterns over recent decades (i.e.,

1950–2000) via the WorldClim climate archive [37]. We

used climate data at ~4 km spatial resolution, specifically

annual mean temperature, mean diurnal temperature

range, isothermality, temperature seasonality, maximum

temperature of the warmest month, minimum

temperature of the coldest month, temperature annual

range, mean temperatures of the warmest and coldest

quarters, annual precipitation, precipitation of the wet-

test and driest months, precipitation seasonality, and

precipitation of the wettest quarter, mean temperature

of the wettest and driest quarters, precipitation of the

warmest and coldest quarters, and precipitation of driest

quarter. We performed principal components analysis

(PCA) on these climatic variables to reduce the number

of and correlation among them. The first three compo-

nents explained 84.9 % of the overall variance in the

variables.

We estimated an ENM as a minimum-volume ellips-

oid (MVE) in a multidimensional environmental space

for each vector species. The environmental space was

represented using the first three principal components

from global climate variables [25, 38], and were used as

axes by which to define the multidimensional environ-

mental space using the freely-available ENM software

NicheA [39]. Semi-axes with which to build the MVE

were estimated based on Euclidean distances between

mosquito occurrence points displayed in the environ-

mental space (see details in Additional file 2). MVEs

were developed using NicheA [31]. Once the ENM

MVEs for the vector species were constructed, we di-

vided each MVE into 100 layers summarizing proximity

to the niche centroid (Additional file 2); these layers

were then projected into geographic space to identify

areas close to or far from the ENM centroid. The metric

to measure the distance to the niche centroid and trans-

late this information into a continuous geographic map

was developed for this study, and is implemented in the

toolbox of NicheA (version 3.0.1; http://nichea.source-

forge.net/). Finally, country average values of niche
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centrality distance of both vector species and CHIKV

prevalences from PAHO were compared using regres-

sion analysis. We explored CHIKV potential in relation

to the gross domestic product (GDP) of each country

[15] in countries reporting CHIKV cases across the

Americas. Statistical and spatial analysis were developed

using R [40] and ArcGIS 10.2 [41].

Results and discussion
Patterns of surveillance effort

By late January 2015, 1.209,158 cases of CHIKV infec-

tion had been reported by countries in the Americas,

with calculated prevalences ranging from nil (Uruguay)

to 20.3 % (Martinique), and a median across countries of

0.3 %. Accumulation of case numbers in official submis-

sions were characterized generally by exponential (e.g.,

Colombia; Fig. 2) or linear (e.g., United States; Fig. 3)

initial growth, followed by logarithmic-like growth (e.g.,

Guadalupe, El Salvador; Fig. 2 and Additional file 3),

with several countries ceasing reporting in recent

months (e.g., Suriname, Haiti; Additional file 3). Al-

though in many countries, cases are diagnosed and re-

ported nationally and internationally as they occur (e.g.,

Colombia), other countries (e.g., Venezuela; Fig. 2) de-

layed in diagnosing and reporting cases; still others (e.g.,

Dominican Republic; Fig. 2 and Additional file 3) ap-

peared to enter into sustained reduction of reporting, in

fact, after active initial reporting and tracking, fewer

cases were reported, probably not reflecting a slowdown

in actual numbers of cases.

In our air passenger flow estimation, the best final

model omitted month as a predictor variable, and ex-

plained 90.1 % of total overall variance in the data set

(Additional file 1). From our worldwide validation, the

model explained 73.0 % of variation in passenger num-

bers (P = 0.0016, r2 = 0.73), indicating considerable pre-

dictive power as regards passenger flow. We note that

such correlative modeling of passenger flow represents a

zero-cost, open-source segment of our methodology that

could nonetheless be replaced by industry data, if the

high cost were to be outbalanced by desire for less over-

all variance in the data.

We inspected actual accumulation of cases in com-

parison to model predictions, and explored departures

between the two as either model failures or biases intro-

duced by imperfect diagnosis and reporting. Several

countries showed pauses in epidemiological reporting,

resulting in models that failed to anticipate future

CHIKV case numbers (e.g., Curacao; Fig. 3). Using the

model failure metric, when more data were added to

models in final months, models tended to fail less. We

assessed predictions by country for February 2015

against real reports, from models calibrated with data

for August 2014, September 2014, October 2014,

November 2014, December 2014, and January 2015

(Fig. 4). We found that predictions early in the epidemic

contrasted dramatically in accuracy with the more

Fig. 2 Reported Chikungunya cases. Imported cases (red line) were reported since the epidemic began in the country, followed by local transmission

(blue line). Top left: Colombia showing an exponential-like shape of the line. Top right: Venezuela showing a logistic-like line and surveillance fatigue state

in late weeks. Bottom: Dominican Republic (left) and Guadalupe (right) with exponential growth in early stages of the epidemic followed by logarithmic

growth. The y axis denotes the number of accumulated cases, x axis denotes the week number of the epidemic according to PAHO
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informed predictions late in the epidemic that resembled

the real case numbers (Fig. 5); hence, early and late pre-

dictions generated different epidemic landscapes with

considerable underestimation of cases in early forecasts

(Fig. 4). This result is of special concern, considering

that, for public health interventions, a worst case sce-

nario, overestimating infectious, may ensure a better re-

sponse from health authorities compared to a scenario

of under prediction that can be overwhelmed by real

case number [42]. For example, in the Dominican Re-

public, CHIKV cases were underreported due to the high

number of cases that overwhelmed the national diagnos-

tic capacities (A.M. Stewart-Ibarra, pers. comm.). The

considerable heterogeneity on the country-by-country

reporting of cases directly influenced the output of the

models, limiting the ability of the models to estimate the

real burden of the disease at early stages of the forecast,

especially from countries with delayed data (e.g., Cura-

cao; Fig. 3). However, cases estimated by our highly in-

formed model late in the epidemic were pretty close to

PAHO reports (i.e., 1.21 x 106 cases predicted by mid-

February 2015). Our models allowed us to anticipate

CHIKV cases with high confidence in countries with

imported cases dominating the reports (e.g., Unites

States; Fig. 3). Early models, however, failed to predict

case numbers in latter stages of the epidemic in most

countries. This effect was particularly evident in coun-

tries with inconsistent, heterogeneous, delayed reports

(Fig. 3). Models for all countries clearly were improved

when more data was added to predictions (Fig. 4).

Hence, we suggest that a data-driven method may in-

crease in accuracy when aimed to predict at different

stages of the epidemic with forecasts for short periods of

time in advance (e.g., one month instead of six months;

Fig. 4).

While exploring and assessing vector-borne disease

transmission models that might inform us about CHIKV

ecology, we noted that true, first-principles transmission

models have been developed for a limited suite of

vector-borne diseases, particularly malaria and dengue

(e.g., [43, 44]), and that models for other vector-borne

disease systems have, for the most part, simply been

adapted from these base models. Coarse scale predic-

tions based on such transmission models will thus be

limited in their applicability to other, more novel,

surveillance-limited, large geographic-range, and less-

well-studied disease systems such as CHIKV. We were

particularly concerned about the effects of parameter se-

lection for these models and their extrapolation to con-

tinental extents. Classic disease transmission models are

a powerful tool with which to understand epidemics at

the population level (e.g., SIR models; [45]), but they re-

quire parameters that may be difficult to estimate for a

vast diversity of environmental and social scenarios as in

the case of the CHIKV epidemic across the Americas

(e.g., climate and social features in Canada vs.

Colombia). Indeed, traditional transmission models re-

quire parameter estimates that may be lacking for the

disease, region, species, and scales of interest [46]. Given

the limited availability of disease parameters, importing

parameters from other studies may provide insights on

plausible patterns of the disease ecology, and such

imported parameters may (or may not) match with the

ecological features of the system where they will be ap-

plied [47]. In contrast, we explored simpler, less parame-

terized approaches. The data-driven approach we used

may have implicit the diversity and complexity of the

phenomenon at hand. Our approach is most applicable

in situations of limited data; however, because we used a

data-driven approach, extremely biased or incomplete

surveillance and reporting will be able to cause errors

and problems, however, the method make such errors

identifiable (Fig. 3).

With the Asian CHIKV lineage circulating in the

Americas initially in the Caribbean, estimating air traffic

Fig. 3 Comparison of observed versus predicted Chikungunya cases

in Curacao and the United States. Incomplete, intermittent, and

delay in reports generated inaccurate model calibration with consequent

incorrect predictions. Top: United States. Consistent patterns of report

submission allowed us to anticipate imported cases with numbers

predicted close to real numbers of cases. Bottom: Curacao. While

observed reports (red line) showed low increases in the first two weeks

of the outbreak, the country was characterized by dramatic increases of

cases with irregular reporting accumulating numbers of cases such that

we could not generate correct forecasts for the following six (purple),

five (blue), four (dark green), and three months (light green)
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is key to understanding CHIKV translocation to unin-

fected countries [1, 48]. Our measures of city-to-city

pairwise airline passenger fluxes were derived and vali-

dated based on large data sets and empirical models,

and provide good detail on passenger movements, at

least at the level of movements of people among coun-

tries. Industry data are available and would provide

greater detail, but they are apparently extremely costly,

and we found them also extremely difficult to access and

purchase.

CHIKV reports for most countries started with low

numbers of imported cases, followed by dramatic in-

creases once the virus developed autochthonous trans-

mission. These increases of local case numbers often fit

Fig. 4 Evaluation of Chikungunya transmission model failure rates, as a function of time and associated amount of data available for model calibration.

Models developed with data for August 2014, September 2014, October 2014, November 2014, December 2014, and January 2015 were compared against

PAHO reports in February 2015 to assess model performance from six months to one month of anticipation respectively. Models improved in terms of fit

between predicted and observed Chikungunya cases where more information was included in late models. For intervention purposes, under prediction of

cases (red) was more undesirable than overprediction of cases (dark blue)
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an exponential model in early stages of the epidemic,

and indeed exponential growth in numbers of cases in

the early stage of the CHIKV epidemic in the Americas

has been noted previously [5]. Models of focal transmis-

sion rates with this form of growth may eventually esti-

mate numbers of infections higher than the total

population of a country, which is conceivable in terms of

re-infections, but probably just reflects inappropriate

model extrapolation. Studies of IgM and IgG antibodies

may inform about the acute or convalescent status (or

both) of patients, allowing medical professionals to iden-

tify individuals with re-infections [49] and estimate true

prevalences more accurately.

Numbers of cases may be underrepresented more gen-

erally considering asymptomatic individuals [8], under-

diagnosis, and lack of reports even of confirmed pa-

tients. While some countries provided detailed data for

early stages of the epidemic (e.g., Saint Martin,

Martinique, Guadeloupe), other countries had limited

surveillance effort, with official reports that did not

admit the total number of laboratory confirmed cases

(e.g., Guatemala; Escobar pers. obs.). On the other hand,

some areas may be overrepresented as a consequence of

incorrect reports based on suspected cases. Antibody

test-positive samples from suspicious CHIKV patients

may range 29-69 % positivity, illustrating the need for

differential diagnosis of, for example, dengue fever [50].

Strikingly, numbers of cases in adjacent areas like Sint

Maarten and Saint Martin showed important contrasts in

numbers of cases reported (i.e., 470 vs. 5,623 respectively)

and prevalences calculated (i.e., 1.26 vs. 16.42 respect-

ively). This pattern may respond to demographic, cultural,

and social features of each country. For an artifactual ex-

ample, whereas the Dominican Republic had 524,381

cases and 5.7 % prevalence, Haiti reported 64,709 cases,

for a 0.6 % prevalence, likely associated to differences in

availability of diagnostic tests and under-reporting [50].

That is, social factors instead of ecological features driving

real transmission appear to be prevailing in these two

countries that share the same island.

All countries except the United States showed a pat-

tern of high incidence in early stages followed by a re-

duction of reports. We found that some countries

showed a high number of case reports at the time that

other countries in the same region showed an interrup-

tion in reporting (e.g., Dominican Republic vs.

Colombia). As a consequence, we propose the term “sur-

veillance fatigue” to refer to the reduction of collection,

reporting, and publication of epidemiological data after

explosive and sustained disease outbreak events, result-

ing in continued increase of transmission and infection,

even after the fatigue phase. Surveillance fatigue may

also reflect a reduction of assistance of infected people

to health care facilities given the simplicity of the disease

treatment (e.g., acetaminophen), resulting in an artificial

reduction of case numbers after the recognition of the

epidemic. Models calibrated with data on early stages

may inform better about real incidence of cases in coun-

tries showing patterns of surveillance fatigue (Fig. 2 and

Additional file 3). Models based on data generated dur-

ing the surveillance fatigue stage should be considered

with caution when developing intervention plans during

epidemics, as they will give the impression of damping

out of infection rates.

Incorporating imported cases in our predictions

allowed us to anticipate CHIKV occurrence in countries

with lack of local transmission, via air traffic data. For

example, cases estimated for the United States were in-

fluenced largely by CHIKV prevalence in countries with

high passenger flow and consequent importations.

Models of local transmission were weak in predicting

the fatigue state of the surveillance, based on data from

early stages of the epidemic characterized by high trans-

mission rates. Curve shapes resulting from surveillance

fatigue can also be the result of seasonal variations of

local climate, reducing mosquitoes abundance and activ-

ity [51], host immunity mitigating symptoms of re-

Fig. 5 Variability during Chikungunya forecasting. Percentage failure

among countries in the Americas (boxplots) was measured from

predictions between August 2014 and January 2015 to assess model

predictions developed from six to one month of prior PAHO reports

in February 2015, on which predictions were based. The metric

identify the match between real cases reported the last month of

the study and models developed six or one month in advance (from

left to right). Negative values represent under prediction (i.e., cases

below the real report) and positive values represent overprediction

(i.e., cases above the real report). Failure = 0 represents prediction

matching the real number of cases reported. Notice that late models

developed with more data accumulated were more close to the

real reports

Escobar et al. Parasites & Vectors  (2016) 9:112 Page 8 of 12



infections [52], or effective disease control efforts from

public health institutions. Previous studies assessing the

effectiveness of Aedes control strategies had shown low

robustness of assessment methodologies, thus, linking

the effects of control programmes on disease prevalence

is still a challenge [53]. Given the variety of factors that

may influence the number of cases reported, ranging

from social to climate features, a data-driven method

may be a parsimonious approach by which to anticipate

case numbers from a diverse epidemiological scenario,

with robust predictions when more data are added to

the model and short time periods are predicted in ad-

vance (Fig. 5). Whether our transmission model per-

forms better than other classic approaches is a question

that should be explored statistically using data under

controlled experimental conditions. Accurate data from

an epidemic among different countries may be hard to

derive, so such studies may fall in the field of virtual

ecology, where the real number of disease cases and

levels of surveillance bias is well known [30, 54]. The ap-

plication of virtual ecology in epidemiology to compare

transmission models is an area that deserves special at-

tention and has a promising future [54], given that it

may help to elucidate the best model algorithms and ap-

proaches for forecast disease spread.

Transmission hotspots

Suitable areas for occurrence of the two mosquito spe-

cies were found across all countries in the Americas.

However, areas of high suitability, in terms of distance to

the niche centroid, were concentrated in tropical and

subtropical latitudes. Indeed, areas considerably suitable

for A. aegypti matched with countries of initial reports

of CHIKV cases in the Caribbean (Fig. 6), suggesting that

the introduction of the virus into the Americas was to

“fertile soil” in terms of holding highly competent vector

populations. We identified and proposed hotspot areas

of transmission risk based on niche centroid distances

(Fig. 6). We found that A. aegypti may find more ideal areas

to sustain high transmission rates, particularly in Haiti,

Dominican Republic, Puerto Rico, Guadeloupe, Dominica,

Martinique, St Lucia, Saint Vincent and the Grenadines,

and Grenada, plus on the mainland in coastal Venezuela

and Brazil, across Central America, and in the lowlands of

Peru and Bolivia. Aedes albopictus, on the other hand, has

areas of high transmission potential in the southeastern

United States, southern Brazil, central Chile, Central

America, and across the Andes Mountains in Bolivia.

Countries closest to the niche centroid had higher CHIKV

prevalences (y = 0.0004747*log(x); P = 0.002), but we found

no significant association between GDP values and re-

ported prevalences by country (r2 = 0.002; df = 7; P = 0.085).

Our macroecological and biogeographic consideration,

instead of classic correlative approaches, allowed us to

appreciate the global biogeographic potential of CHIKV

transmission compared to regional models of suitability

[55]. The niche centroid idea is not novel and it has

been proposed theoretically [20] and tested empirically

in ecology [22, 28]; it offers a linkage between geo-

graphic range and population biology of species [21, 22].

Our novel application of the niche-centrality paradigm

for an infectious disease at coarse geographic extents

(Fig. 6), may promote the use of this technique to assess

abundance patterns and genetic structure in infectious

disease systems to inform mitigation strategies [21, 22].

At local scales, CHIKV R0 is expected to range between

less than unity and greater than 8 for middle and low

latitudes, respectively, with highest values expected at

the environmental centroid [27]. Our niche estimation

was based on fine scale climate data from spatial inter-

polations [37], however, we advise caution when com-

paring these findings on virus potential transmission

Fig. 6 Hotspots of Chikungunya transmission risk, as measured in terms of distance to the niche centroid. Red areas are those with environments

close the niche centroid, denoting areas with high potential vector abundance. Caribbean countries are shown in the inset
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from our vectors’ suitability maps, due to the global

scale and environmental data employed during the

ENMs calibration. Comparisons between different

spatial scales may fail to show an agreement in results

[56]. The lack of agreement in two models developed at

different scales is not novel in ecology, and has been

termed the Beale fallacy (dissimilar patterns resulting

from incorrect comparisons of models developed at dif-

ferent scales; [57]).

ENM of A. albopictus and A. aegypti have been devel-

oped previously under different approaches [4, 55, 58–62].

For instance, ENM are commonly calibrated at regional

scale, showing high suitability in the sampled areas as a re-

sult of the correlative nature of the algorithms employed

[46, 55, 58, 63], calibrating a species’ ENM based on fewer

occurrences may result in incomplete distributional esti-

mations [64]. Current ENM for A. albopictus and A.

aegypti, developed at global scales to anticipate their dis-

tribution under future climate conditions, suggest that

both species may find suitable conditions in different,

currently-unsuitable areas, given their ecological plasticity

and their impressive dispersal abilities [4]. Campbell et al.

[4], developed global ENMs of CHIKV vectors and miti-

gate sampling bias via a sampling bias background and

generating binary outputs. ENMs based on the entire spe-

cies distribution and estimating the niche centroid to find

areas close or far to such centrality (i.e., areas more or less

suitable) could reduce sampling bias effects, and may pro-

vide biological meaning to the continuous surfaces gener-

ated by the model, as has been shown in empirical

experiments [21, 22, 28, 29]. Here, our ENMs based on

niche centroid distance showed that suitability patterns

across the Americas agreed with prevalences of CHIKV.

Conclusions

The CHIKV transmission model and transmission-

hotspot maps presented here are methodologically valu-

able, as we generated predictions based exclusively on

open-access tools and data. However, this approach has

some important limitations. First, our transmission

model is data-driven, so, poor-quality data can generate

poor predictions. We found that continuous reporting

by countries improved model predictions, whereas inter-

rupted and delayed epidemiological reports generated

poor forecasts, as exemplified by the intermittent and fa-

tigued surveillance and reporting pattern of Curacao

(Fig. 3), El Salvador, and Haiti (Additional file 3). Since

scientific literature regarding CHIKV occurrence in the

Americas will inevitably be published with 2–6 months’

delay [65], official reports play a key role in early notifi-

cation of epidemiological shifts [66] and in enabling pre-

dictive modeling. The PAHO online interface could

improve the collection and storage of epidemiological

records to facilitate early use of data and fast generation

of results to inform interventions, reducing the time be-

tween data collection and analyses.

Second, we explored city-to-city, hemisphere-wide pas-

senger flow through an average estimation (Additional file

1). Important seasonal differences clearly exist for air traf-

fic through the year, but were not included in our imple-

mentation. This issue can potentially be addressed using

our data source via incorporation of seasonal trend infor-

mation regarding movement pulses such as home visits by

migrant workers, tourism windows, and holiday schedules,

among others. Clearly, the relative simplicity of our air

travel data represents a limitation of the approach; how-

ever, given that this dataset was a good proxy to estimate

imported cases for some countries (e.g., United States), we

release the estimated air traffic data for further test-

ing, including the origin and destination of passengers

(Additional file 4).

Third, we modeled virus translocation via air travel

only, neglecting surface transport in the form of ground

and sea travel, which are also potentially important in

terms of movements of infected vectors or passengers

[67]. However, considering the importance of air travel

in modern society, the fast movement between coun-

tries, the massive passenger flow, and the recent nature

of the CHIKV invasion of the Americas, we expected the

air travel data to capture representative patterns of

movement most relevant to the virus’ spread in the

Americas, at least at these initial stages. An alternative

to our travel-based approach would be by compiling na-

tional immigration data from entry ports, but these data

may not be available in most countries in Latin America.

Fourth, an easy improvement to our model selection

approach for local transmission would be to use the

Akaike information criterion (AIC) to choose among al-

ternative models, which would be simple to implement

and automate. It would provide an indication of which

population growth algorithm should be used, with deci-

sions based on goodness-of-fit of each model to each

country’s accumulation of autochthonous cases. In this

particular exploration, however, we decided not to use

such metrics, to allow careful identification and custom

consideration of biases and other non-biological factors

discussed above that affect numbers of cases reported in

ways that have nothing (or little) to do with local trans-

mission rates.

Predictions at early stages of the epidemic had high

uncertainty when compared with more informed models

(Fig. 4), which should be considered in control strategies

based on predictions at early stages of epidemics. Our

predictions fit fairly consistently with posterior reports

(e.g., Fig. 5), inspiring some confidence in our model

outputs. We emphasize the perhaps-dominant role that

reporting biases can play in the PAHO case-occurrence

data sets. These biases mean that biological factors may
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at times take a back seat to human-driven factors. The

outcomes of our work consist of detailed maps and

tables of probabilities and likely numbers of cases on a

pixel-by-pixel, or region-by-region basis. These products

can feed directly into real-world mitigation strategies via

identification of areas most at risk of arrival of new cases

via importation. The advantage of such information for

CHIKV, as compared (say) to Ebola virus cases, is that

arriving cases, if aware of their CHIKV-positive status,

simply need to avoid exposure to mosquitoes carefully,

and no further transmission should occur.

Additional files

Additional file 1: Methods to estimate the passenger flow across countries.

(DOCX 2382 kb)

Additional file 2: Theoretical description of the ecological niche model
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Additional file 3: Countries in surveillance ‘fatigue’ stage. (DOCX 175 kb)
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countries in the Americas. The table includes direct flights between countries
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