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Abstract 16 

China has been the largest energy consumer in the world, and its future energy demand is of concern to 17 

policy makers. With the data from 30 provinces during 1995-2012, this study employs a hierarchical 18 

Bayesian approach to present the probabilistic forecasts of energy demand at the provincial and national 19 

levels. The results show that the hierarchical Bayesian approach is effective for energy forecasting by 20 

taking model uncertainty, regional heterogeneity, and cross-sectional dependence into account. The 21 

eastern and central areas would peak their energy demand in all the scenarios, while the western area 22 

would continue to increase its demand in the high growth scenario. For the country as a whole, the 23 

maximum energy demand could appear before 2030, reaching 4.97/5.25 billion tons of standard coal 24 

equivalent in the low/high growth scenario. However, rapid economic development would keep national 25 

energy demand growing. It also suggests that most western provinces still have great potential for energy 26 

intensity reduction. The energy-intensive industries should be cut down to improve energy efficiency, and 27 

the development of renewable energy is essential.  28 

Keywords: energy demand; model uncertainty; Bayesian; forecast 29 

1 INTRODUCTION  30 

China has been the largest energy consumer in the world, and its future energy demand is of concern to 31 

police makers due to the significance for strategic planning. In 2015, China’s energy consumption totaled 32 

4.30 billion tons of standard coal equivalent (SCE) of which coal accounted for 64.0%. The desire for 33 

strong economic growth as well as the ongoing processes of industrialization and urbanization will 34 

contribute to the increased energy use which eventually exerts pressure on the security and environmental 35 

issues (Chen et al., 2017; Hao et al., 2015; Jiang and Lin, 2012; Mi et al., 2016). Especially, in recent 36 

years, some ambitious carbon reduction targets have been explicitly proposed by China. This implies that 37 

more efforts may be needed to control the total amount of energy consumption so as to peak carbon dioxide 38 

emissions around 2030 (Mi et al., 2017). As a result, from a policy perspective it is imperative to 39 

investigate the potential ranges of energy demand in China (Brockway et al., 2015).  40 

For medium- and long-term energy demand prediction, we argue that there is a need for informative 41 

estimates by integrating various information. This can be specified in the following ways. First, the 42 

analysis of energy use at the regional level is more useful. The regional pattern of energy demand would 43 
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help make reasonable and specific policies since there are different situations across regions. Besides, it 44 

is suggested by You (2013) that the disaggregated information could improve the accuracy of energy 45 

demand forecasts. Second, it is of necessity to detect the uncertainty of energy demand predictions with 46 

regard to model estimation and possible adjustments of development polices. The possible range of energy 47 

demand could advance policy-making (Shao et al., 2015). Third, a combination of forecasts would make 48 

full use of the information carried by individual models, which is assumed to have a better predictive 49 

performance. When uncertainty is under consideration, incorporating probabilistic forecasts eventually 50 

presents a mixture distribution of energy demand that is supposed to be more reliable. 51 

Previous studies employed various methods for energy forecasting (Suganthi and Samuel, 2012). Table 1 52 

indicates that grey models and statistical models are more concise and less data/parameter-intensive. In 53 

particular, statistical approaches are easily applied to the analysis with multi-level information and provide 54 

an opportunity to estimate model uncertainty in a formal way. In practice, it is common to predict energy 55 

demand on the basis of the developed statistical relationship and the identified driving factors. 56 

Table 1 Comparisons of energy demand forecasting models 57 

Classification Example Model complexity 
Data/parameter 
requirement 

Bottom-up models MARKAL (Tsai and Chang, 2015) 
TIMES (Comodi et al., 2012) 
LEAP (Kumar, 2016) 
 

High level High level 

Intelligent models ANN (Gunay, 2016) 
PSO (Ünler, 2008) 
GA (Li et al., 2015) 
 

High level High level 

Grey models GM(1,1) (Hamzacebi and Es, 2014) 
 

Low level Low level 

Hybrid models MPSO-RBF (Yu et al., 2012) 
GP-GM (Lee and Tong, 2011) 
 

High level High level 

Statistical models ARIMA (Yuan et al., 2016) 
Econometric model (You, 2013) 
Semiparametric model (Shao et al., 2015) 

Low level Low level 

 58 

At present, traditional statistical techniques in the literature have not considered the uncertainties in the 59 

structural relations for energy estimation. Besides, they often use the common coefficient of regions for 60 

prediction at the sub-national level without fully accounting for heterogeneity. These problems make it 61 
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difficult to obtain reasonable ranges of the estimated energy demand. Recent studies indicate that 62 

hierarchical Bayesian approach well addresses the uncertainties of model and parameter and provides for 63 

partial pooling of the common information from different regions while considering heterogeneity 64 

(Gelman and Hill, 2007). Moreover, it could flexibly model the dependence between variables to improve 65 

estimation. Therefore, this could help present the informative results of future energy demand so as to 66 

give useful insights for energy policies. 67 

This paper aims to forecast China’s energy demand and the associated uncertainties at the provincial and 68 

national levels. Our study contributes to the existing literature by formally modeling the uncertainties in 69 

the structural relations for energy estimation while considering regional heterogeneity and cross-sectional 70 

dependence, and offering a predictive distribution of energy demand. 71 

2 METHODOLOGY 72 

2.1 Influence factors of energy use 73 

The possible influence factors of energy consumption has been extensively investigated in the literature. 74 

The major classifications are drawn as follows. 75 

(1) Economic level. It shows that economic activity is a major contributor to energy consumption (Liao et 76 

al., 2016). Zhang and Xu (2012) examine the causal relationship between energy consumption and 77 

economic growth, and find that economic growth causes more energy consumption in China not only at 78 

the national level but also at the regional and sectoral levels. Furthermore, some studies indicate that there 79 

is a potentially nonlinear effect of economic development on energy consumption (Yoo and Lee, 2010; 80 

You, 2013).  81 

(2) Industrial structure. There are significant differences in the energy consumed by industries. Especially, 82 

heavy industry is a primary consumer. It is commonly viewed that industrialization increases energy 83 

consumption (Sadorsky, 2014). However, Li and Lin (2015) find negative effects for both middle-/low-84 

income and high-income groups. This suggests that the change in industrial structure caused by 85 

development would affect the pattern of energy use. 86 

(3) Demographic change. The demographic factor (e.g. population and age structure) is an essential role 87 

considered for energy use in the literature (Liddle, 2014). Liu et al. (2015) find that the negative effect of 88 
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population density on energy consumption vary across regions of China. The given interpretation is the 89 

result of modernization. 90 

(4) Urbanization process. The inconsistent findings exist in the historical studies (Al-mulali et al., 2012; 91 

York, 2007). Poumanyvong and Kaneko (2010) show that urbanization decreases energy use in the low-92 

income group, while it increases energy use in the middle- and high-income groups. The reduction is 93 

interpreted as the effects of fuel switching from inefficient traditional fuels to efficient modern fuels. 94 

However, development raises the use of private and public infrastructure so that more energy resources 95 

are required to support urban population and urban economies. 96 

(5) Technological progress. The advancement of technology has impacts on energy efficiency and energy 97 

structure. These are essential for energy consumption. To cope with climate change, there is a need of new 98 

technologies to change the pattern of energy use in the future. 99 

Based on the identified influence factors, the research framework of this study for forecasting regional 100 

energy demand in China is shown as Figure 1. The causal effects of influence factors on energy 101 

consumption are constructed by hierarchical Bayesian approach which accounts for the uncertainties in 102 

the structural relations with regional heterogeneity and cross-sectional dependence. The estimated region-103 

specific regression coefficients are used to obtain the energy demand predictions with uncertainty bounds. 104 

On the basis of individual models, the mixed probabilistic forecasts for energy demand with the specified 105 

development scenarios are made. We attempt to investigate the regional and national patterns of energy 106 

demand, the changes in energy intensity, and the impacts of energy structure adjustment. 107 
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 108 

Figure 1 Research framework for forecasting regional energy demand in China 109 

2.2 Hierarchical Bayesian model 110 

The empirical model for energy consumption per capita is shown as Eq. (1). For the gth group (g=1,2,…G) 111 

of S(g) provinces in year t, the energy consumption per capita 
( )1 2( , ,..., )gt t S t

y y y  (log transformed) is 112 

modelled with a multivariate normal distribution which considers the dependence across provinces in 113 

group g. 114 
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where 1, 2, ,( , ,..., )
st st st J st

x x xx  is a set of J explanatory variables associated with energy consumption per 116 

capita of province s (s=1,2,…S(g)) in year t. The regression coefficients ( )
1, 2, ,( , ,..., )g

s s s J s
   , the 117 

intercepts ( )
1 2( , ,..., )g

s s
  α  and the covariance matrix Σg for group g all need to be estimated. If there 118 
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are G groups in total, the coefficients for each province can be denoted by 
' 1, ' 2, ' , '( , ,..., )

s s s J s
    with 119 

(1) (2) ( )' 1,2,..., ( ... )G
s S S S    . To describe the spread of covariate effects across all provinces, another 120 

multivariate normal distribution is applied to the regression coefficients. This indicates the second level 121 

of the hierarchical Bayesian model, and the equation is shown as follows (Chen et al., 2014; Devineni et 122 

al., 2013). 123 

' ~ MVN( , )
s       (2) 124 

where μβ (a vector of length J+1) represents the common mean regression coefficients for all the provinces 125 

from G groups; correspondingly, Σβ is the covariance matrix. If the estimated variances of βs’ (diagonal 126 

of Σβ) are large, then it tends towards a no-pooling model where each province is regressed independently; 127 

by contrast, the small variances imply a full pooling model with homogeneous responses to the influencing 128 

factors (Gelman and Hill, 2007). We apply uninformative priors to the parameters Σg, αβ, μβ, and Σβ, and 129 

use Markov Chain Monte Carlo (MCMC) sampling to estimate posterior distributions. The convergence 130 

of the MCMC chain is evaluated by the potential scale reduction factor (Gelman and Rubin, 1992), and 131 

all the calculations are conducted by R and RStan (Stan Development Team, 2016).  132 

Considering the effects of economic development, industrialization, and urbanization, the explanatory 133 

variables in Eq. (1) are selected as gross domestic product per capita, share of secondary industry, and 134 

urbanization rate (the share of urban population in the total population). In addition, the quadratic term of 135 

GDP per capita is introduced into the model to detect the nonlinear relationship between energy 136 

consumption and economic development. Also, the lagged energy consumption per capita is involved to 137 

establish dynamic models.  138 

2.3 Model validation 139 

Since our object is to extrapolate energy demand in the future, it is important to validate the models’ out-140 

of-sample forecast performance. Accordingly, motivated by the typical leave-one-out cross-validation 141 

(LOOCV) (James et al., 2013), we use the following root mean squared error (RMSE) criterion to measure 142 

the out-of-sample performance of energy demand forecasting models considered in this study: 143 
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2

1

1
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1
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n
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   (3) 144 

where T and n are the numbers of years and provinces respectively. yit (i=1,2,…,n) is the actual energy 145 

consumption of the ith province in the tth year, while ˆ
it

y  is its corresponding forecast which is obtained 146 

from the following procedure: hold out the observations of all studied provinces in the tth year (i.e. 147 

1 2, , ,
t t nt

y y yK ) at first; then re-estimate the model on the remaining observations; finally, use this 148 

estimated model to obtain the required forecasts 1 2
ˆ ˆ ˆ, , ,

t t nt
y y yK . Clearly, this error can be reasonably 149 

used as a measure for the out-of-sample forecast performance. The smaller error indicates higher forecast 150 

accuracy. 151 

2.4 Data and scenarios 152 

2.4.1 Data description 153 

This study takes 30 provinces (including municipalities and autonomous regions) of China as a study area, 154 

and they are divided into three groups (Table A1). The annual data of provinces during 1995-2012 are 155 

collected from China Statistical Yearbooks, provincial Statistical Yearbooks, and China Energy Statistical 156 

Yearbooks, including GDP, population, urbanization rate, energy consumption, and share of secondary 157 

industry. Note that GDP is converted into 2010 price (Chinese Yuan, CNY). Table 2 presents the variables 158 

used for models and their descriptive statistics, and all the observations are taken for our analysis. 159 

Table 2 Variables for models and descriptive statistics 160 

Variable Definition Observations Mean Std. dev. Min Max 

GDPPC GDP per capita (2010 CNY, 
thousands) 

540 19.69 15.53 2.91 86.50 

SEC Share of secondary industry (%) 540 0.46 0.08 0.20 0.62 

URB Urbanization rate (%) 240 0.50 0.14 0.27 0.89 

ENGP Energy consumption per capita 
(tons of SCE) 

540 2.16 1.32 0.42 7.95 

 161 
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2.4.2 Scenario assumptions 162 

The projections of provincial GDP, population, urbanization rate, and share of secondary industry by 2030 163 

are made based on the national projections from previous studies and some assumptions. Table 3 shows 164 

the national projections in some specific years, and basically there are two scenarios designed to describe 165 

the possible development. This paper intends to present the full range of energy demand, so the low and 166 

high growth scenarios are adopted. The details for developing provincial scenarios are introduced as 167 

follows. 168 

Table 3 Scenario assumptions for China 169 

 S1 (low growth)  S2 (high growth)  

 2020  2025 2030  2020  2025 2030  

GDP (trillions CNY) 90.4 118.1 147.2 92.6 123.9 158.1 

Population a (millions) 1390.5 1385.6 1367.3 1415.2 1444.2 1463.8 

Share of secondary industry (%) 38.9 35.7 32.6 b 39.8 37.4 35.0 

Urbanization rate (%) 58.6 61.8 65.0 61.0 c 65.4 c 68.7 c 

Sources: a. World Population Prospects: The 2015 Revision (United Nations, 2015) 170 

b. China 2030 (Hu et al., 2014) 171 

c. World Urbanization Prospects: The 2014 Revision (United Nations, 2014) 172 

 173 

The GDP growth rates for the whole country in these scenarios refer to those in the World Energy Outlook 174 

(2015). Specifically, the growth rate for scenario S1 (S2) is 6.0% (6.5%) in 2015-2020, 5.5% (6.0%) in 175 

2021-2025, and 4.5% (5.0%) in 2026-2030. The structure of provinces’ growth rate is assumed to be the 176 

same as that in 2014. Accordingly, the future annual GDP of provinces are obtained.  177 

There are small changes in the share of provincial population in the national population over the past years, 178 

and thus the one in 2014 is taken to allocate the national population. 179 

The smaller reduction in the share of secondary industry is made in scenario S2. On the basis of the 180 

assumed values in Table 3, the annual national projections are linearly interpolated. Furthermore, the 181 

structure of provinces’ share of secondary industry in 2014 is taken to obtain annual provincial projections. 182 
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A comparatively small increase in urbanization rate is set in scenario S1. We linearly interpolate the values 183 

over the period to get annual urbanization rate of China. The share of provincial urban population in the 184 

national urban population was stable over the past years, and thus the one in 2014 is taken to calculate 185 

each province’s projections of urbanization rate. 186 

3 RESULTS 187 

3.1 Empirical models for energy demand 188 

The static and dynamic models for energy demand are established with various explanatory variables. The 189 

results estimated by fixed effects method and hierarchical Bayesian method are both made to reveal their 190 

differences. Note that the province fixed effects are only considered in the fixed effects estimation, and 191 

the common mean coefficients for all provinces in the hierarchical Bayesian model are taken for 192 

comparisons. The coefficient whose 90% interval of posterior distribution does not overlap with 0 is 193 

regarded to have significant effect.  194 

The estimated regression coefficients of static models are shown in Table 4. The share of secondary 195 

industry is considered in all the models, and the significant positive impacts are found in model M1 by 196 

both fixed effects method and hierarchical Bayesian method. Urbanization rate is introduced into model 197 

M2 and M3, and the results suggest that energy consumption would increase with urbanization effect. 198 

However, the regression coefficients are not statistically significant. It also reveals that economic 199 

development would raise energy use, and particularly a significant nonlinear effect is indicated by two 200 

methods in model M3. Note that there are different situations for the provinces. Figure B1 displays the 201 

posterior distributions of the regression coefficients for each province in model M3. We notice that most 202 

provinces have significant nonlinear relationship between energy consumption and economic 203 

development. This implies that the energy demand is expected to decrease with further economic 204 

development, and the turning point varies from region to region. On the other hand, a time trend (TIME) 205 

is put into the models to represent technological effect. The significantly negative coefficients suggest that 206 

energy consumption would decrease with time. 207 

The estimated regression coefficients of dynamic models are given in Table 5. In general, the current 208 

energy consumption is positively correlated to that in a former period. Yet, the insignificant coefficient is 209 

found by hierarchical Bayesian method in model M6. Also, it shows that industrialization and urbanization 210 
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have positive impacts on energy consumption, though the regression coefficients estimated by two 211 

methods are not always statistically significant. In addition, model M6 attempts to investigate the 212 

nonlinear effect of economic development. But Figure B2 shows that there is no significant relationship. 213 

We notice that the regression coefficients of time trend estimated by two methods in model M4 are 214 

contrary to each other. Specifically, the positive rather than negative impact of time trend is indicated by 215 

fixed effect method.  216 

Table 4 The estimated regression coefficients of static models  217 

 
M1  M2  M3  

 
FE HB FE HB FE HB 

Ln(GDPPC ) 0.816*** 
(0.070) 

1.091 
[0.928, 1.289] 

0.892*** 
(0.058) 

1.054 
[0.984, 1.134] 

1.036*** 
(0.083) 

1.176 
[1.046, 1.308] 

SEC 1.489*** 
(0.169) 

0.258 
[0.030, 0.508] 

0.226** 
(0.105) 

0.091 
[-0.013, 0.193] 

0.166 
(0.106) 

0.076 
[-0.026, 0.186] 

URB   0.280 
(0.211) 

0.179 
[-0.015, 0.374] 

0.250 
(0.209) 

0.194 
[-0.004, 0.384] 

Ln(GDPPC)2     -0.026** 
(0.011) 

-0.019 
[-0.039, -0.002] 

TIME -0.016** 
(0.007) 

-0.040 
[-0.062, -0.021] 

-0.035*** 
(0.006) 

-0.054 
[-0.063, -0.046] 

-0.032*** 
(0.006) 

-0.054 
[-0.062, -0.045] 

RMSE 0.117 0.080 0.030 0.026 0.030 0.024 

Observations 540 540 240 240 240 240 

Note: FE indicates the fixed effects method while HB indicates the hierarchical Bayesian method. The medians of 218 

common mean regression coefficients and the associated 5-95% uncertainty bounds (in square brackets) of HB 219 

model are presented. The standard errors are given in the parentheses for the regression coefficients of FE model.  220 

* indicates significance at 10% level 221 

** indicates significance at 5% level  222 

*** indicates significance at 1% level 223 

 224 

The RMSE of model forecasts is calculated in Table 4 and Table 5 for comparison. It can be found that 225 

all the models estimated by hierarchical Bayesian method have smaller RMSE which means better forecast 226 

performances. This is partially because the region-specific coefficients (Figure B1 and B2) are provided 227 

by hierarchical Bayesian method. These are essential for estimating future energy demand which needs to 228 

fully account for regional heterogeneity. Besides, the cross-sectional dependence is also introduced into 229 
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the models which could improve estimation. Our study finally intends to give informative results of energy 230 

demand, accordingly, we retain the variables of insignificant effects since they can still provide some 231 

information for the posterior distribution of energy demand. 232 

Table 5 The estimated regression coefficients of dynamic models 233 

 M4  M5  M6  

 FE HB FE HB FE HB 

Ln(GDPPC) 0.085* 
(0.047) 

0.521 
[0.403, 0.642] 

0.596*** 
(0.066) 

1.030 
[0.932, 1.120] 

0.738*** 
(0.084) 

1.121 
[0.984, 1.275] 

SEC 0.671*** 
(0.100) 

0.258 
[0.061, 0.472] 

0.119 
(0.094) 

0.090 
[-0.025, 0.194] 

0.059 
(0.095) 

0.078 
[-0.029, 0.182] 

URB   0.102 
(0.189) 

0.156 
[-0.053, 0.369] 

0.073 
(0.187) 

0.175 
[-0.035, 0.377] 

Ln(ENGP(-1)) 0.749*** 
(0.025) 

0.523 
[0.436, 0.606] 

0.358*** 
(0.049) 

0.043 
[0.000, 0.089] 

0.358*** 
(0.048) 

0.035 
[-0.008, 0.083] 

Ln(GDPPC)2     -0.026*** 
(0.010) 

-0.016 
[-0.036, 0.002] 

TIME 0.011*** 
(0.004) 

-0.017 
[-0.026, -0.007] 

-0.026*** 
(0.005) 

-0.054 
[-0.063, -0.044] 

-0.024*** 
(0.005) 

-0.052 
[-0.061, -0.043] 

RMSE 0.063 0.061 0.029 0.026 0.028 0.025 

Observations 510 510 210 210 210 210 

Note: FE indicates fixed effects method while HB indicates hierarchical Bayesian method. The medians of common 234 

mean regression coefficients and the associated 5-95% uncertainty bounds (in square brackets) of HB model are 235 

presented. The standard errors are given in the parentheses for the regression coefficients of FE model.  236 

* indicates significance at 10% level 237 

** indicates significance at 5% level  238 

*** indicates significance at 1% level 239 

 240 

3.2 Forecasting regional energy demand by 2030 241 

The posterior distributions of energy demand estimated by the models (M2, M3, M5, and M6) reflecting 242 

the integrated effects of economic development, industrialization, and urbanization are adopted. Then, 243 

these are mixed to present the probabilistic forecasts. The provincial energy demand with uncertainty 244 

bound during 2016-2030 is presented in Figure 2. There are different situations across provinces due to 245 

the various development stages.  246 
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 247 

Figure 2 Provincial energy demand during 2016-2030 in scenario S1 and S2. The lines indicate median 248 

value while the range indicates 2.5-97.5% uncertainty. 249 

The ongoing economic transformation in China makes slower economic development in Hebei, 250 

Heilongjiang, Jilin, Liaoning and Shanxi, so that the desire for energy is expected to continuously decrease 251 

in the future. From 2016 levels by 2030, the amount of energy use (median value) in scenario S1/S2 would 252 

reduce by 16.6%/11.6% in Hebei, 21.1%/17.0% in Heilongjiang, 18.3%/13.2% in Jilin, 20.1%/15.7% in 253 

Liaoning, and 28.6%/25.4% in Shanxi. Also, there are significant reductions in Beijing, Inner Mongolia, 254 

and Shanghai. 255 
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In contrast, the energy demand in Fujian, Guizhou, and Xinjiang would keep rising in both the scenarios, 256 

and during 2016-2030 their increments (median value) in scenario S1/S2 are 19.2%/30.1%, 22.1%/33.4%, 257 

and 20.3%/31.0% respectively. Different from the continuous increase in scenario S2, there seems to be a 258 

flat after the increase in scenario S1 for Chongqing, Hainan, Qinghai, and Tianjin, or even a reduction for 259 

Jiangxi and Shaanxi.  260 

The obvious turning points are found in Gansu, Henan, Jiangsu, Ningxia, Shandong, Sichuan, Yunnan, 261 

and Zhejiang in the two scenarios. Yet, the turning point would appear only in scenario S1 for Anhui, 262 

Hubei, Hunan, Guangdong, and Guangxi. Their energy demand seems stable after increment in scenario 263 

S2.  264 

The regional energy demand is displayed in Figure 3. There are three groups in total, namely eastern, 265 

central, and western areas (Table A1). It can be seen that eastern and central areas could peak their energy 266 

demand in the scenarios. However, western area would keep energy demand (median value) growing to 267 

1.27 billion tons of SCE by 2030 in scenario S2. The western provinces which are less developed generally 268 

have higher growth of economy in recent years, and they are also assumed to own faster economic 269 

development in the future. As a result, more energy is required.  270 

 271 

Figure 3 Regional energy demand during 2016-2030 in scenario (a) S1 and (b) S2. The lines indicate 272 

median value while the range indicates 2.5-97.5% uncertainty. 273 
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3.3 Forecasting national energy demand by 2030 274 

Based on the provincial estimates, the national energy demand and the associated uncertainty bound are 275 

shown in Figure 4. Here, the distributions predicted by the selected individual models and the mixture of 276 

distributions are all presented for comparison. Basically, these individual models indicate that the total 277 

energy demand (median value) could reach the peak in the scenarios. Specifically, model M2 suggests 278 

higher demand (median value) than other models, reaching 5.04/5.33 billion tons of SCE by 2025 in 279 

scenario S1/S2. Comparatively, the smaller peak (median value) of 4.94/5.21 billion tons of SCE in 280 

scenario S1/S2 is found by model M6. By aggregating the predicted distributions of all individual models, 281 

the mixed distribution shows that the maximum demand (median value) could rise to 4.97/5.25 billion 282 

tons of SCE in scenario S1/S2. However, the upper uncertainty bounds in scenario S2 suggest that the 283 

energy demand would keep growing. The mixed predictions show that it could be as much as 5.67 billion 284 

tons of SCE in 2030. 285 

 286 

Figure 4 National energy demand predicted in scenario S1 and S2 by individual models (M2, M3, M5 287 

and M6) and the mixed predictions. The line indicates median value while the range indicates 2.5-97.5% 288 

uncertainty. 289 

We also attempt to investigate the changes in energy demand with a focus on the effect of economic 290 

development. Accordingly, three economic development scenarios (Table 6) are established. For the 291 

prediction, other variables such as population, urbanization rate, and share of secondary industry are all 292 

consistent with those in scenario S1. The growth rates of GDP in the medium and low economic growth 293 
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scenarios are the same as those in scenario S2 and S1. Since the government aims to make the average 294 

GDP growth higher than 6.5% during the 13th Five-Year Plan of China (2016-2020), we set the growth 295 

rate as 6.8% in the high economic growth scenario. Besides, the slower economic decline is also assumed 296 

during 2026-2030 for the high economic growth scenario. As shown in Figure 5, the energy demand 297 

(median value) would increase to 5.21 and 4.97 billion tons of SCE in the medium and low economic 298 

growth scenarios, respectively, and decrease to 5.12 and 4.76 billion tons of SCE by 2030. However, the 299 

energy demand (median value) in the high economic growth scenario is likely to increase continuously to 300 

5.32 billion tons of SCE.  301 

Table 6 Scenario assumptions for GDP growth rate 302 

Scenario 2016-2020 2021-2025 2026-2030 

High economic growth 6.8% 6.0% 5.5% 

Medium economic growth 6.5% 6.0% 5.0% 

Low economic growth 6.0% 5.5% 4.5% 

Note: other variables in the three scenarios are the same as those in scenario S1. 303 

 304 

 305 

Figure 5 Energy demand (median value) in three scenarios of different economic development 306 
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3.4 Energy intensity reduction 307 

Energy intensity (the amount of energy consumed by per unit of GDP) is a key indicator in China’s energy 308 

planning. The smaller value suggests better energy efficiency of economy. According to the mixed 309 

predictions, the changes in energy intensity (median value) are calculated. Figure 6 presents the regional 310 

energy intensity by 2030 and the associated reductions from 2010 levels in scenario S1.  311 

 312 

Figure 6 Energy intensity (median value) by 2030 and the associated reductions from 2010 levels in 313 

scenario S1 314 

The eastern provinces have lower energy intensity by 2030 that is 26.6 tons of SCE per million CNY on 315 

average. The amount of energy consumed by per unit GDP in Beijing by 2030 is 15.0 tons of SCE per 316 

million CNY, the smallest among all the provinces. By comparison, the western provinces have higher 317 

mean energy intensity of 51.8 tons of SCE per million CNY. In particular, the largest value of 85.0 tons 318 

of SCE per million CNY is found in Ningxia. Generally, economic development in the provinces of more 319 

energy-intensive industries such as Gansu, Guizhou, Inner Mongolia, Ningxia, Qinghai, Shanxi, and 320 

Xinjiang would consume more energy. Most of them are less developed in the central and western areas, 321 
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and thus it is necessary to help them adjust industrial structure. Yet, the developed provinces in the eastern 322 

area such as Beijing, Guangdong, Jiangsu, Shanghai, and Zhejiang have advanced technology to make 323 

energy intensity lower. 324 

On the other hand, there are different performances in energy intensity reduction across provinces. The 325 

central provinces decrease by 65.0% on average, and they seem to have similar changes. In contrast, the 326 

eastern provinces vary greatly in the reductions in energy intensity. Specifically, Beijing would decrease 327 

by 69.6%, larger than other provinces. Yet, the smallest reduction of 57.6% is found in Hainan. In addition, 328 

Chongqing and Sichuan would make bigger improvements in energy efficiency than other western 329 

provinces.  330 

3.5 Impacts of energy structure adjustment 331 

Energy structure adjustment becomes essential for carbon dioxide emissions reduction. On the basis of 332 

the mixed primary energy demand predictions, we attempt to investigate whether the proposed emissions 333 

reduction targets can be achieved. Accordingly, the energy structure in 2020 and 2030 (Table 7) provided 334 

by Hao et al. (2016) is used for our analysis.  335 

The carbon emissions are calculated based on the coefficients given by Zhu et al. (2015). By 2020, the 336 

carbon intensity (carbon dioxide emissions per unit of GDP) would decrease by 55.6-58.9% in scenario 337 

S2 and 55.8-59.1% in scenario S1 from 2005 levels. Meanwhile, the reductions in carbon intensity would 338 

reach 74.5-78.9% in scenario S2 and 74.7-79.1% in scenario S1 by 2030. This implies that the current 339 

reduction targets could be realized with the energy structure adjustment. On the other hand, the carbon 340 

dioxide emissions peak would appear before 2030 since the decreases in energy demand.  341 

The shares of non-fossil energy in Table 7 are close to the expected goals in China’s energy plans. As a 342 

result, it can be obtained that the non-fossil energy demand (median value) by 2020 and 2030 is as much 343 

as 0.74/0.76 and 1.00/1.08 billion tons of SCE in scenario S1/S2, respectively. We notice that the 344 

increment in non-fossil energy consumption during 2010-2015 was 0.19 billion tons of SCE, and the non-345 

fossil energy consumption in 2015 was 0.59 billion tons of SCE. This means that future development of 346 

non-fossil energy can roughly achieve the goal by 2020.  347 

 348 
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Table 7 China’s energy structure in 2020 and 2030  349 

 Coal  Oil Natural gas Non-fossil energy 

2020 57.3% 17.6% 10.1% 15.0% 

2030 50.3% 16.8% 11.9% 21.0% 

Source: Hao et al. (2016) 350 

4 DISCUSSION 351 

Recent studies have also investigated China’s future energy demand using different methods and data 352 

(Table 8). By comparison, the regional analysis can gather more information to give more specific insights 353 

for energy planning. As argued by the literature, the analysis with a focus on a panel of different regions 354 

needs to account for heterogeneity and cross-sectional dependence. It is improper to assume that the 355 

impacts on energy consumption are homogeneous across regions due to the varying development stages. 356 

Meanwhile, a relation of energy consumption between two regions may naturally exist, especially for 357 

those in similar geographical, economic, and political conditions. These issues are addressed in this study 358 

by hierarchical Bayesian approach. Furthermore, the distribution of the projected energy demand is 359 

presented to provide detailed information. It should also be noticed that the Bayesian approach can 360 

incorporate prior information to improve estimates. This requires the specific knowledge of the effect of 361 

influence factor.  362 

Table 8 China’s energy demand projected by the literature and this study (billion tons of SCE) 363 

Source Data level Energy demand in 2030 (low value) 

Lin and Ouyang (2014) Provincial  5.59 

Wu and Peng (2017) National 4.60 

This study Provincial  4.76 (4.34-5.24) 

Note: this study gives the median and the 2.5-97.5% range in the parentheses. 364 

Although various scenarios are assumed, our low estimate of China’s energy demand in 2030 is close to 365 

those in the literature (Table 8). Besides, this study shows that the energy demand peak would reach 5.25 366 

(median value) billion tons of SCE in the high growth scenario. This is approximate to the amount of 5.30 367 

billion tons of SCE given by Wu et al. (2017). As a result, the projections in this study are reasonable.  368 
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We find that there is no obvious energy demand peak in most western provinces. The unbalanced regional 369 

development in China makes the possible rapid economic growth in western area in the future, and thus 370 

the desire for energy might keep growing. It needs to be cautious to make plans for controlling energy use, 371 

since there might be a restriction on regional economy. Our analysis shows that most western provinces 372 

still have great potential for energy intensity reduction, and the advanced technology adoption and 373 

industrial structure adjustment are effective measures (Mi et al., 2015). Especially for Guizhou and 374 

Qinghai, their energy intensity is higher with the increased energy use. The energy-intensive industries 375 

should be cut down to improve energy efficiency.  376 

Energy structure adjustment is still a critical issue in China’s energy planning. The results suggest that 377 

China’s new normal of economy might maintain the increase in national energy demand. Besides, current 378 

population policy may delay the decrease in national population, and further urbanization process could 379 

raise energy demand. In that case, energy structure adjustment is essential for reducing carbon dioxide 380 

emissions. Specifically, it needs to further decrease coal consumption but increase renewable energy (Li 381 

et al., 2017). The western provinces have abundant resources of renewable energy. Therefore, the 382 

development of renewable energy could promote industry in this region.  383 

5 CONCLUSIONS 384 

This study investigates the ranges of China’s future energy demand accounting for sub-national 385 

heterogeneity, cross-sectional dependence, and quantification of uncertainty, and offers a predictive 386 

distribution of energy demand.  The following primary conclusions are drawn from our analysis.  387 

(1) The hierarchical Bayesian approach partially pools the common information from different regions 388 

and provides region-specific regression coefficients and associated uncertainty with flexibly 389 

modeling the dependence between variables. It indicates that the hierarchical Bayesian approach has 390 

better performance in model fitting than the fixed effect method. The probabilistic forecasts are 391 

informative and of great importance for energy policy making. 392 

(2) The eastern and central areas could peak their energy demand in the scenarios designed by this study. 393 

However, the western area would keep energy demand growing to 1.27 billion tons of SCE by 2030 394 

in the high growth scenario. As for the whole country, the mixed predictions show that the maximum 395 

demand could rise to 4.97/5.25 billion tons of SCE in the low/high growth scenario. 396 
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(3) The economic development in the provinces of more energy-intensive industries such as Gansu, 397 

Guizhou, Inner Mongolia, Ningxia, Qinghai, Shanxi, and Xinjiang would consume more energy. Yet, 398 

the developed provinces in the eastern area such as Beijing, Guangdong, Jiangsu, Shanghai, and 399 

Zhejiang would have lower energy intensity. On the other hand, the central provinces could decrease 400 

energy intensity by 65.0% on average, and they seem to have similar changes. In contrast, the eastern 401 

provinces vary greatly in the reductions in energy intensity. In addition, Chongqing and Sichuan 402 

would make bigger improvements in energy efficiency than other western provinces. 403 

(4) By 2020, the carbon intensity would decrease by 55.6-58.9% in scenario S2 and 55.8-59.1% in 404 

scenario S1 from 2005 levels. Meanwhile, the reductions in carbon intensity would reach 74.5-78.9% 405 

in scenario S2 and 74.7-79.1% in scenario S1 by 2030. Moreover, the non-fossil energy demand 406 

(median value) by 2020 and 2030 is as much as 0.74/0.76 and 1.00/1.08 billion tons of SCE in scenario 407 

S1/S2, respectively. 408 

There are still large uncertainties in future socioeconomic development. Further work should give more 409 

information to improve projection, such as scenario design and parameter setting. The Bayesian 410 

framework could actually integrate all the uncertainties and provide a more informative estimate of energy 411 

demand.  412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 
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 422 

APPENDIX A 423 

Table A1 Abbreviations for China’s provinces in three areas 424 

Eastern area  Central area  Western area  

Beijing BJ Anhui AH Chongqing CQ 

Fujian FJ Henan HEN Gansu GS 

Guangdong GD Heilongjiang HLJ Guangxi GX 

Hebei HEB Hubei HUB Guizhou GZ 

Hainan HN Hunan HUN Ningxia NX 

Liaoning LN Inner Mongolia IM Qinghai QH 

Jiangsu JS Jilin JL Sichuan SC 

Shandong SD Jiangxi JX Shaanxi SHX 

Shanghai SH Shanxi SX Xinjiang XJ 

Tianjin TJ   Yunnan YN 

Zhejiang ZJ     

 425 
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APPENDIX B 426 

 427 

Figure B1 Regression coefficients and the associated uncertainty bounds for model M3. Each box shows 428 

the posterior distribution of the regression coefficient of a province with the 25th, median, and 75th 429 

percentile, and whiskers extend to the 5th and 95th percentile. 430 

 431 

 432 
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 433 

Figure B2 Regression coefficients and the associated uncertainty bounds for model M6. Each box shows 434 

the posterior distribution of the regression coefficient of a province with the 25th, median, and 75th 435 

percentile, and whiskers extend to the 5th and 95th percentile. 436 

 437 
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