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Ab s t r a c t. The daily air temperature and precipitation time 

series recorded between January 1, 1980 and December 31, 2010 
in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) 
from different climatic zones were modeled and forecasted. In our 
forecasting we used the methods of the Box-Jenkins and Holt-
Winters seasonal auto regressive integrated moving-average, the 
autoregressive integrated moving-average with external regres-

sors in the form of Fourier terms and the time series regression, 
including trend and seasonality components methodology with R 
software. It was demonstrated that obtained models are able to 
capture the dynamics of the time series data and to produce sen-

sible forecasts.

Ke y w o r d s: regression models, forecast, time series, meteo- 
rological quantities

INTRODUCTION

The prediction of the future courses of meteorological 

quantities on the basis of historical time series is impor-

tant for agrophysical modelling (Lamorski et al., 2013; 

Baranowski et al., 2015; Murat et al., 2016; Krzyszczak 
et al., 2017a). All the crop production models are highly 

sensitive to climatic and environmental variations (Fronzek 
et al., 2018; Pirttioja et al., 2015; Porter and Semenov, 

2005; Ruiz-Ramos et al., 2018) and the temporal and space 

scaling properties of the weather time series should be con-

sidered when applying weather time series as the inputs to 

these models (Hoffmann et al., 2017; Krzyszczak et al., 
2017b; Walczak et al., 1997). When taking into account 
the global warming effects on the processes occurring 
in the soil-plant-atmosphere system, the shifts in future 

weather patterns and the increase in frequency and mag-

nitude of extreme events should be known (Lobell et al., 
2012; Semenov and Shewry, 2011; Sillmann and Roeckner, 
2008). Increasing temperature and limited precipitation, 

which are responsible for drought incidence as a result of 
global warming, are posing serious threats to food security 
(Lobell et al., 2013). The forecasting of these two quantities 
using statistical methods is, therefore, of great importance. 

Many time series forecasting methods are based on the 

analysis of historical data. They assume that past patterns 

in the data can be used to forecast future events. In recent 

years, one of the most popular ways of time series model-
ling is autoregressive integrated moving-average (ARIMA) 

modelling. Its main aim is to carefully and rigorously study 

the past observations of a time series to develop an appro-

priate model which can predict future values for the series. 
It has three control constants i.e. irregular, trend and sea-

sonal influence, which can control and manage influence 
of time segmentation through the specific time duration. In 
literature, ARIMA models have been widely used for vari-
ous applications such as medicine, business, economics, 

finance and engineering. Moreover, ARIMA models have 
become, in last decades, a major tool in numerous mete-

orological applications to understand the phenomena of air 

temperature and precipitation. El-Mallah and Elsharkawy 
(2016) showed that the linear ARIMA model and the 
quadratic ARIMA model had the best overall performance 

in making short-term predictions of annual absolute 
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temperature in Libya. Balyani et al. (2014) used ARIMA 
model in a 50-year time period (1955-2005) for Shiraz, 
south of Iran. Their modelling of temperature selected 

ARIMA as the optimal model. Furthermore, Anitha et al. 
(2014) used the seasonal autoregressive integrated moving 
average (SARIMA) model to forecast the monthly mean of 

the maximum surface air temperature of India. Their results 
showed that there is a trend in the monthly mean of maxi-
mum surface air temperature in India. Muhammet (2012) 

also used the ARIMA method to predict the temperature 

and precipitation in Afyonkarahisar Province, Turkey, 

until the year 2025, and found an increase in temperature 

according to the quadratic and linear trend models. Finally, 
Khedhiri (2014) studied the statistical properties of histori-
cal temperature data in Canada for the period 1913-2013 
and determined a seasonal ARIMA model for the series to 

predict future temperature records. 

Akpanta et al. (2015) adopted the SARIMA modelling 

of the frequency approach in analysing monthly rainfall 

data in Umuahia. Abdul-Azziz et al. (2013) and Afrifa-

Yamoah (2016) forecasted monthly rainfall in several 

regions in Ghana with the use of the SARIMA models. The 
SARIMA models of the weekly and monthly rainfall time 
series of two selected weather stations in Malaysia were 
built by Yusof and Kane (2012) and in India by Dabral and 
Murry (2017). The mentioned ARIMA models have a good 

post-sample forecasting performance for yearly and month-

ly agrometeorological time series. 

Another approach in forecasting the meteorological 

time series involves fitting regression models (RM) to time 
series including trend and seasonality components. The 

RM models are originally based on linear modelling, but 

they also allow parameters such as trend and season to be 
added to the data. In our study, the trend parameter will be 
fitted with polynomial function, and the season parameter 
will be estimated with Fourier series. 

The aim of this paper is to examine the statistical proper-
ties of the daily mean air temperature and the precipitation 

time series from four different locations in Europe and to 

develop predictive models to forecast the daily mean values 

of these quantities up to six years ahead, using the above-
mentioned methods with external regressors in the form of 
Fourier terms.

MATERIALS

We decided to study four sites from northern, central 
and southern Europe in order to represent contrasting cli-

matic conditions. Jokioinen in Finland was chosen for 
northern Europe and Lleida in Spain for southern Europe. 

For central Europe, two sites were chosen: Dikopshof –
located in the west of Germany, and Lublin – in the east of 
Poland. The chosen sites represent boreal, Atlantic central, 

continental and Mediterranean south climates. The prin-

cipal characteristics of these sites and their agro-climatic 

conditions are summarised in Table 1.

The Jokioinen site has a subarctic climate that has 
severe winters, no dry season, with cool, short summers 
and strong seasonality (Köppen-Geiger classification: Dfc, 
which means continental subarctic climate with the cold-

est month averaging below 0°C; 1 to 3 months averaging 
above 10°C and no significant precipitation difference 
between seasons). Lleida has a semi-arid climate with 
Mediterranean-like precipitation patterns (annual aver-

age of 369 mm), foggy and mild winters and hot and 
dry summers (Köppen-Geiger classification: BSk, which 
means dry cold semi-arid climate). Dikopshof represents 

a maritime temperate climate (Köppen-Geiger climate clas-

sification: Cfb, which means temperate oceanic climate with 
the coldest month averaging above 0°C, all months with 
average temperatures below 22°C and at least four months 
averaging above 10°C and no significant precipitation dif-
ference between seasons). There is significant precipitation 
throughout the year in the German site. The Lublin site 

has a warm summer continental climate (Köppen-Geiger 
climate classification: Dfb, which means warm-summer 
humid continental climate with the coldest month averag-

ing below 0°C, all months with average temperatures below 
22°C and at least four months averaging above 10°C and no 

Ta b l e  1. The basic characteristics of the sites and their agro-climatic conditions

Parameter

Site/Country

Dikopshof

Germany (DE)

Jokioinen
Finland (FI)

Lleida

Spain (ES)

Lublin

Poland (PL)

Latitude (°N) 50°48’29’’ 60°48’ 41°42’ 51°14’55’’

Longitude (°E) 6°57’7’’ 23°30’ 1°6’ 22°33’37’’

Altitude (m) 60 104 337 194

Environmental zone Atlantic Central Boreal Mediterranean South Continental

Köppen-Geiger climate 
classification Cfb Dfc BSk Dfb
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significant precipitation difference between seasons). The 
weather time series in all sites were measured with stand-

ard equipment, comparable for all stations. In the present 

study, we focus on an air temperature dataset collected on 
a daily basis from January 1, 1980 to December 31, 2010 
(11 322 days). The descriptive statistics of the meteorologi-

cal time series are presented in Table 2. The highest mean 

and median values of air temperature in the period of 31 

years were observed at the Lleida station and the lowest 
at the Jokioinen station. The parameters of skewness and 
kurtosis of the analysed time series give information about 

differences in their statistical distributions. Air temperature 

is characterised by negative skewness and small kurtosis, 
which inform us that this distributions is left-tailed. 

A completely different distribution shape can be ob- 

served for precipitation, with higher positive skewness and 
very high kurtosis values for all the stations. This means 

that this distribution is strongly right-tailed and has a very 

sharp peak and a fat tail.

METHODS

A time series is an ordered sequence of values of a va- 

riable at equally spaced time intervals, i.e. hourly tem-

peratures at a weather station. The main aim of time series 
modelling is to carefully analyse and rigorously process the 

past observations of the time series to develop an appro-

priate model which describes the inherent structure of the 
series. This makes it possible to explain the data in such 

a way as to facilitate prediction, monitoring, or control. 
There are several approaches to modelling series with 
a single seasonal pattern. Among these are exponential 
smoothing (Winters, 1960), seasonal ARIMA models 

(Box and Jenkins, 1970), state-space models (Harvey, 
1989) and the innovations State Space Models (Hyndman 

et al., 2008). The ARIMA model was popularised by 
Box and Jenkins (1970) and Box and Tiao (1975). It is 

a combination of three mathematical models, using auto-

regressive, integrated, moving-average (ARIMA) models 

for time series data. An ARIMA (p, d, q) model can account 

for temporal dependence in several ways. Firstly, the time 
series is d-differenced to render it stationary. If d = 0, the 

observations are modelled directly, and if d = 1, the dif-

ferences between consecutive observations are modelled. 
Secondly, the time dependence of the stationary process 

{Xt} is modelled by including p auto-regressive models. 

The equation for p is:

(1)

where: c is the constant, φ is the parameter of the model, 

xt is the value that observed at t and εt stands for random 

error. Thirdly, q are moving-average terms, in addition to 

any time-varying covariates. It takes the observation of pre-

vious errors. The equation for q is:

(2)

where: θi is the parameter of the model, εt is the error 

term. Finally, by combining these three models, we get 
the ARIMA model. Thus, the general form of the ARIMA 

models is given by:

(3)

where: Yt is a stationary stochastic process, c is the constant, 

εt is the error or white noise disturbance term, φi means 

auto-regression coefficient and θj is the moving average 

Ta b l e  2. Descriptive statistics of the whole daily, 31-year meteorological time series – from four stations in Germany (DE), Finland 
(FI), Poland (PL) and Spain (ES) 

Meteorological 

variable
Site Mean Min Max Std Median Skewness Kurtosis

Air 

temperature 

(°C)

Dikopshof (DE) 10.2 -16.8 28.9 6.8 10.5 -0.2 2.5

Jokioinen (FI) 4.6 -33.4 25.0 9.3 4.7 -0.4 2.8

Lleida (ES) 15.0 -8.3 33.1 7.6 14.7 0.0 2.1

Lublin (PL) 8.7 -22.8 28.3 8.8 9.1 -0.2 2.4

Precipitation 

(mm day-1)

Dikopshof (DE) 1.7 0.0 75.4 3.8 0.0 4.5 38.1

Jokioinen (FI) 1.7 0.0 79.1 3.9 0.1 5.0 49.3

Lleida (ES) 0.9 0.0 83.6 3.8 0.0 7.2 75.7

Lublin (PL) 1.5 0.0 61.6 3.9 0.0 5.7 49.7

Mean, min, max, standard deviation (Std) and median have the units corresponding to the units of meteorological variables; skewness 
and kurtosis are non-dimensional.

φi

φi
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coefficient. For a seasonal time series, these steps can be 
repeated according to the period of the cycle, whatever time 
interval. Usually, ARIMA models are described using the 

backward operator B defined as:

Bk(Xt) = Xt-k    t>k; t, k є N, (4)

where: k is the index denoting how many times backward 
operator B is applied to time series Xt characterised by time 

interval t, and N is the total number of time intervals. By 

employing the following notation:

(5)

(6)

the Eq. (1) can be written, respectively, as:

(7)

The seasonal ARIMA (p, d, q) (P, D, Q)m process noted 

also as SARIMA (p, d, q) (P, D, Q)m is given by:

(8)

where: m is the seasonal period, Φ(z) and Θ(z) are polyno-

mials of orders P and Q, respectively, each containing no 

roots inside the unit circle. If c ≠ 0, there is an implied 
polynomial of order d + D in the forecast function (Box 
et al., 2008; Brockwell and Davis, 1991). To determine a 
proper model for a given time series data, it is necessary to 

carry out the Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) analysis, which reflect 
how the observations in a time series are interrelated. 
The plot of ACF helps to determine the order of Moving 
Average terms, and the plot of PACF helps to find Auto-
Regressive terms.

The main task in SARIMA forecasting is selecting an 

appropriate model order; that is, if the values p, q, P, Q, D, d. 

If d and D are known, we can select the orders p, q, P and 

Q via one of the forecast measure error: the mean absolute 

error (MAE), the root mean squared error (RMSE) and the 

mean absolute scaled error (MASE). MAE and RMSE are 

defined by the formulas:

(9)

(10)

respectively, where n is the number of periods of time and  

et = yt - ft is the forecast error between the actual value yt  

and the forecasted value ft. The MAE is the average over the 

verification sample of the absolute values of the differences 
between the forecast and the corresponding observation. 
Moreover, the RMSE is the square root of the average 

squared values of the differences between forecast and the 
corresponding observation. These errors have the same 

units of measurement and depend on the units in which the 
data are measured. The MASE was proposed by Hyndman 
and Koehler (2006) for comparing forecast accuracies. The 
MASE is given by the formula:

(11)

where: Q is a scaling statistic, computed on the training 

data. For a non-seasonal time series, a useful way to define 
scaling statistics is to apply the mean absolute difference 

between the consecutive observations:

(12)

that is, Q is the MAE for naive forecasts, computed on the 

training data. The MASE is less than one if it arises from 

a better forecast than the average naive forecast computed 

on the training data. Conversely, it is greater than one if the 

forecast is worse than the average naive forecast computed 
on the training data. For a seasonal time series, a scaling 
statistic can be defined using the seasonal naive forecasts:

(13)

where the seasonal naive method accounts for seasonality 
by setting each prediction to be equal to the last observed 

value of the same season. The MASE is independent of 

the scale of the data, so it can be used to compare forecasts 

for data sets with different scales. When comparing fore-

casting methods, the method with the lowest MASE is the 

preferred one.

Sometimes the SARIMA model does not tend to give 

good results for the time series with a period greater than 
200 years. In such a situation, the simplest approach is a re- 

gression with ARIMA errors, where the order of the 
ARIMA model and the number of Fourier terms is selected 
by minimising the RMSE, MAE or MASE. In such models, 

external regressors in the form of Fourier terms are added 
to an ARIMA (p, d, q) model to account for the seasonal 

behaviour. We can consider ARIMA models with regres-

sors as a regression model which includes a correction for 
autocorrelated errors. Hence, we can add ARIMA terms to 
the regression model to eliminate the autocorrelation and 

n

n
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further reduce the mean squared error. To do this, we re-fit 
the regression model as an ARIMA (p, d, q) model with 
regressors, and specify the appropriate AR(p) or MA(q) 

terms to fit the pattern of autocorrelation we observed in 
the original residuals. To be more precise, we consider the 
following model:

(14)

where: Ut is an ARIMA process, αl and βl are Fourier coeffi-

cients and m is a length of period. The value of K is chosen 

by minimising forecast error measures. For the purpose of 
this paper, this process will be noted as ARIMAF (p, d, q) 

[K]. According to Hyndman (2010), the main advantages of 
this approach are as follows: (i) it allows any length seaso- 
nality for the data with more than one seasonal period, 
(ii) Fourier terms of different frequencies can be included, 
(iii) the seasonal pattern is smooth for small values of K 
and (iv) the short-term dynamics is easily handled with 
a simple ARMA error. The only real disadvantage (com-

pared to a seasonal ARIMA model) is that the seasonality 

is assumed to be fixed (the pattern is not allowed to change 
over time), but in our situation, seasonality was remarkably 
constant (Fig. 1).

In this study, we also use two regression models in the 
basic form:

Yt = bt+st+εt, (15)

where bt and st represent the trend and the seasonal com-

ponents of the time series at time t, respectively. In the first 
regression model (RMP), the trend in time series data is 

fitted with the use of a polynomial by including time as a 
predictor variable: 

(16)

where the degree of polynomial n is chosen by minimising 
prediction errors.

In the second regression model (RMF), we apply the 
Fourier series to model the seasonal component in time 
series data as follows:

(17)

where: L is chosen by minimising prediction errors. The 

results of the parameters of the proposed models are 

obtained from the output of RStudio integrated develop-

ment environment for R version 0.97.551 (R Core Team, 
2014).

RESULTS AND DISCUSSION

Air temperature and precipitation data recorded in four 

European sites from different climatic zones are used to 

create suitable SARMA, ARIMAF, RMP and RMF mo- 

dels. Several authors have done similar analysis in the last de 

cade, albeit, most mainly considered ARIMA or SARIMA 

models for weekly, monthly or yearly time series. For 
example, Mahsin et al. (2012) analysed the monthly rain-

fall data of Dhaka district based on the SARIMA(0,0,1)

(0,1,1)12 model; Zakaria et al. (2012) used the weekly 
rainfall in the semi-arid Sinjar District at Iraq and found 

that SARIMA (3,0,2) (2,1,1)30, SARIMA (1,0,1) (1,1,3)30, 

SARIMA (1,1,2) (3,0,1)30 and SARIMA (1,1,1) (0,0,1)30 

models were developed with the highest precision with 
regard to data obtained from four stations.

What is more, Abdul-Aziz et al. (2013) used the 

SARIMA(0,0,0)(2,1,0)12 model for forecasting the monthly 

rainfall of the Ashanti Region of Ghana, while Ampaw et 
al. (2013) analysed the monthly rainfall data of the Eastern 

Region of Ghana and showed that SARIMA (0,0,0) (2,1,1)12 

model is the most accurate. The SARIMA (0,0,0) (1,1,1)12 

model has also been identified by Afrifa-Yamoah et al. 
(2016), as an appropriate model for predicting monthly ave- 

rage rainfall figures for the Brong Ahafo Region of Ghana. 
In addition, Yusof and Kane (2012) used rainfall data and 
showed that SARIMA(1,1,2)(1,1,1)12 and SARIMA(4,0,2)
(1,0,1)12 models for two stations in Malaysia are adequate. 
What is more, Osarumwense (2013) used quarterly rain-

fall data and showed that the SARIMA (0,0,0) (2,1,0)4 

model was appropriate, Etuk et al. (2013) identified and 
established the adequacy of SARIMA (5,1,0) (0,1,1)12 for 

modelling and forecasting the amount of monthly rainfall 

in Portharcourt, Nigeria. Anitha et al. (2014) selected the 
SARIMA(1,0,1)(0,1,1)12 model to predict the monthly 

mean of maximum surface air temperature in India, while 
Balyani et al. (2014) found ARIMA (1,1,3) to be the opti-
mal model for the annual temperature in Shiraz. 

In addition to the aforementioned, annual surface abso-

lute temperature from 16 stations situated on the coast of 

Libya were modelled with ARIMA (3,1,2) and ARIMA 
(3,2,3) by El-Mallah et al. (2016). Furthermore, an alter-
native model was run by Khedhiri (2014) for maximum 
and minimum mean temperature records for the Canadian 

province of Prince Edward Island. He suggested to fit maxi-
mum monthly temperature series to the SARIMA (2,0,1)

(2,0,0)12 model and to fit minimum temperature series to 
the SARIMA (1,0,1)(1,0,1)12 model. Tanusree and Kishore 
(2016), based on knowledge of automatic ARIMA forecast-
ing, selected SARIMA (1,0,0)(0,2,2)12, SARIMA (12,0,0)

(0,1,1)12, SARIMA (0,0,10) (0,1,1)12 and SARIMA (0,0,1)

(0,1,1)12 for the stations of Guwahati, Tezpur, Silchar and 
Dibrugarh (Assam, India). They found the selected models 

were adequate to represent the temperature data and could 
be used to forecast the upcoming temperature.

In our work, we studied data from 11,323 days in the 
period between January 1, 1980 and December 31, 2010. 

In our research, the data set was divided into a training set 
and a test set. All the observations from January 1, 1980 to 
December 31, 2004 were used as the training set and were 

Ut ,

L
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Fig. 1. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for time series of mean daily air temperature 
for the studied stations. The larger plots contain lags covering the test time range of 25 years, whereas the smaller inside plots cover 
a range of 2 years. 
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Fig. 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for time series of daily precipitation for the 
studied stations. The larger plots contain lags covering the test time range of 25 years, whereas the smaller inside plots cover a range 
of 2 years. 
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applied so as to fit the created statistical models for the 
mean air temperature and the precipitation. The data from 

January 1, 2005 to December 31, 2010 were designated as 
the test set and were used to assess the predictability accu-

racy of the fit. This approach gives the ability to compare 
the effectiveness of different methods of prediction.

Firstly, the plots of the considered series and their auto-

correlation functions (ACF) and partial autocorrelation 
functions (PACF), plotted in Figs 1 and 2, were examined 

to establish the potential performances of SARIMA, 

ARIMA, ARIMAF, RMP and RMF models for the daily 
air temperature and the precipitation series. In handling 

such data, the mean and the variance of the mean air tem-

perature time series are not functions of time, but rather 

are constants and their covariance of the k-th term and 

the (k + 365)-th term does not depend on time. The same 

behaviour is shown by the precipitation time series in 
Jokioinen and Lublin. This means that these eight series 
are stationary. Moreover, we use statistical testing to verify 

the stationarity of considered series. In doing this, there 

are two different approaches: stationarity tests such as the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test that con-

sider as null hypothesis that the series is stationary, and unit 

root tests, such as the Dickey-Fuller test and its augmented 
version, the augmented Dickey-Fuller test (ADF), or the 
Phillips-Perron test (PP), for which the null hypothesis is 
the contrary – that the series possesses a unit root and hence 
is not stationary. ADF and PP tests verified the stationa- 
rity of our series with p-value smaller than 0.01, which was 
also confirmed by the KPSS test. Therefore, the series did 
not require the trend differencing, so in all ARIMA mod-

els, we assumed d=0. Additionally, the ACF plots depict 
a sine wave and show spikes in the seasonal lags 365, 730 
and 1095. This effect significantly supports the evidence 
of seasonality in the data sets (except for precipitation 
in Dikopshof and Lleida). The precise study of the plots 

given in Figs 1, 2b and 2d suggests the possibility of using 
SARIMA (p,d,q) (P,D,Q)m models with m = 365, D = 1, 

Ta b l e  3. Forecast accuracy measures of all forecasting approaches for a daily mean air temperature time series, with p-value derived 
from a Ljung-Box test

Site Model RMSE Rank MAE Rank MASE Rank
p-value 

lag=365

Dikopshof

ARIMAF(3,0,1)[K=1] 3.633 1 2.915 1 0.738 1 0.038

RMF(1) 3.636 2 2.917 2 0.739 2 01

RMP(3) 3.715 3 2.970 3 0.752 3 01

SARIMA(0,0,1)(0,1,0)365 4.914 4 3.904 4 0.989 4 01

Jokioinen

ARIMAF(3,0,2)[K=7] 4.536 1 3.563 2 0.768 2 0.648

ARIMAF(2,0,3)[K=7] 4.536 2 3.563 3 0.768 3 0.668

RMF(7) 4.549 3 3.575 4 0.771 4 01

RMP(1) 4.572 4 3.527 1 0.761 1 01

SARIMA(3,0,1)(0,1,0)365 5.582 4 4.340 4 0.9367 4 01

Lleida

ARIMAF(3,0,3)[K=3] 3.023 1 2.480 2 0.753 2 0.977

RMF(3) 3.024 2 2.480 3 0.753 3 01

RMP(1) 3.061 3 2.471 1 0.751 1 01

SARIMA(0,0,1)(0,1,0)365 4.120 4 3.285 4 0.998 4 01

Lublin

ARIMAF(2,0,2)[K=4] 4.156 1 3.309 1 0.734 1 0.558

RMF(4) 4.173 2 3.3237 4 0.737 4 01

RMP(2) 4.190 3 3.292 3 0.730 3 01

RMP(1) 4.190 4 3.290 2 0.730 2 01

SARIMA(0,0,1)(0,1,0)365 5.331 5 4.192 5 0.930 5 01

p-value < 0.01.
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Q = 0, P = 0 and p, q changing from 0 to 3. Secondly, by 

minimising the forecast measure errors RMSE, MAE and 

MASE, we chose the best parameters of SARIMA models 
among the considered 16 models for each of the studied 

sites. SARIMA (0,0,1) (0,1,0)365 and SARIMA (3,0,1) 

(0,1,0)365 models were selected as the most appropriate 
from all 16 tested SARIMA models for air temperature, 

whereas the SARIMA (3,0,0) (0,1,0)365 and the SARIMA 

(1,0,1) (0,1,0)365 models were most appropriate from all 16 
of the tested SARIMA models for precipitation. 

In order to establish ARIMAF models, we tried para-
meters p and q between 0 and 3, while the number of the 
Fourier terms K varied between 1 and 10. Therefore, for 
each of seasonal series, we tested 160 cases. The mo- 
dels which were very close to the actual data were cho-

sen by minimising the RMSE, MAE and MASE. Among 

those cases, we selected ARIMAF (3,0,1) [K=1], ARIMAF 

(3,0,2) [K=7], ARIMAF (3,0,3) [K=3] and ARIMAF (2,0,2) 
[K=4] models for air temperature and ARIMAF (0,0,3) 
[K=7] and ARIMAF(3,0,1) [K=2] models for precipitation. 

The precipitation time series for Dikopshof and Lleida 

did not show seasonal behaviour in ACF and PACF plots, 
and therefore are forecasted with use of ARIMA(p,0,q) 
models with p, q changing from 0 to 3. In this case, we con-

sidered 16 different models for non-seasonal data sets. The 

ARIMA (2,0,2), ARIMA (1,0,3) and ARIMA (3,0,3) were 
selected as models in which forecasts can be built with the 
smallest RMSE, MAE or MASE – from all 16 tested ARIMA 
models.

To choose the best regression model, we ran the R 
software with n or K varying between 1 and 10. The small-
est forecast errors gave RMP models with the polynomial 
order equal to 1, 2 or 3 for air temperature and 1, 2 or 4 

Ta b l e  4. Forecast accuracy measures of all forecasting approaches for daily precipitation time series with p-value derived from 

a Ljung-Box test

Site Model RMSE Rank MAE Rank MASE Rank
p-value 

lag=365

Dikopshof

ARIMA(2,0,1) 3.749 1 2.261 1 0.812 1 0.766

ARIMA(1,0,3) 3.749 2 2.261 2 0.812 2 0.777

RMP(1) 3.810 3 2.282 3 0.820 3 01

ARIMAF(0,0,3)[K=7] 3.581 1 2.227 4 0.812 4 0.469

Jokioinen

ARIMAF(3,0,1)[K=7] 3.581 2 2.227 3 0.812 3 0.666

RMF(7) 3.581 3 2.227 5 0.812 5 01

RMP(2) 3.640 4 2.220 2 0.809 2 01

RMP(1) 3.641 5 2.191 1 0.799 1 01

SARIMA(3,0,0)(0,1,0)365 5.903 6 2.945 6 1.074 6 01

Lleida

ARIMA(3,0,3) 3.479 1 1.503 2 0.863 2 0.780

RMP(1) 3.905 2 1.636 3 0.940 3 01

RMP(4) 3.948 3 1.425 1 0.819 1 01

ARIMAF(3,0,1)[K=2] 3.996 1 2.142 5 0.890 5 0.04

Lublin

RMF(2) 3.996 2 2.141 4 0.889 4 01

ARIMAF(2,0,1)[K=3] 3.999 3 2.141 2 0.889 2 0.025

RMF(3) 3.999 4 2.141 3 0.889 3 01

RMP(1) 4.057 5 2.280 6 0.946 6 01

RMP(3) 4.245 6 2.038 1 0.846 1 01

SARIMA(1,0,1)(0,1,0)365 5.348 7 2.426 7 1.083 7 01

p-value < 0.01.
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Fig. 3. Smoothed time series of air temperature and respective forecasting results with the smallest RMSE. The smaller plot inside 

covers real data from the learning set.

Fig. 4. Smoothed time series of precipitation and respective forecasting results with the smallest RMSE. The smaller plot inside covers 

real data from the learning set.
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for precipitation, depending on the site. Furthermore, the 
smallest forecast errors were achieved for the RMF models 
with polynomial orders of 1, 3, 4 or 7 for air temperature 
and 2, 3 or 7 for precipitation.

The accuracy of the selected models for air tempera-

ture is shown in Table 3 and for precipitation (Table 4). 
From the models listed in Tables 3 and 4, we selected the 
most adequate model which has the lowest forecast error 
when comparing predicted data using a suitable test set. 
The Ljung-Box test was also performed and the obtained 
p-values are shown in Tables 3 and 4. From the above 
analysis, it follows that the statistical model which is the 
most suitable model for the considered data sets depends on 

the climatic zones they come from. However, the obtained 
results show that the application of SARIMA, ARIMA, 
ARIMAF, RMP and RMF models to an air temperature 
and to a precipitation time series provide valuable insights 

into the studied data structures and their components, being 

a good basis for a satisfactory prediction. 

Exemplary plots of the forecasts which produce the 
smallest RMSE and pass the Ljung-Box test are presented 
in Figs 3 and 4.

CONCLUSIONS

1. The statistical analysis shows that the daily mean 
temperature data from the considered four climatic zones 

exhibit similar behaviour and dynamics, although some sta-

tistical parameters differ considerably between these sites.
2. Air temperature and precipitation modelling and its 

forecasting pose a challenging task for handling any dai-

ly time series. In this study, we have shown that ARIMAF 
models can efficiently capture the course of the air tempera-

ture in the studied sites by producing the smallest forecast 

the root mean squared error and can better forecast long 

seasonal time series with high frequency. 
3. The best fitting model for precipitation depends on the 

site. The Boreal and Continental precipitation time series 

are better described by ARIMAF models, while ARIMA 
models are more appropriate for the Central Atlantic and 

South Mediterranean data sets. The diagnostic checking 

confirms the adequacy of the models.
4. The selected models generate forecasts which are 

constructed on the basis of the learn test and compared to 

the six-year exact values on the independent test set (out-
of-sample accuracy forecast errors).

5. It was demonstrated that in practice, for obtaining rea-

sonable information about the overall forecasting error, one 

should use more than one measure and that the best model 

using statistical methodology could vary by changing the 

data. So, it is recommended to take into consideration all 

the time series models for any studied area and to assume 

weather parameters so as to choose the suitable model.
6. Although, the chosen models cannot predict the exact 

air temperature and precipitation, they can give us informa-

tion that helps to establish strategies for proper planning of 

agriculture or can be used as a supplemental tool for envi-

ronmental planning and decision-making.

ACKNOWLEDGEMENTS

We acknowledged the Finnish Meteorological Institute 
(FMI) for delivering the data for Jokioinen (Venäläinen et 
al. 2005), dr. Holger Hoffmann from INRES, University of 
Bonn in Germany for delivering the Dikopshof data and dr. 

Krzysztof Siwek from the Faculty of Earth Sciences and 
Spatial Management, Maria Curie-Skłodowska University 
in Lublin, for delivering Lublin data.

Conflict of interest: The Authors do not declare con-

flict of interest.

REFERENCES
Abdul-Aziz A.R., Anokye M., Kwame A., Munyakazi L., and 

Nsowah-Nuamah N.N.N., 2013. Modeling and forecasting 

rainfall pattern in ghana as a seasonal arima process: The 

case of Ashanti Region. Int. J. Humanities Social Sci., 3(3), 
224-233.

Afrifa-Yamoah E., Bashiru I.I. Saeed, and Karim A., 2016. 
Sarima Modelling and Forecasting of Monthly Rainfall in 
the Brong Ahafo Region of Ghana. World Environment, 
6(1), 1-9.

Akpanta C.A., Okorie I.E., and Okoye N.N., 2015. SARIMA 

Modelling of the frequency of monthly rainfall in Umuahia, 

Abia state of Nigeria. American J. Mathematics Statistics, 
5, 82-87.

Ampaw E.M., Akuffo B., Opoku L.S., and Lartey S., 2013. 
Time series modeling of rainfall in new Juaben municipal-
ity of the Eastern region of Ghana. Contemporary Res. 

Business Social Sci.s, 4(8), 116-129.
Anitha K., Boiroju N.K., and Reddy P.R., 2014. Forecasting of 

monthly mean of maximum surface air temperature in 
India. Int. J. Statistika Mathematika, 9(1), 14-19.

Balyani Y., Niya G.F., and Bayaat A., 2014. A study and predic-

tion of annual temperature in Shiraz using ARIMA model. 

J. Geographic Space, 12(38), 127-144. 
Baranowski P., Krzyszczak J., Sławiński C., Hoffmann H., 

Kozyra J., Nieróbca A., Siwek K., and Gluza A., 2015. 
Multifractal Analysis of Meteorological Time Series to 

Assess Climate Impacts. Climate Res., 65, 39-52.
Box G.E.P. and Jenkins G., 1970. Time Series Analysis: fore-

casting and control. San Francisco, Holden-Day. 
Box G.E.P., Jenkins G., and Reinsel G., 2008. Time series anal-

ysis. Wiley Press, New Jersey, USA.
Box G.E.P. and Tiao G.C., 1975. Intervention Analysis with 

Applications to Economic and Environmental Problems. 

JASA, 70, 70-79.
Brockwell P.J. and Davis R.A., 1991. Time Series: Theory and 

Methods. 2nd edition. Springer-Verlag, New York.
Dabral P.P. and Murry M.Z., 2017. Modelling and Forecasting 

of Rainfall Time Series Using SARIMA. Environmental 

Processes, 1-21.

El-Mallah E.S. and Elsharkawy S.G., 2016. Time-series mode-

ling and short term prediction of annual temperature trend 

on Coast Libya using the box-Jenkins ARIMA Model. 
Advances Res., 6(5), 1-11.

Etuk H.E., Moffat U.I., and Chims E.B., 2013. Modelling 

monthly rainfall data of portharcourt, Nigeria by seasonal 

box-Jenkins method. Int. J. Sci., 2, 60-67.
Fronzek S., Pirttioja N., Carter T.R., Bindi M., Hoffmann H., 

Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis 



M. MURAT et al.264

M., Asseng S., Baranowski P., Basso B., Bodin P., Buis 
S., Cammarano D., Deligios P., Destain M.-F., Dumont 
B., Ewert F., Ferrise R., François L., Gaiser T., Hlavinka 
P., Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak 
J., Lorite I.J., Minet J., Minguez M.I., Montesino M., 
Moriondo M., Müller C., Nendel C., Öztürk I., Perego 
A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., 
Semenov M.A., Sławiński C., Stratonovitch P., Supit I., 
Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 
2018. Classifying multi-model wheat yield impact response 
surfaces showing sensitivity to temperature and precipita-

tion change. Agricultural Systems, 159, 209-224, doi: 
10.1016/j.agsy.2017.08.004

Harvey A., 1989. Forecasting Structural Time Series Model and 
the Kalman Filter. Cambridge University Press, New York.

Hoffmann H., Baranowski P., Krzyszczak J., Zubik M., 
Sławiński C., Gaiser T., and Ewert F., 2017. Temporal 

properties of spatially aggregated meteorological time 

series. Agric. Forest Meteorol., 234, 247-257, https://doi.
org/10.1016/j.agrformet.2016.12.012

Hyndman R., 2010. Forecasting with long seasonal periods. 
http://robjhyndman.com/hyndsight/longseasonality

Hyndman R.J. and Koehler A.B., 2006. Another look at measu- 

res of forecast accuracy. Int. J. Forecasting, 22(4), 679-688.
Hyndman R.J., Koehler A.B., Ord J.K., and Snyder R.D., 

2008. Forecasting with Exponential Smoothing: The State 
Space Approach. Springer-Verlag Inc., New York.

Khedhiri S., 2014. Forecasting temperature record in PEI, 
Canada. Letters in Spatial and Resource Sciences, 9, 43-55, 
doi 10.1007/s12076-014-0135-x

Krzyszczak J., Baranowski P., Hoffmann H., Zubik M., and 
Sławiński C., 2017a. Analysis of Climate Dynamics Across 

a European Transect Using a Multifractal Method, In: 

Advances in Time Series Analysis and Forecasting (Eds I. 
Rojas, H. Pomares, O. Valenzuela). Selected Contributions 
from ITISE 2016. Springer Int. Publishing, Cham., 

doi:10.1007/978-3-319-55789-2_8.
Krzyszczak J., Baranowski P., Zubik M., and Hoffmann H., 

2017b. Temporal scale influence on multifractal properties 
of agro-meteorological time series. Agric. Forest Meteorol., 
239, 223-235.

Lamorski K., Pastuszka T., Krzyszczak J., Sławiński C., and 
Witkowska-Walczak B., 2013. Soil water dynamic mode-

ling using the physical and support vector machine methods. 

Vadose Zone J., 12(4), https://doi.org/10.2136/vzj2013. 
05.0085.

Lobell B.D., Sibley A., and Ortiz-Monasterio J.I., 2012. 
Extreme heat effects on wheat senescence in India. Nature 
Climate Change, 2, 186-189.

Lobell D.B., Hammer G.L., Mclean G., Messina C., Roberts 
M.J., and Schlenker W., 2013. The critical role of extreme 
heat for maize production in the United States. Nature 

Climate Change, 3, 497-501.
Mahsin M., Akhter Y., and Begum M., 2012. Modeling rainfall 

in Dhaka District of Bangladesh using time series analysis. 

J. Mathematical Modelling Appl., 1, 67-73.
Muhammet B., 2012. The analyse of precipitation and tempera-

ture in Afyonkarahisar (Turkey) in respect of box-Jenkins 
technique. J. Academic Social Sci. Studies, 5(8), 196-212. 

Murat M., Malinowska I., Hoffmann H., and Baranowski P., 
2016. Statistical modeling of agrometeorological time 

series by exponential smoothing. Int. Agrophys., 30(1), 
57-66.

Osarumwense O.I., 2013. Applicability of box Jenkins SARIMA 
model in rainfall forecasting: A case study of Port-Harcourt 
South South Nigeria. Canadian J. Computing in Mathe- 
matics, Natural Sciences, Engineering Medicine, 4(1), 1-4.

Pirttioja N., Carter T.R., Fronzek S., Bindi M., Hoffmann H., 
Palosuo T., Ruiz-Ramos M., Tao F., Trnka M., Acutis M., 

Asseng S., Baranowski P., Basso B., Bodin P., Buis S., 
Cammarano D., Deligios P., Destain M.-F., Dumont B., 
Ewert F., Ferrise R., François L., Gaiser T., Hlavinka P., 
Jacquemin I., Kersebaum K.C., Kollas C., Krzyszczak 
J., Lorite I.J., Minet J., Minguez M.I., Montesino M., 
Moriondo M., Müller C., Nendel C., Öztürk I., Perego 
A., Rodríguez A., Ruane A.C., Ruget F., Sanna M., 
Semenov M.A., Sławiński C., Stratonovitch P., Supit I., 
Waha K., Wang E., Wu L., Zhao Z., and Rötter R.P., 
2015. Temperature and precipitation effects on wheat yield 
across a European transect: a crop model ensemble analysis 

using impact response surfaces. Climate Research, 65, 

87-105, doi:10.3354/cr01322
Porter J.R. and Semenov M.A., 2005. Crop responses to cli-

matic variation. Philosophical Trans. Royal Society B: 

Biological Sci., 360(1463), 2021-2035. 
Ruiz-Ramos M., Ferrise R., Rodríguez A., Lorite I.J., Bindi 

M., Carter T.R., Fronzek S., Palosuo T., Pirttioja N., 
Baranowski P., Buis S., Cammarano D., Chen Y., 
Dumont B., Ewert F., Gaiser T., Hlavinka P., Hoffmann 
H., Höhn J.G., Jurecka F., Kersebaum K.C., Krzyszczak 
J., Lana M., Mechiche-Alami A., Minet J., Montesino 
M., Nendel C., Porter J.R., Ruget F., Semenov M.A., 
Steinmetz Z., Stratonovitch P., Supit I., Tao F., Trnka M., 
de Wit A., and Rötter R.P., 2018. Adaptation response sur-

faces for managing wheat under perturbed climate and CO2 

in a Mediterranean environment. Agricultural Systems, 

159, 260-274, doi: 10.1016/j.agsy.2017.01.009
Semenov M.A. and Shewry P.R., 2011. Modelling predicts that 

heat stress, not drought, will increase vulnerability of wheat 
in Europe. Scientific Reports, 1, 66.

Sillmann J. and Roeckner E., 2008. Indices for extreme events 
in projections of anthropogenic climate change. Climate 

Change, 86, 83-104.
Tanusree D.R. and Kishore K.D., 2016. Modeling of mean tem-

perature of four stations in Assam. Int. J. Advanced Res., 
4(12), 366-370.

Walczak R.T., Witkowska-Walczak B., and Baranowski P., 
1997. Soil structure parameters in models of crop growth 
and yield prediction. Physical submodels. Int. Agrophysics, 

11, 111-127.

Winters P.R., 1960. Forecasting sales by exponentially weighted 
moving averages. Management Sci., 6, 324-342.

Venäläinen A., Tuomenvirta H., Pirinen P., and Drebs A., 2005. 
A basic Finnish climate data set 1961-2000-description and 
illustration. Finnish Meteorological Institute Reports 5. 
Finnish Meteorological Institute, Helsinki, Finland.

Yusof F. and Kane I.L., 2012. Modelling monthly rainfall time 

series using ETS state space and SARIMA models Int. J. 
Current Res., 4(9), 195-200.

Zakaria S., Al-Ansari N., Knutsson S., and Al-Badrany T., 
2012. ARIMA models for weekly rainfall in the semi-arid 
Sinjar district at Iraq. J. Earth Sci. Geotechnical Eng., 2(3), 
25-55. 


