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Abstract

The increasing availability of financial market data at intraday frequencies has not only led

to the development of improved volatility measurements but has also inspired research into their

potential value as an information source for volatility forecasting. In this paper we explore the

forecasting value of historical volatility (extracted from daily return series), of implied volatility

(extracted from option pricing data) and of realised volatility (computed as the sum of squared

high frequency returns within a day). First we consider unobserved components and long mem-

ory models for realised volatility which is regarded as an accurate estimator of volatility. The

predictive abilities of realised volatility models are compared with those of stochastic volatility

models and generalised autoregressive conditional heteroskedasticity models for daily return series.

These historical volatility models are extended to include realised and implied volatility measures

as explanatory variables for volatility. The main focus is on forecasting the daily variability of the

Standard & Poor’s 100 stock index series for which trading data (tick by tick) of almost seven years

is analysed. The forecast assessment is based on the hypothesis of whether a forecast model is

outperformed by alternative models. In particular, we will use superior predictive ability tests to

investigate the relative forecast performances of some models. Since volatilities are not observed,

realised volatility is taken as a proxy for actual volatility and is used for computing the forecast

error. A stationary bootstrap procedure is required for computing the test statistic and its p-value.

The empirical results show convincingly that realised volatility models produce far more accurate

volatility forecasts compared to models based on daily returns. Long memory models seem to

provide the most accurate forecasts.
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1 Introduction

Modelling and forecasting volatility in financial markets has gained much interest in the financial and

economic literature. The seminal paper of Engle (1982) has started the development of a large num-

ber of so-called historical volatility models in which a time-varying volatility process is extracted from

financial returns data. Most volatility models can be regarded as variants of the generalised autore-

gressive conditional heteroskedasticity (GARCH) models of Bollerslev (1986), see Bollerslev, Engle,

and Nelson (1994) for a review. A rival class of volatility models is associated with the stochastic

volatility (SV) model, see Taylor (1986) and Harvey, Ruiz, and Shephard (1994). The overviews pre-

sented in Shephard (1996) and Ghysels, Harvey, and Renault (1996) provide an excellent introduction

to historical volatility models. A more recent review of volatility models together with an assessment

of their forecasting performances is given by Poon and Granger (2003).

Both GARCH and SV models are regularly used for the analysis of daily, weekly and monthly

returns. From a theoretical perspective these models can also be applied to returns data measured

at higher frequencies (intraday). However, it is learned from empirical studies that these models

can not accomodate all information in high frequency returns. The initial work of Andersen and

Bollerslev (1998) and Barndorff-Nielsen and Shephard (2001) show that realised volatility (a daily

volatility measure) as computed by the cumulative sum of squared intraday returns is less subject to

measurement error and therefore less noisy. This empirical fact is supported by the theory that the

measurement noise contained in daily squared returns prevents the observation of the volatility process

while it is reduced as the sampling frequency of the return series from which volatility is calculated is

increased, see Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard

(2001, 2002). These results also justify the earlier work of French, Schwert, and Stambaugh (1987),

amongst others. Andersen and Bollerslev (1998) show that daily forecasts of exchange rates based

on GARCH models, when evaluated against realised volatility, are far more accurate than had been

previously assumed. These findings were subsequently confirmed with regards to stock index data by

Blair, Poon, and Taylor (2001) and Hansen and Lunde (2003b) who examined the predictive accuracy

of volatility forecasts based on GARCH models.

Volatility can be extracted from returns data but it can also be derived from option pricing data

in combination with an option pricing model. Early empirical studies by Latané and Rendleman

(1976), Chiras and Manaster (1978) and Beckers (1981) have indicated that implied volatility, when

compared with historical standard deviations, can be regarded as a good predictor of future volatility.

Implied volatility is often referred to as the market’s volatility forecast and is said to be forward

looking as opposed to historical based methods which are by definition backward looking. More

recent studies by Christensen and Prabhala (1998), Fleming (1998), Blair, Poon, and Taylor (2001)

and Giot (2003) show that accurate volatility forecasts for returns on stock indices are often based

on implied volatility. Moreover, their research strongly suggests that daily returns contain little or no

incremental information about future volatility.

In this paper we investigate the potential gains of different measures of volatility and different

ways of modelling these data for the purpose of volatility forecasting. For example, Blair, Poon, and

Taylor (2001) and Martens (2001) suggest to incorporate realised volatility as an explanatory variable

in the variance equation of a daily GARCH model. They found a considerable improvement in the

forecasting performance in this way. Another possible explanatory variable for volatility is implied
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volatility. We will explore this option further by incorporating such explanatory variables in both

GARCH and SV models.

Realised volatility can also be modelled directly which is reminiscent of the methods adopted for

monthly volatility in a number of earlier studies such as those by French, Schwert, and Stambaugh

(1987) and Poon and Taylor (1992). The forecasting performance of realised volatility models has been

studied, amongst others, by Andersen, Bollerslev, Diebold, and Ebens (2001) and Barndorff-Nielsen

and Shephard (2004a). In the first paper, it is stressed that long memory features are present in the

logarithms of realised volatility and that the autoregressive fractionally integrated moving average

(ARFIMA-RV) model is effective in empirical modelling. The second paper builds on Barndorff-

Nielsen and Shephard (2002) where volatility is represented as a continuous time series process, the

sum of independent Lévy driven Ornstein-Uhlenbeck (OU) processes. This approach forms the basis of

an unobserved components (UC-RV) model for realised volatility that consists of independent ARMA

components with restricted parameters.

The empirical investigation is for the Standard & Poor’s 100 (S&P 100) stock index series over

the period 6 January 1997 to 14 November 2003 with 1725 trading days. Opening and closure prices

for all trading days in the sample are available in this period together with all price quotes within

the days (tick by tick). Further we have obtained the S&P 100 implied volatility index from the

Chicago Board Options Exchange Market volatility index (VIX) which is known to be a highly liquid

options market. The forecasting performance of various volatility models for the last 525 days of the

data set is the focus of the empirical study. We compare the forecasts of ARFIMA-RV, UC-RV, SV

and GARCH volatility models; the latter two models are considered with and without explanatory

variables. The forecasts are generated by a rolling-window of 1200 observations through the last

525 daily observations. Forecast comparison is based on four different loss functions including the

mean squared error and the mean absolute error statistics. The fact that a particular loss criterion

is smallest for a particular model does not provide any information about its forecast superiority in

other samples of the data set and in future samples of the data. The results in White (2000) and

the important refinements in Hansen (2001) constitute a framework that constructs a formal test for

superior prediction ability (SPA) of a benchmark or base model relative to a set of rival models. Since

volatility can never be observed, realised volatility is taken as a proxy for actual volatility and used for

determining the forecast error. This may introduce inconsistencies in the ranking of forecast models

but it is argued that the occurrence of such inconsistencies are unlikely in our study. The method of

computing the SPA test statistic and its p-value requires bootstrap samples obtained by, for example,

the stationary bootstrap procedure of Politis and Romano (1994). The construction of the test and

some details of implementation are discussed.

The findings of this extensive empirical study are presented by reporting a selection of the most

interesting results. The maximum likelihood estimates for the coefficients of the considered models are

reported for the full sample. Although these estimates are not used for forecasting since all models are

re-estimated for each rolling window sample (starting from 17 October 2001), the reported estimation

results provide insights about the S&P 100 data set and the effectiveness of models to capture volatility

information from the data. A selection of the forecasting results is also presented but most attention

is paid to the SPA results. It has become clear that the realised volatility models are overwhelmingly

superior and therefore making comparisons between, say, GARCH and ARFIMA-RV is not useful. We

therefore concentrate on the comparison of models within the two classes of realised volatility models
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and historical volatility models. It will be concluded that both the ARFIMA-RV and the SV model

with realised volatility as the explanatory variable are superior within their classes for the forecasting

of S&P 100 volatility.

The remainder of this paper is organised as follows. In the next section we discuss the available

data sets and discuss how returns are constructed and how volatility measures are derived from

these returns. In section 3 we provide some details about the realised volatility models, the UC-RV

and ARFIMA-RV models. In section 4 the historical volatility models are shortly described. The

forecastig methodology is discussed in section 5 and in section 6 the estimation and forecasting results

are presented. Section 7 concludes.

2 Stock Return Data and Volatility

2.1 Daily and intradaily returns

The data for our empirical study consists of Standard & Poor’s 100 (S&P 100) stock index transaction

prices during the period from 6 January 1997 to 14 November 2003 which constitutes a total of

N = 1, 725 trading days. The daily return Rn is defined as the first difference between the 4.00 pm

closing prices on consecutive trading days, expressed in percentage terms, that is

Rn = 100(lnPn − lnPn−1), n = 1, . . . , N, (1)

where Pn is the closing asset price at trading day n.

In the S&P 100 dataset, the price quotes are available for all trading days. We can therefore extract

intraday returns for any interval that is usually measured in minutes. Such high-frequency returns

are subject to market micro structures (bid-ask bounces, discrete price observations, etcetera) which

distort the return properties of interest. The 5-minute frequency is regarded as the highest frequency

at which the effects of market microstructure are not too distorting. Andersen and Bollerslev (1998)

also construct their intraday returns using the 5-minute frequency. A more complete discussion on

the choice of frequency is given by Andersen, Bollerslev, Diebold, and Labys (2001). To construct the

5-minute return, the last transaction price is recorded before the relevant time mark and the difference

is taken between successive log prices, that is

Rn,d = 100(lnPn,d − lnPn,d−1), n = 1, . . . , N, d = 1, . . . ,D, (2)

where Pn,d is the asset price at trading day n, at the 5-minute mark d. Note that Pn,0 is the opening

price of day n.

The New York Stock Exchange opens at 9.30 am and closes at 4 pm EST. A full trading day

therefore consists of D = 78 intraday returns and one overnight return. Not all trading days will have

78 5-minute quotes because the New York Stock Exchange closes early on certain days (for example,

Christmas Eve). Another important reason for a different number of 5-minute returns is the lapses

in trading and in data reporting on some trading days. Various methods are used to deal with such

problems. For example, Andersen, Bollerslev, Diebold, and Ebens (2001) consider linear interpolation

through bid-ask quotes in order to obtain a full set of 5-minute interval returns. A flexible spline

interpolation method is used by Hansen and Lunde (2003b).

4



Following this recent literature we have used a spline method for the construction of 5-minute

returns as follows. All price quotes within one trading day are ordered over the trade sequence. The

duration between price quotes is measured in minutes and is strictly non-negative. In the majority of

cases multiple price quotes occur in one minute. The durations of price quotes after the first quote in

a minute are set to zero. The resulting time series of price quotes is effectively a non-equally spaced

sequence. A nonparametric spline function is estimated through these high-frequency intraday prices.

The spline function through a non-equally spaced time series can be represented as a time-varying

state state space model, see Durbin and Koopman (2001, section 3.11). To attain an optimal level

of smoothing, the “smoothing parameter” of the spline function is estimated via the maximisation of

the (quasi) Gaussian loglikelihood function. The spline function itself is computed by the Kalman

filter and an associating smoothing algorithm1. The five minute nodes of the spline are taken as the

“observed” prices Pn,d for d = 0, . . . ,D. The price Pn,0 is defined as the observed opening price which

is the first price observed after 9.29 am (even if it takes place at, say, 11.30 am). The closing price

Pn,D is then the last price observed before 4.00 p.m. The overnight returns are defined as

Rn,0 = 100(lnPn,0 − lnPn−1,D), n = 1, . . . , N. (3)

In this way we have constructed 79 intra-daily returns for the 1, 725 trading days in our dataset.

2.2 Realised volatility

It is generally acknowledged that squared daily returns provide a poor approximation of actual daily

volatility. It was first pointed out by Andersen and Bollerslev (1998) that more accurate estimates

could be obtained by summing squared intraday returns. They defined realised volatility in the foreign

exchange market as the sum of 288 5-minute squared returns. If we were to apply this method directly

to the stock market, realised volatility would be defined as the sum of the squared overnight and the

cumulative squared 5-minute intraday returns, so

σ̃2
n = R2

n,0 +
D

∑

d=1

R2
n,d, n = 1, . . . , N, (4)

with Rn,d and Rn,0 as defined in equations (2) and (3), respectively, and with D = 78. However, this

ignores the fact that the overnight return is a special case. Stock markets, unlike foreign exchange

markets, are not open 24 hours a day and the changes in the stock index price during the hours that the

stock market is closed are relatively large compared to the 5-minute returns observed during trading

hours. In order to account for the fact that overnight returns are presumably more volatile than

intraday 5-minute returns and that a large value for Rn,0 will have a pronounced and distorting effect

on the realised volatility estimate σ̃2
n, an alternative realised volatility measures need to be considered

by excluding the ”noisy” overnight return Rn,0. This will measure the volatility during trading hours

as opposed to daily volatility2 . It is suggested by Martens (2002) to scale the sum of intraday returns

1These computations are carried out using Ox 3.3 (see Doornik (2001)) with use of the SsfPack 3.0 functions

SsfGetSpline, SsfLikEx and SsfMomentEstEx (see Koopman, Shephard, and Doornik (1999)).
2Andersen and Bollerslev (1997) and Andersen, Bollerslev, Diebold, and Ebens (2001) use this definition of realised

volatility in their stock market studies.
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by

σ̃2
n =

σ̂2
oc + σ̂2

co

σ̂2
oc

D
∑

d=1

R2
n,d, (5)

with the “open-to-close” sample variance σ̂2
oc and the “close-to-open” sample variance σ̂2

co computed

as

σ̂2
oc =

10, 000

N

N
∑

n=1

(log Pn,D − logPn,0)
2, σ̂2

co =
10, 000

N

N
∑

n=1

(log Pn,0 − log Pn−1,D)2.

An alternative sample estimate of the “open-to-close” variance is the average of the realised volatitilies

of (4), but without R2
n,0, from 1 to N as considered by Hansen and Lunde (2002). However, the current

proposed estimates σ̂2
oc and σ̂2

co are consistent with each other since they are both based on sums of N

squared returns. An alternative scaling is considered by Areal and Taylor (2002) who assign different

weights to the intraday squared returns with weights depending on variance proportions. Hansen and

Lunde (2003b) provide a more detailed discussion on the choice of scaling.

Other recent methods for the construction of realised volatility include the Fourier method of

Malliavin and Mancino (2002), and applied by Barucci and Reno (2002) and Hansen and Lunde

(2003a), and the filtering method of Corsi, Zumbach, Müller, and Dacorogna (2001).

2.3 Implied volatility

The implied volatility index is obtained from the Chicago Board Options Exchange Market Volatility

Index3 (VIX) which is based on a highly liquid options market for the period 6 January 1997 to

14 November 2003. The VIX index is calculated from the midpoint of bid-ask option prices using

a binomial method as described in Harvey and Whaley (1992) which takes account of the level and

timing of dividend payments on the underlying S&P 100 stock index. The Black-Scholes model

assumption of constant volatility however introduces bias into the implied volatility measure. Hull

and White (1987) found that the magnitude of the bias in the Black-Scholes model was smallest for

near-the-money and close-to-maturity options; also see Feinstein (1995). Therefore the index is based

on implied volatilities of eight nearby-expiry call and put options4. The VIX index is then constructed

as a weighted average of these implied volatilities in such a way that it represents the implied volatility

of a hypothetical at-the-money OEX option with twenty-two trading days to expiration. Although

the VIX represents a biased implied volatility measure, it is still a useful proxy of future volatility for

the practical application of volatility forecasting. It mitigates many of the measurement errors which

typically contribute to biased implied volatility measures. The VIX is constructed on a daily basis

and is denoted by s2n for n = 1, . . . , N .

3The VIX data was extracted from the CBOE on-line database.
4The shortest time to maturity is at least eight days in order to eliminate the increase in implied volatility observed

during the option’s last week of trading. The calendar-day implied volatilities of each of the eight options are adjusted

to a trading base as in Fleming, Ostdiek, and Whaley (1995). The wildcard option implicit in the options is ignored as

in Fleming and Whaley (1994).
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2.4 Descriptive statistics

In Figure 1 we present graphs of the time series that are used in this empirical study together with

their histograms and correlograms of the time series. The summary statistics of the series are given

in Table 1.

For the daily return series Rn we observe several volatile periods which occurred towards the end

of 1997, during the third quarter of 1998, at the beginning and end of 2000 and during the summer

of 2002. The three largest shocks to the return process took place in one of these periods and were

negative. This largely contributed to the reported negative skewness coefficient for the return series

and the large positive skewness coefficient of the squared returns. It is also seen that Rn and R2
n

exhibit excess kurtosis.

Table 1: Summary Statistics of return and volatility time series for the period from 6 January 1997

to 14 November 2003 (number of days is 1,725).

daily return realised volatility implied volatility

Rn R2
n σ̃2

n log σ̃2
n s2n log s2n

Mean 0.020 1.889 0.920 −0.612 26.46 3.253

Stand.Dev. 1.374 4.058 1.359 0.981 5.998 0.208

Skewness −0.122 7.918 5.109 0.245 1.266 0.744

Exc.Kurt. 5.621 110.8 39.80 0.524 1.482 0.135

Minimum −8.994 0 0.004 −5.484 16.84 2.834

Maximum 5.702 80.89 15.38 2.733 50.48 3.922

The realised volatility series σ̃2
n is presented in Figure 1 in levels (row 3) and logs (row 4). The

distribution of the logged realised volatility appears approximately Gaussian but with a fat tail to

the left due to one “inlier” in the summer of 1998. The descriptive statistics in Table 1 for realised

volatility mirror earlier findings for stock market data as reported by Andersen, Bollerslev, Diebold,

and Ebens (2001), Areal and Taylor (2002) and Giot and Laurent (2004).

The daily implied volatility (VIX) series s2n in levels (row 5) and logs (row 6) are also included in

Figure 1 and their summary statistics are reported in Table 1. The effects of some large outliers in

the sample are illustrated by high values for skewness and excess kurtosis. Various changes in implied

volatility can be observed and they correspond more or less with changes in realised volatilities.

However, high volatility periods appear more pronounced in the implied volatility series than in the

realised volatility series.

The time series properties are revealed by the sample autocorrelation functions or correlograms

which are presented in the third column of the graphs in Figure 1. Positive serial correlation is

present in the squared daily return series but is not strong as the volatility dynamics are subject to

measurement error. This is reduced considerably for realised volatility and more correlation structure

in the series appears as a result, both for levels and logs. Most notably, long memory features are

apparent in logged realised volatility. The most persistent correlation structure appears in the implied

volatility series.
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Figure 1: Six daily time series with observations (first column), histogram (second column) and correlogram (third column): (i) daily

returns Rn; (ii) squared daily returns; (iii) realised volatility σ̃2
n; (iv) realised volatility in logs; (v) implied volatility s2n; (vi) implied

volatility in logs. The time series are related to the Standard & Poor’s 100 stock index for the period from 6 January 1997 to 14

November 2003 (1,725 days).
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3 Realised Volatility Models

The spot price of an asset is denoted by P (t) and its return is defined as

R(t) = logP (t) − logP (0), t > 0. (6)

Motivated by financial economic theory the dynamic stochastic process of returns can be represented

by the continuous time process

dR(t) = µ(t)dt+ σ(t)dW (t), t > 0, (7)

where µ(t) is a drift process, σ(t) is the spot volatility and W (t) is a standard Brownian motion

process. The drift term µ(t) is included for completeness but will be of no importance below. For the

introduction of various volatility models below we further assume that the mean and variance of spot

volatility are given by

E
(

σ2(t)
)

= ξ, var
(

σ2(t)
)

= ω2.

The actual volatility for the n-th day interval of length h is then defined as

σ2
n = σ∗(hn) − σ∗ ((n − 1)h) , where σ∗(t) =

∫ t

0
σ2(s)ds.

3.1 Unobserved components model for realised volatility

It has been argued that realised volatility σ̃2
n is an accurate estimator of actual volatility σ2

n; see, for

example, Andersen and Bollerslev (1998). Barndorff-Nielsen and Shephard (2002) provide an excellent

discussion of the statistical properties of this estimator and its error σ2
n − σ̃2

n. They also show with a

Monte-Carlo study that using a model for the spot volatility σ2(t) can significantly improve estimates

of actual volatility. A candidate model for σ2(t) is based on the superposition of Ornstein-Uhlenbeck

(OU) processes τ j(t), that is

σ2(t) =

J
∑

j=1

τ j(t), dτ j(t) = −λjτ
j(t)dt+ dzj(λjt), (8)

where zj(t) is an independent Lévy process with non-negative increments (also known as a subordi-

nator) and λj is an unknown fixed parameter for j = 1, . . . , J with J as the number of factors. In

this case the stochastic differential equation defining τ j(t) permits its autocorrelation function to be

expressed as

corr
(

τ j(t), τ j(t+ s)
)

= e−λj |s|.

By assuming E(τ j(t)) = wjξ and var(τ j(t)) = wjω
2, where wj > 0 and

∑

wj = 1, a convenient and

intuitively appealing form for the autocorrelation function for σ2(t) can be derived and is given by

corr
(

σ2(t), σ2(t+ s)
)

=
J

∑

j=1

wje
−λj |s|.

where we refer to Barndorff-Nielsen and Shephard (2001, 2002) for more details on this approach to

modelling volatility. Using the expression of the autocorrelation corr(τ j(t), τ j(t + s)) and after some
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calculus, it can be shown that the autocorrelation function of the j-th component of actual volatility

τ j
n ≡

∫ nh
(n−1)h τ

j(t)dt is given by

corr(τ j
n, τ

j
n+m) =

(1 − e−λjh)2

2(e−λjh − 1 + λjh)
e−λjh(m−1), m = 1, 2 . . . ,

where h is the length of the day interval. This convenient result implies that τ j
n permits the ARMA(1,1)

representation

τ j
n+1 = wjξ + φj(τ

j
n − wjξ) + θjη

j
n−1 + ηj

n, ηj
n ∼WN(0, σ2

ηj ), (9)

where WN(0, σ2) refers to a white noise process with zero mean and variance σ2. It follows that the

autoregressive parameter φj equals e−λjh while Meddahi (2003) shows that

θj =
1 −

√

1 − 4ϑ2
j

2ϑj
, with ϑj =

corr(τ j
n, τ

j
n+1) − φj

(1 + φ2
j ) − 2φjcorr(τ

j
n, τ

j
n+1)

, (10)

where θj has the typical value of 0.26; see also Barndorff-Nielsen and Shephard (2004b). The key to

modelling realised volatility is the set of results in Barndorff-Nielsen and Shephard (2001, section 2.3)

in which they define the estimation error as un = σ2
n − σ̃2

n and, assuming that the return process (7)

is valid, they establish it to be a (weak) white noise sequence with mean zero and variance

σ2
u,n = 2Dn



(ξh/Dn)2 +

J
∑

j=1

2wjω
2

λ2
j

(e−λjh/Dn − 1 + λjh/Dn)



 , (11)

where Dn is the number of intra-daily intervals used to calculate σ̃2
n. By assuming that the model for

spot volatility is correctly specified, the model for realised volatility is then finally obtained as

σ̃2
n =

J
∑

j=1

τ j
n + un, τ j

n ∼ ARMA(1, 1), un ∼WN(0, σ2
u,n), (12)

which in effect is an unobserved ARMA components (UC) model.

An unobserved ARMA components model can be represented in the state space formulation and

methods based on the Kalman filter can be used for the quasi-maximum likelihood estimation of fixed

parameters such as λj and for the signal extraction of spot volatility conditional on realised volatility

σ̃2
n which takes account of the implied dynamic structure of spot volatility. More importantly, the

model framework allows model-based forecasting of tomorrow’s spot volatility based on the unobserved

ARMA components model. It should be noted that the analysis is based on quasi-maximum likelihood

estimation because distributional properties for un and ηj
n are not established.

3.2 Long memory ARFIMA model

In empirical work on realised volatility it is pointed out that the realised volatility series σ̃2
n can be

modelled by a Gaussian dynamic process after it is transformed into logs. The dynamic properties

of log realised volatility exhibit features known as long memory, that is, the correlogram decays less
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than exponentially as the lag length increases. The correlograms of the realised volatility series in

levels and logs are presented in Figure 1 to illustrate that this empirical fact also applies to our S&P

100 dataset. To model the long memory properties, the autoregressive fractionally integrated moving

average (ARFIMA) model is adopted following Andersen, Bollerslev, Diebold, and Ebens (2001) and

Andersen, Bollerslev, Diebold, and Labys (2003).

The ARFIMA(1, d, 1) model with mean µ for realised volatility can be given by

(1 − φL)(1 − L)d(σ̃2
n − µ) = (1 + θL)εn, (13)

where L is the lag operator (Lσ̃2
n = σ̃2

n−1), coefficients d, φ and θ are fixed and unknown and εn is

Gaussian white noise with mean zero and variance σ2. The following restrictions on the parameters

apply,

0 < d < 0.5, |φ| < 1, |θ| < 1, σ2 > 0.

In the context of volatility modelling, the ARFIMA model for the logs of realised volatility is empiri-

cally investigated, for example, by Andersen, Bollerslev, Diebold, and Labys (2003).

The parameters of the ARFIMA model, including mean µ, can be estimated by the method

of maximum likelihood; for details, see, for example, Sowell (1992) and Doornik and Ooms (2003).

However, the estimation is not without hurdles. It is, for example, pointed out by Brodsky and Hurvich

(1999) and Bos, Franses, and Ooms (2002) that standard ARMA(1, 1) models can also capture long

memory features and that, depending on the sample spectrum of the data, not all parameters of

an ARFIMA(1,d,1) can be empirically identified from the data. This typically applies to the case

of realised volatility. For example, Andersen, Bollerslev, Diebold, and Labys (2003) estimate the d

parameter using a log-periodogram estimator and fix d as estimated in their long memory vector

autoregressive model of order 1. However, we estimate the d parameter simultaneously with other

coefficients of the model. Since different ARFIMA model specifications produce rather similar results,

we consider the ARFIMA(1, d, 0) model in the empirical study5.

Forecasting can be carried out by extrapolating the series in which the correlation structure implied

by the estimated ARFIMA model is taken into account. Details of how these computations can be

implemented elegantly for ARFIMA models are given by Doornik and Ooms (2003).

4 Daily Time-Varying Volatility Models

In this section we discuss daily time-varying volatility models where volatility is explicitly modelled

as the second moment of daily returns. This class of so-called historical volatility models is well-

established and includes stochastic volatility (SV) and generalised autoregressive conditional het-

eroskedasticity (GARCH) classes of models. In addition to standard formulations we also consider

extensions to both models with realised and implied volatility measures incorporated in the variance

equation.

5The required computations are implemented using the ARFIMA package of Doornik and Ooms (2001) within the

programming environment of Ox; see Doornik (2001).
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4.1 Stochastic volatility model

The stochastic volatility model is deduced from the continuous time process for the returns (6). By

discretising the continuous process (7) at daily intervals and by assuming an autoregressive process

for log-volatility, we obtain the stochastic volatility model for daily returns as given by

Rn = µ+ σnεn, εn ∼ NID(0, 1), n = 1, . . . , N,

σ2
n = σ∗2 exp(hn),

hn+1 = φhn + σηηn, ηn ∼ NID(0, 1), h1 ∼ NID(0, σ2
η/{1 − φ2}),

(14)

where Rn is computed as in equation (1) and constant µ is treated as fixed and zero in our empirical

study. The choice of a first-order autoregressive process for the daily log-volatility hn is common.

Note that some weak serial correlation in R2
n exists as confirmed by the first correlogram of Figure 1.

The actual volatility σ2
n is modelled by the product of a scaling factor σ∗2 > 0 and the exponential of

the stochastic process hn. The persistence parameter φ of the autoregressive process is restricted to be

positive and smaller than one to ensure stationarity. We further assume that εn and ηn are mutually

uncorrelated, contemporaneously and at all lags, and with h1. More theoretical details about the SV

model are discussed by Shephard (1996).

The nonlinear relation between the unobserved log-volatility hn and the observed dependent vari-

able Rn does not allow the computation of the likelihood by linear methods such as the Kalman filter.

However, the likelihood function of the SV model can be constructed using simulation methods such

as the ones developed by Shephard and Pitt (1997) and Durbin and Koopman (1997). These devel-

opments allow the exact maximum likelihood estimation of parameters of the SV model using Monte

Carlo importance sampling techniques, see also Sandmann and Koopman (1998).

For the SV model we can express the likelihood function as

L(ψ) = p(y|ψ) =

∫

p(y, θ|ψ)dθ =

∫

p(y|θ, ψ)p(θ|ψ)dθ, (15)

where y = (y1, . . . , yN )′ and

ψ = (φ, ση , σ
∗)′, θ = (h1, . . . , hN )′.

An efficient way of evaluating such expressions is by using importance sampling; see Ripley (1987,

Chapter 5). A simulation device is required to sample from an importance density p̃(θ|y, ψ) which

we prefer to be as close as possible to the true density p(θ|y, ψ). It is common to take a conditional

Gaussian density g(θ|y, ψ) as the importance density since it is relatively straightforward to sample

from it using simulation smoothers such as the ones developed by de Jong and Shephard (1995)

and Durbin and Koopman (2002). Guidelines for the construction of Gaussian importance sampling

devices for the SV model are discussed in Lee and Koopman (2003). It can be shown that the Monte

Carlo estimate of the likelihood function can be computed as

L̂(ψ) = LG(ψ)D−1
D

∑

j=1

dj , dj =
p(y|θj, ψ)

g(y|θj , ψ)
,

where θj is a draw (realisation) of g(θ|y, ψ) as obtained from the simulation smoother for j = 1, . . . ,D.

The likelihood function can be computed for a given value of parameter vector ψ and can be numerically
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maximised with respect to ψ by using the same source of random deviates for computing L̂(ψ) for the

different values of ψ. In this way maximum likelihood estimates of ψ are obtained6.

The one-step ahead daily volatility forecast for the SV model is computed as

σ̂2
N+1 = σ̂∗2 exp(ĥN+1|N + 0.5pN+1|N ), (16)

where σ̂∗2 is the maximum likelihood estimate of σ∗2, ĥN+1|N is the estimator of hN+1 given all N

observed daily returns and pN+1|N is its mean squared error. The latter two values are computed by

ĥN+1|N =

∑

j djhN+1|N (θj)
∑

j dj
, pN+1|N =

∑

j djpN+1|N(θj)
∑

j dj
,

where hN+1|N (θj) and pN+1|N (θj) are obtained from the Kalman filter applied to the approximating

model that is used as part of the Gaussian importance sampling device and is based on the draw θj

from g(θ|y, ψ). Further details of this approach are discussed in Durbin and Koopman (2000).

The SV model can be extended by the inclusion of an explanatory variable in the log-variance

equation for hn in (14), that is

hn = φhn−1 + γ(1 − φL)xn−1 + σηηn, n = 1, . . . , N, (17)

where xn = ln σ̃2
n for realised volatility or xn = ln s2n for implied volatility. An equivalent specification

for model (17) is given by

hn = γxn−1 + η∗n, η∗n = φη∗n−1 + σηηn,

which is a regression model with autoregressive disturbances. Although φ is restricted to be positive

for model (14), for model (17) the standard stationary condition −1 < φ < 1 applies. For other

volatility models, similar extensions have been considered, see Martens (2001) and Blair, Poon, and

Taylor (2001), amongst others. Replacing the equation (17) for hn in (14) does not affect the non-

linear relationship between daily return Rn and unobserved volatility hn. Therefore the estimation

and forecasting methods for the SV model as described earlier can be applied straightforwardly. The

regression coefficient γ in (17) is estimated by numerically maximising the simulated likelihood function

with respect to γ and jointly with respect to the other coefficients. One-step ahead forecasts for the

extended model are obtained using the same methods as for the SV model although it requires the

value of xN .

4.2 Generalised autoregressive conditional heteroskedasticity model

An alternative to the SV model and more common in its use of modelling time-varying volatility is the

generalised autoregressive conditional heteroskedasticity (GARCH) model which in its most simplest

form is given by

Rn = σnεn, εn ∼ NID(0, 1), n = 1, . . . , N,

σ2
n = ω + αR2

n−1 + βσ2
n−1,

(18)

6The SV model is estimated using a program written in the Ox language of Doornik (2001) using SsfPack by Koopman,

Shephard, and Doornik (1999). The Ox programs can be obtained from http://staff.feweb.vu.nl/koopman/sv/.
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with parameter restrictions ω > 0, α ≥ 0, β ≥ 0 and α + β < 1. The parameter vector ψ consists

of ω, α and β in this case. The persistence of daily volatility is measured by α + β in GARCH

models. More lags of R2
n and σ2

n can be added to the volatility equation of the GARCH model but

in empirical studies the model (18) has proven to work effectively in forecasting volatility, see, for

example, Andersen and Bollerslev (1998) and Hansen and Lunde (2003b). The time-varying variance

is formulated conditional on the lagged observed return Rn−1 and therefore the variance σ2
n is known

conditional on past observed returns and parameter vector ψ. The predictive observation density is

given by

Rn+1|R1, . . . , Rn, ψ ∼ NID(0, ω + αR2
n + βσ2

n).

The prediction error decomposition allows the construction of the likelihood function in a straightfor-

ward way, see Bollerslev (1986). When the assumption of normality for εn is droppped, estimation can

be referred to as quasi-maximum likelihood. Estimation procedures for the GARCH model are im-

plemented in many standard econometric software packages7. Interesting surveys on GARCH models

are written by Bollerslev, Chou, and Kroner (1992), Bera and Higgins (1993) and Bollerslev, Engle,

and Nelson (1994). Finally it follows directly that the one-day ahead volatility forecast at time N can

be computed as

σ̂2
N+1 = ω̂ + α̂R2

N + β̂σ̂2
N , (19)

where ω̂, α̂ and β̂ denote maximum likelihood estimates of ω, α and β, respectively.

The daily GARCH model can also be extended to include an explanatory variable by incorporating

it in the variance equation, so the volatility process σ2
n in equation (18) can be rewritten as

σ2
n = ω + αR2

n−1 + βσ2
n−1 + γs2n−1, (20)

where s2n represents implied volatility but can be exchanged with realised volatility σ̃2
n. We note that

the inclusion of s2n in the volatility equation (20) is different from its inclusion in (17) and therefore

the regression coefficients have different implications for forecasting. Most econometric packages have

options to specify explanatory variables for the volatility equation (20) because estimation of these

coefficients is relatively straightforward. As for the standard GARCH model, all information for the

calculation of the one-day ahead volatility forecast σ̂2
N+1 is available at time N and is given by

σ̂2
N+1 = ω̂ + α̂R2

N + β̂σ̂2
N + γ̂s2N , (21)

where γ̂ is the maximum likelihood estimate of γ.

5 Forecasting methodology

In the next section the results are presented of an out-of-sample forecasting study in which we compare

the forecasting performances of the various volatility models described in sections 3 and 4. This

forecasting study is carried out as follows. The volatility models are estimated 525 times based on

525 samples of 1, 200 observations. The first sample starts 6 January 1997 and ends 16 October

2001. A forecast of volatility is generated for 17 October 2001 based on the estimated model for the

7In this paper a program for estimating the parameters of the GARCH model is written in Ox, the programming

environment of Doornik (2001), using functions of the G@RCH package of Laurent and Peters (2002).
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first sample. The second sample, starting 7 January 1997 and ending 17 October 2001, is used to

forecast the volatility of 18 October 2001 based on the estimated model for the second sample. These

estimation and forecasting steps can be repeated 525 times for the available sample from 6 January

1997 to 14 November 2003. More specifically, we produce the 525 one-day ahead forecasts σ̂2
m where

σ̂2
m is forecast of σ2

m based on information Rm−1200, . . . , Rm−1, ψ̂, (22)

for m = N+1, . . . , N+M and ψ̂ refers to the maximum likelihood estimate of the parameter vector ψ.

In the case of realised volatility models the conditioning also refers to the intraday returns associated

with trading days m = N + 1, . . . , N +M . The range of the day index m reflects the period from 17

October 2001 to 14 November 2003. The forecasts are based on a “rolling window” procedure: in each

case the sample is rolled forward by one trading day while the size of the sample is kept constant at

1, 200.

The volatility is not observable and as a result the forecast error is also not observable. It is

argued earlier that realised volatility (5), denoted by σ̃2
m, is an accurate estimator and therefore σ̃2

m

is the variable to forecast for m = N + 1, . . . , N + M . The volatility forecast obtained from model

Mk is denoted by σ̂2
k,m and is defined as in (22). It is difficult to determine whether, say, model M1

outperforms model M2. This is a subjective matter that depends on the choice of a criterion. Various

forecasting criteria can be considered to assess the predictive accuracy of a volatility model. In this

paper we use the following accuracy statistics or loss functions for a particular model Mk:

The squared error L1,k,m = (σ̃2
m − σ̂2

k,m)2,

The absolute error L2,k,m = |σ̃2
m − σ̂2

k,m|,

The squared error adjusted for heteroskedasticity L3,k,m = (1 − σ̃−2
k,mσ̂

2
m)2,

The absolute error adjusted for heteroskedasticity L4,k,m = |1 − σ̃−2
k,mσ̂

2
m|.

Some of these loss functions are also considered by Andersen, Bollerslev, and Lange (1999), Martens

(2002) and Hansen and Lunde (2003b).

When a particular loss function is smaller for model M1 than for model M2, say, we can clearly

not conclude that the forecasting performance of model M1 is superior to that of model M2. Such

a conclusion can not be made on the basis of just one criterion and just one sample. Recent work

has focused on a testing framework for determining whether a particular model is outperformed by

another model, see, for example, Diebold and Mariano (1995), West (1996) and White (2000). A

further development of the White framework is known as the Superior Predictive Ability (SPA) test

and is proposed by Hansen (2001) where it is also shown that SPA has good power properties and is

robust. We adopt the SPA test to investigate the relative performance of various volatility models.

A similar study is carried out by Hansen and Lunde (2003b) for a range of daily volatility models,

mainly variants of GARCH models. In this study we focus on the comparison of the forecast abilities

of models based on high-frequency measures of volatility and models based on daily returns.

We consider K + 1 different models Mk for k = 0, 1, . . . ,K and which are discussed in sections

3 and 4. For each model Mk we generate M volatility forecasts σ̂2
m,k for m = N + 1, . . . , N + M .

For every forecast we calculate the loss function Li,m,k as given above with i = 1, . . . , 4. A particular
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model M0 is taken as the benchmark model. The loss function relative to the benchmark model is

defined as

Xk,m ≡ Li,0,m − Li,k,m, (23)

for some choice of loss function i. The unobserved actual volatility σ2
m is the object of forecasting

while realised volatility σ̃2
m is taken as its proxy for assessing the relative forecast accuracy of models.

Hansen and Lunde (2003a) argue that the use of a proxy may lead to inconsistencies in the comparison

of models with respect to forecast accuracy. Consistency requires moment conditions and dependence

structures for relative forecast losses Xk,m. These conditions are weak and likely to be fulfilled for at

least L1,k,m and L2,k,m. Further, the results in Hansen and Lunde (2003a) imply that the inconsisten-

cies are proportionate with the precision of the proxy. The results in Barndorff-Nielsen and Shephard

(2002) support the fact that realised volatility is a precise estimator of actual volatility. Assuming

that models can be ranked consistenly, λk ≡ E(Xk,m) is well defined. When the benchmark or base

model M0 outperforms all other models, we have λk < 0 for all models k = 1, . . . ,K. Therefore the

base model is not outperformed when it rejects the null hypothesis

max
k=1,...,K

λk ≤ 0. (24)

The associated test statistic proposed by Hansen (2001) is given by

T = max
k=1,...,K

√
MX̄k

ω̂kk
, (25)

with ω̂2
kk as a consistent estimate of ω2

kk and where

X̄k =
1

M

N+M
∑

m=N+1

Xk,m, ω2
kk = lim

M→∞
var(

√
MX̄k). (26)

A consistent estimator of ωkk and the p-value of test statistic T can be obtained via a bootstrap

procedure that is outlined below.

We apply the stationary bootstrap of Politis and Romano (1994) to compute the test statistic T

and to assess its distributional properties. This procedure consists of building new samples for Xk,m

of length M which are constructed by randomly choosing subsamples of different lengths and putting

these together. The lengths of the subsamples are independent and are drawn from a geometric

distribution with mean q. The random lengths are ideally small but sufficiently large to reflect the

serial dependence in the Xk,m series. After the inspection of correlograms of Xk,m for different models

Mk we have taken q = 0.5. The resulting bootstrap samples for Xk,m are denoted by Xi
k,m and we

consider B bootstraps, i = 1, . . . , B. The empirical distribution implied by the bootstrap samples is

taken as the distribution that has generated Xk,m. For each bootstrap the sample mean is computed

as

X̄i
k =

1

M

M
∑

m=1

Xi
k,m, i = 1, . . . , B. (27)

The variation within these bootstrapped means is taken as the estimator of ωkk, that is

ω̂kk =
1

B

B
∑

i=1

(X̄i
k − ¯̄Xk)

2, ¯̄Xk =
1

B

B
∑

i=1

X̄i
k. (28)
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The bootstrap estimate of ωkk allows the computation of the test statistic T in (25). Finally, the

distribution of T under the null hypothesis can be empirically identified as follows. Define Z̄i
k as

Z̄i
k =

(

X̄i
k − ¯̄Xk

)

× 1{ ¯̄Xk>−Ak}
, (29)

where Ak = 1
4M

−4ω̂kk and 1{·} is an indicator function. The empirical distribution of

T i = max
k=1,...,K

√
MZ̄i

k

ω̂kk
, (30)

converges to the distribution of T under the null hypothesis; see Hansen (2001) for more details. It

follows directly that the p-value of T can be empirically identified as

1

B

B
∑

i=1

1{T i>T}. (31)

More details of this procedure are detailed in Hansen (2001) and Hansen and Lunde (2003b).

6 Empirical Results

6.1 Parameter estimation

The estimation results obtained from realised and historical volatility models as described in sections

3 and 4, respectively, are presented in Table 2. The results are based on observations from the full

sample period 6 January 1997 to 14 November 2003. All models indicate high persistency in volatility

dynamics as it is expected from stock index prices. Unobserved ARMA component models (UC-RV)

are estimated with one (UC-RV1) and two (UC-RV2) factors. The coefficients µ, φ1, φ2, σ
2
η1 and

σ2
η2 are estimated and standard errors are provided while the coefficients σ2

u, θ1 and θ2 are functions

of the estimated coefficients as is apparent from equations (10) and (11). The ARMA factor in

UC-RV1 with autoregressive coefficient 0.45 and moving average coefficient 0.26 does not imply the

persistent dynamic structure as indicated by the sample correlogram of realised volatility σ̃2
n given in

Figure 1. However, a higher level of volatility persistency is obtained when two ARMA factors are

considered. The second factor in UC-RV2 has a higher persistency with autoregressive coefficient 0.98.

The loglikelihood function is larger for the two factor UC-RV2 model than for the one factor UC-RV1

model which is confirmed by a lower Akaike criterion (AIC) value for UC-RV2. More ARMA factors

have also been considered but two factors have proved to be sufficient for this dataset. Both UC-RV

models are successfull in capturing the dynamics in the series given the relatively small values of the

Box-Ljung Q statistics.

The fractional integration parameter of the ARFIMA model is estimated as 0.408 for realised

volatility in levels and as 0.478 for logged realised volatility. In the latter case, the d estimate exceeds

the estimate found by Andersen, Bollerslev, Diebold, and Labys (2003) who report the value 0.441.

It should be noted that this and related studies employ different ARFIMA model specifications,

different estimation methods and different datasets8. Further, in the case of logged realised volatility,

8Andersen, Bollerslev, Diebold, and Labys (2003) do not estimate the fractional parameter but obtain the d value

from a prior analysis and fix it for the estimation of the other parameters in their vector autoregressive fractional model

for three exchange rates.
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the process may not be covariance-stationary as the estimate of d is close to the boundary value of

0.5. Some evidence of nonstationarity is also found in the high persistency implied by the second

ARMA component in the UC-RV2 model. From these in-sample results we may conclude that a

parsimonious and effective description of the dynamics in the S&P 100 realised volatility is provided

by the ARFIMA(1, d, 0) model. The dynamics of realised volatility seem to be best captured by the

ARFIMA model since it has the lowest Box-Ljung test statistic. The ARFIMA log-likelihood value

and AIC for logged realised volatility can not be compared with the other realised volatility models

since it refers to different values of the dependent variable. The Box-Ljung statistic is the highest

for the log ARFIMA model but this is probably due to the fact that logged series have usually less

atypical observations (outliers). Aberrant observations in a time series have a destructive effect on

the serial correlation structure.

Volatility persistency for the historical SV and GARCH models are estimated as statistically

significant and close to unity with φ̂ = 0.967 and α̂+ β̂ equal to 0.963 which confirms earlier findings

in the literature with regard to daily stock index return series. The estimated SV model with a

higher log-likelihood value is preferred since it indicates a better fit compared to the GARCH model.

However, one should be careful in comparing likelihood values since the involved computations for SV

and GARCH models are very different and models are non-nested9.

The inclusion of the realised volatility series in the volatility equation of the SV model has a

significant effect on the fit of the model as is shown by a decrease of 27.8 in the AIC value and by

the significance of the estimated regression coefficient γ. The estimate of the persistence parameter φ

has not changed significantly. The change in the estimated values for σ∗2 and σ2
η can be explained by

the necessary rescaling due to the inclusion of the regression variable log σ̃2
n. Similar conclusions can

be made for the inclusion of implied volatility in logs, that is log s2n, in the log-volatility equation of

the SV model. However the effect is even stronger since the AIC decreases by 37.8 in relation to the

standard SV model. Also the regression coefficient is more significant compared to the significance

of γ in the realised volatility case. Therefore the SV model with implied volatility in the volatility

equation may be preferred based on these in-sample results.

The estimation results for the GARCH model are typical for stock index series and can be found

elsewhere in the literature. It is noticable that within the GARCH framework, the inclusion of realised

or implied volatility as explanatory variables for volatility has a large impact, larger than in the SV

case. The AIC value decreases by 61.6 and 64.6 for the two volatilities. Also in both cases the regression

coefficients are significant. However, the inclusion of these regressors diminishes the persistency of the

volatility dynamics. The estimated coefficient β remains significant in both cases. In the case where

implied volatility is included, the estimated α coefficient is not significant. This case implies that the

daily (squared) returns do not play a role in the estimation of σ2
n which in fact only depends on past

values of implied volatilities, that is

σ̂2
n = γ̂

∞
∑

j=1

β̂j−1s2n−j.

9The estimation results for the GARCH model confirm the empirical results of Blair, Poon, and Taylor (2001) who

examine Standard & Poor’s 100 stock index returns over the earlier 1987 to 1992 period and find values for γ similar

to ours. In contrast, Martens (2002) reports on much smaller and statistically insignificant γ estimates for returns on

Standard & Poor’s 500 futures, see also Taylor and Xu (1997).
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Table 2: Estimation results of realised and historical volatility models using the Standard & Poor 100 stock index data set for the period

6 January 1997 to 15 November 2003

model UC ARMA model ARFIMA model Stochastic volatility model GARCH model

UC-RV1 UC-RV2 level log with RV with IV with RV with IV

µ 0.955 0.953 0.813 −.797 σ∗2 1.473 1.775 0.040 α 0.102 −.047 0.016
0.058 0.224 0.779 1.434 0.180 0.166 0.024 0.010 0.019 0.017

φ1 0.451 0.422 0.051 −.109 φ 0.967 0.964 0.934 β 0.861 0.448 0.252
0.025 0.130 0.040 0.031 0.011 0.018 0.029 0.016 0.070 0.103

φ2 0.976 γ 0.279 1.127 γ 0.908 0.126
0.009 0.053 0.181 0.113 0.018

d 0.408 0.477
0.031 0.020

σ2
η1 1.103 0.030 σ2

η 0.026 0.014 0.028 ω 0.075 0.312 −2.000
0.040 0.012 0.008 0.007 0.012 0.017 0.065 0.284

σ2
η2 0.439

0.079

σ2
u 1.002 1.003 1.069 0.489

θ1 0.259 0.257

θ2 0.268

lnL −2616.3 −2506.4 −2506.1 −1834.86 −2876.3 −2861.2 −2856.2 −2895.1 −2833.5 −2830.5

AIC 5238.6 5022.7 5018.3 3675.72 5758.2 5730.4 5720.4 5796.3 5675.0 5669.0

Q(12) 14.14 14.02 12.28 20.01 22.05 22.19 20.61 17.36 20.11 18.14

Parameter estimates are reported together with asymptotic 95% standard errors which are obtained using the delta method since some coefficients are transformed

for estimation. The Akaike information criterion AIC is calculated as -2(ln L) + 2p where p is the number of coefficients that is estimated. The Box-Ljung

portmanteau statistic Q(ℓ) is for the observation errors and is asymptotically χ2 distributed with ℓ degrees of freedom.
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Here β is estimated as β̂ = 0.25 implying that effectively only s2n−1 and, to a smaller extent, s2n−2

determine σ̂2
n.

6.2 Some forecasting results

Volatility forecasts are constructed for realised and historical volatility models as described in section

5. The evaluation period ranges from 17 October 2001 to 14 November 2003. In this period, for each

trading day n a volatility forecast is generated for each considered model which is estimated using

information from the last 1, 200 days (n − 1, . . . , n − 1200). The one-step ahead forecasts for the

evaluation period are presented in Figure 2 together with realised volatility (displayed as dots). Some

interesting aspects of the forecast results can be observed since in this sample a small group of days

displays high volatility while most other days have low volatility. The GARCH and SV forecasts are

clearly biased when volatility is low. The GARCH forecasts are also too high for days when volatility

is relatively high. The positive and persistent forecast bias may be explained from the fact that the

GARCH and SV forecasts are extracted from daily returns that are subject to measurement noise.

The volatility estimates are not corrected for this measurement variance and therefore the forecast

bias is positive. In contrast, the realised volatility models appear to produce forecasts without positive

forecast bias. The log ARFIMA-RV forecasts are clearly the least sensitive to jumps in volatility.
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Figure 2: One-day ahead volatility forecasts from (i) GARCH, (ii) SV, (iii) UC-RV2 and (iv) log

ARFIMA-RV models for the period between 17 October 2001 and 14 November 2003 (525 days).

Table 3 presents the forecast accuracy statistics that consist of the means of four loss functions:

L1,k,m, mean squared error (MSE); L2,k,m, mean absolute error (MAE); L3,k,m, heteroskedastic ad-

justed MSE (HMSE); L4,k,m, heteroskedastic adjusted MAE (HMAE)10. In terms of MSE, the UC-RV2

10For example, we define the MSE for model Mk by M−1
∑N+M

m=N+1
L1,k,m.
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and ARFIMA-RV models produce the smallest values for this sample. In terms of the other criteria,

the log ARFIMA-RV and UC-RV2 models produce the smallest values. The heteroskedastic corrected

versions of MSE and MAE give relatively less weight to forecast errors associated with high values of

realised volatility while the MSE give relatively more weight to these errors. Therefore both of these

statistics are of interest on their own merits. In case of value-at-risk applications, one may be more

interested in the accurate forecasting of high volatility rather than low volatility. This implies that

the MSE criterion is the relevant loss function for applications in risk management.

Realised volatity models provide more accurate forecasts compared to the historical SV and

GARCH models that are based on daily returns. Within the group of historical models, the SV

model with either realised or implied volatility as an explanatory variable for volatility is providing

the most accurate forecasts. This holds when considering the different loss functions. The accuracy

of GARCH forecasts vary but overall their forecasts are less accurate. Within the group of realised

volatility models, their is a clear distinction in accuracy. For the MSE loss function, the ARFIMA-RV

and UC-RV2 models produce the smallest values while for the other loss functions, the log ARFIMA-

RV model clearly outperforms the other models in forecasting accuracy.

For completeness we also report the goodness-of-fit measure R2 for regressing σ̃m on a constant

and the volatility forecast σ̂m for m = N + 1, . . . , N +M . This so-called Mincer-Zarnowitz regression

is used in many volatility forecast studies. The goodness-of-fit statistics confirm the earlier conclusions

although the GARCH and SV models produce relatively high R2 values, especially the GARCH model

with realised volatility. This can be explained from the fact that the R2 measure corrects for the bias

in forecast errors since it compares the total fit of the Mincer-Zarnowitz regression with the sum of

squared mean deviations of forecast errors. Therefore it shows that the pattern of one-step ahead

forecasts obtained from the GARCH model with realised volatility is close to the pattern of volatility

itself. The realised volatility models however produce overall the highest R2 values. These results

confirm similar findings reported in Andersen, Bollerslev, Diebold, and Labys (2003) for exchange

rate data.

Finally, to get some insight in how forecasts evolve over time in our study, in Figure 3 we have

zoomed in on the one-step ahead forecasts between 9 September 2002 and 18 November 2002 (51

trading days). The forecasts of GARCH and SV respond slowly to the changes from high to low and

from low to high volatility. The forecasts of these models are obtained from weighted averages of past

squared returns with relatively long exponentially declining weight patterns. This may explain the

slow response of the forecasts to changes in volatility and, together with the volatility measurement

error in daily squared returns, it may provide an explanation for the relatively poor performance of

historical models in volatility forecasting. The inclusion of realised volatility shows an improvement

in both the GARCH and SV model. Especially in the latter case it can be observed from Figure 3

that the forecasts are more responsive to changes in volatility. The positive forecast bias is reduced

when volatility is low and it produces more accurate forecasts when volatility is high.

In the case of realised volatility models it is shown that the more successfull models in forecasting

are the ones that produce a smoother series of forecasts (UC-RV2 and log ARFIMA-RV). It is surprising

to notice that relative smooth forecast patterns are a virtue in forecasting volatility.
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Table 3: Out-of-sample forecasting criteria (evaluated against σ̃2
m) for the Standard & Poor’s 100

evaluation period 17 October 2001 to 14 November 2003

Model Mk Forecast loss functions

MSE MAE HMSE HMAE R2

UC-RV1 1.248 0.613 2.495 1.240 0.522

UC-RV2 0.996 0.505 1.546 0.792 0.593

ARFIMA-RV 0.991 0.508 1.610 0.813 0.598

ARFIMA-RV (log) 1.149 0.472 1.030 0.555 0.597

SV 2.433 1.240 5.080 2.948 0.386

SV RV 2.256 1.037 3.368 2.063 0.437

SV IV 3.132 1.082 3.422 2.048 0.343

GARCH 2.837 1.348 5.339 3.174 0.405

GARCH RV 3.134 1.228 4.603 2.738 0.605

GARCH IV 2.872 1.297 5.079 2.720 0.419

The MSE for model Mk is defined as M−1
∑N+M

m=N+1
L1,k,m. In a similar way, MAE (based on L2,k,m), HMSE (based

on L3,k,m) and HMAE (based on L4,k,m) are defined. The goodness-of-fit R2 statistic is based on the OLS regression

applied to σ̃m = a + bσ̂m + um where a and b are regression coefficients and with realised volatility σ̃m, forecast σ̂m as

defined in (22) and error um for m = N + 1, . . . , N + M and M = 525. In a similar forecasting context, these so-called

Mincer-Zarnowitz regressions are also carried out by Andersen, Bollerslev, Diebold, and Labys (2003).
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Figure 3: Realised volatility (as dots) and one-day ahead volatility forecasts from (i) GARCH (solid)

and GARCH with RV (dashed), (ii) SV (solid) and SV with RV (dashed), (iii) UC-RV1 (solid) and

UC-RV2 (dashed) and (iv) ARFIMA-RV (solid) and log ARFIMA-RV (dashed) models for the period

between 9 September 2002 and 18 November 2002 (day 225 to 275).
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6.3 Superiority prediction tests

Although the forecasting results have clearly shown that the ARFIMA model for logged realised

volatility is the best model for prediction and that the SV model with realised volatility as an ex-

planatory variable in the volatility equation produces the best forecasts within the class of historical

volatility models. However, these results only apply to one selected sample. To assess whether the

same outcomes are obtained for similar samples, we need to apply the methodology of White (2000)

and Hansen (2001) as discussed in section 5. The computation of superior predictive ability (SPA) test

(25) requires the stationary bootstrap of loss series Li,k,m over the sample m = N + 1, . . . , N +M for

a specific loss function i and for a range of models Mk with k = 0, . . . ,K. Computing X̄k in equation

(26) is based on the actual forecasts while computing ω̂kk in equation (28) requires the bootstraps.

The computation of the p-values as in (31) also requires the bootstraps.

Tables 4 and 5 present the SPA results for the two classes of volatility models. The individual

X̄k is reported for each model that is considered as a base model M0 while the remaining models

are treated as rival models Mk. All considered models in this study are consecutively taken as base

models. Further, the various statistics are reported for the four different loss functions. As a result,

and in the way the X̄k statistics are presented, the tables (apart from the last column) consist of

four blocks of skewed symmetric matrices. The last columns of Tables 4 and 5 report the p-values

of the SPA tests for each considered base model. A high p-value rejects the null hypothesis (24)

of ”no superiority” of the base model. The earlier forecast results have seen a large difference in

forecast accuracy of historical and realised volatility models. Therefore the SPA results are presented

separately for these two classes of models.

In Table 4 the SPA results for the realised volatility models are presented. The average of daily

squared forecast error differences between UC-RV1 and UC-RV2 models is 2.21, which means that

the squared forecast error of UC-RV1 was on average higher than of UC-RV2. The average values for

UC-RV1 in relation to the rival ARFIMA and log ARFIMA models are 2.39 and 1.15, respectively.

This result is not good for UC-RV1 as is also reflected by its p-value of zero for the SPA test. Overall

Table 4 shows that for all loss functions, the UC-RV2 and ARFIMA models are very close in their good

forecasting performance. However, the log ARFIMA model is clearly the preferred model when we

rely on the loss functions L2, L3 and L4. This is particularly noticable when we consider the p-value

of the SPA test. For the last three loss functions its p-value is unity implying it is superior to all

other models that are considered. The first loss function (squared forecast error) however shows that

ARFIMA and UC-RV2 forecasts are to be preferred which confirms the earlier findings from Table 3.

Finally, in Table 5 the results are even more dramatic in its clarity. For all loss functions it can be

concluded that forecasts from the SV class of models are to be preferred. Overall the SV model with

logged realised volatility as an explanatory variable for log-volatility is the outstanding model within

its class.

These forecasting results show the importance of realised volatility as a predictor of future volatility.

We confirm the findings of Christensen and Prabhala (1998), Fleming (1998), Blair, Poon, and Taylor

(2001) and Giot (2003) that forecasts of volatility extracted from models for daily returns are less

accurate than forecasts based on implied volatility. However, in this study we have found that models

based on realised volatility outperform models with implied volatility when forecasting the volatility

in the S&P 100 index series. The importance of realised volatility for forecasting is also found by
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Table 4: Superior predictive ability (SPA) test λk for realised volatility models and the Standard &

Poor’s 100 evaluation period 17 October 2001 to 14 November 2003

Loss Base model Alternative models

UC-RV1 UC-RV2 ARFIMA ARF.log p-value T ∗

MSE UC-RV1 – 2.21 2.39 1.15 0.028

UC-RV2 −2.21 – 0.38 −0.99 0.564

ARFIMA −2.39 −0.38 – −1.07 1†

ARFIMA log −1.15 0.99 1.07 – 0.197

MAE UC-RV1 – 7.05 7.28 9.08 0.000

UC-RV2 −7.05 – −0.79 1.58 0.053

ARFIMA −7.28 0.79 – 2.20 0.019

ARFIMA log −9.08 −1.85 −2.20 – 1†

HMSE UC-RV1 – 2.80 2.97 2.89 0.011

UC-RV2 −2.80 – −1.21 3.05 0.007

ARFIMA −2.97 1.21 – 2.63 0.023

ARFIMA log −2.89 −3.05 −2.63 – 1†

HMAE UC-RV1 – 7.96 7.82 8.78 0.000

UC-RV2 −7.96 – −2.64 8.84 0.000

ARFIMA −7.82 2.64 – 8.64 0.000

ARFIMA log −8.78 −8.84 −8.64 – 1†

A positive value in column of an alternative model Mk indicates it is superior to the base model according to a specific

loss function. Final column has p-value of T ∗ test and can be interpreted as the intensity of the base model producing

superior forecasts. † A unity value indicates here that the test is not computed since the model outperformed all others.
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Table 5: Superior predictive ability (SPA) test λk for daily SV models and the Standard & Poor’s 100

evaluation period 17 October 2001 to 14 November 2003

Loss Base model Alternative models

SV SV RV SV IV GARCH GA.RV GA.IV p-value T ∗

MSE SV – 0.73 −1.26 −2.42 −1.02 −1.91 0.604

SV RV −0.73 – −1.68 −3.72 −1.34 −2.06 1†

SV IV 1.26 1.68 – 0.60 −0.00 0.44 0.089

GARCH 2.42 3.72 −0.60 – −0.45 −0.13 0.002

GARCH RV 1.02 1.34 0.00 0.45 – 0.37 0.164

GARCH IV 1.91 2.06 −0.44 0.13 −0.37 – 0.027

MAE SV – 5.86 2.42 −5.32 0.21 −1.02 0.000

SV RV −5.86 – −0.76 −10.5 −3.41 −4.05 1†

SV IV −2.42 0.76 – −4.50 −1.79 −2.69 0.400

GARCH 5.32 10.5 4.50 – 2.05 0.80 0.000

GARCH RV −0.21 3.41 1.79 −2.05 – −0.89 0.004

GARCH IV 1.02 4.05 2.69 −0.80 0.89 – 0.000

HMSE SV – 2.01 1.94 −6.00 0.94 0.04 0.070

SV RV −2.01 – −0.55 −2.32 −3.07 −1.90 1†

SV IV −1.94 0.55 – −2.26 −3.06 −1.83 0.575

GARCH 6.00 2.32 2.26 – 1.45 1.15 0.000

GARCH RV −0.94 3.07 3.06 −1.46 – −0.80 0.009

GARCH IV −0.04 1.90 1.83 −1.15 0.80 – 0.089

HMAE SV – 7.76 7.99 −10.1 2.26 1.77 0.000

SV RV −7.76 – 0.25 −9.11 −5.46 −4.39 0.405

SV IV −7.99 −0.25 – −9.66 −6.69 −4.48 1†

GARCH 10.1 9.11 9.66 – 4.77 3.17 0.000

GARCH RV −2.26 5.46 6.69 −4.77 – 0.11 0.000

GARCH IV −1.77 4.39 4.48 −3.17 −0.11 – 0.000

A positive value in column of an alternative model Mk means it is superior to the base model according to a specific

loss function. Final column has p-value of T ∗ test and can be interpreted as the intensity of the base model producing

superior forecasts. † A unity value indicates here that model outperformed all others.
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Andersen, Bollerslev, Diebold, and Labys (2003) although the empirical part of their study is based

on various GARCH and (trivariate) ARFIMA models for exchange rates while this study considers

univariate ARFIMA models together with unobserved component models (based on Lévy driven OU

processes) for a stock index time series.

7 Summary and Conclusions

In this paper we examine the predictive abilities of four classes of volatility models by comparing the

forecasts with realised volatility measures that are defined as scaled sums of squared intraday returns.

Time series of realised volatility can be modelled by unobserved components (UC-RV) and by autore-

gressive fractionally integrated moving average (ARFIMA-RV) models. Forecasts can be generated

from these models after they are estimated using relatively straightforward methods. Daily returns

can be modelled by stochastic volatility (SV) and generalised autoregressive conditional heteroskedas-

ticity (GARCH) models from which volatity estimates and forecasts can be obtained. In the case of

GARCH models, estimation and forecasting belong to the standard toolbox of many applied workers.

More involved statistical procedures are required for estimating and forecasting volatility on the basis

of SV models. We empirically investigate the one-step ahead forecasting performance of the various

models for the Standard & Poor’s 100 stock index over the period 17 October 2001 to 14 November

2003. The most accurate forecasts are obtained with the log ARFIMA-RV model and closely followed

by the UC-RV model. Within the classes of historical volatility models, the SV model with realised

volatility incorporated as an explanatory variable in the volatility equation is best. These conclusions

are not only based on a standard forecasting accuracy assessment using mean squared forecast error

and mean absolute forecast error statistics, formal prediction superiority tests are also carried out.

The implementation closely follows the developments reported in White (2000) and Hansen (2001).

This extensive study may have shed some light on the discussion which model is mostly suited for the

forecasting of volatility. In this respect we would like to stress the importance of realised volatility in

empirical work. Recent work by Andersen, Bollerslev, Diebold and Ebens (2001), Barndorff-Nielsen

and Shephard (2001, 2002), Andersen, Bollerslev, Diebold and Labys (2003) and work in progress on

realised volatility is therefore higly relevant for the forecasting of volatility.
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