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Abstract 

We are developing a forecaster for daily extremes of demand for 
electric power encountered in the service area of a large midwest­
ern utility and using this application as a testbed for approaches 
to input dimension reduction and decomposition of network train­
ing. Projection pursuit regression representations and the ability 
of algorithms like SIR to quickly find reasonable weighting vectors 
enable us to confront the vexing architecture selection problem by 
reducing high-dimensional gradient searchs to fitting single-input 
single-output (SISO) subnets. We introduce dimension reduction 
algorithms, to select features or relevant subsets of a set of many 
variables, based on minimizing an index of level-set dispersions 
(closely related to a projection index and to SIR), and combine 
them with backfitting to implement a neural network version of 
projection pursuit. The performance achieved by our approach, 
when trained on 1989, 1990 data and tested on 1991 data, is com­
parable to that achieved in our earlier study of backpropagation 
trained networks. 

1 Introduction 

Our work has the intertwined goals of: 

(i) contributing to the improvement of the short-term electrical load (demand) 
forecasts used by electric utilities to buy and sell power and ensure that they can 
meet demand; 
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(ii) reducing the computational burden entailed in gradient-based training of neural 
networks and thereby enabling the exploration of architectures; 

(iii) improving prospects for good statistical generalization by use of rational meth­
ods for reducing complexity through the identification of good small subsets of 
variables drawn from a large set of candidate predictor variables (feature selection); 

(iv) benchmarking backpropagation and neural networks as an approach to the 
applied problem of load forecasting. 

Our efforts proceed in the context of a problem suggested by the operational needs 
of a particular electric utility to make daily forecasts of short-term load or demand. 
Forecasts are made at midday (1 p.m.) on a weekday t ( Monday - Thursday), for 
the next evening peak e(t) (occuring usually about 8 p.m. in the winter), the daily 
minimum d(t + 1) (occuring about 4 a.m. the next morning) and the morning 
peak m( t + 1) (about noon ). In addition, on Friday we are to forecast these 
three variables for the weekend through the Monday morning peak. These daily 
extremes of demand are illustrated in an excerpt from our hourly load data plotted 
in Figure 1. 
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Figure 1: Hourly demand for two consecutive days showing the intended forecasting 
variables. 

In this paper, we focus on forecasting these extremal demands up to three days 
ahead (e.g. forecasting on Fridays). Neural network-based forecasters are devel­
oped which parallel the recently proposed method of slicing inverse regression (SIR) 
(Li [1991]) and then use backfitting (Hastie and Tibshirani [1990]) to implement a 
training algorithm for a projection pursuit model (Friedman [1987]' Huber [1985]) 
that can be implemented with a single hidden layer network. Our data consists of 
hourly integrated system demand (MWH) and hourly temperatures measured at 
three cities in the service area of a large midwestern utility during 1989-91. We use 
1989 and 1990 for a training set and test over the whole of 1991, with the exception 
of holidays that occur so infrequently that we have no training base. 
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2 Baseline Performance 

2.1 Previous Work on Load Forecasting 

Since demand is a process which does not have a known physical or mathematical 
model, we do not know the best achievable forecasting performance, and we are led 
to making comparisons with methods and results reported elsewhere. There is a 
substantial literature on short-term load forecasting, with Gross et al. [1987] and 
Willis et al. [1984] providing good reviews of approaches based upon such statisti­
cal methods as linear least squares regression -1Ild Box-Jenkins and ARMAX time 
series models. Many utilities rely upon the seemingly seat-of-the-pants estimates 
produced by individuals who have been long employed at this task and who extrap­
olate from a large historical data base. In the past few years there have been several 
efforts to employ neural networks trained through backpropagation. In two such 
recent studies conducted at the Univ. of Washington an average peak error of 2.04% 
was reported by Damborg et al. [1990] and an hourly load error of about 2.2% was 
given by Connor et al. [1991]. However, the accuracies reported in the literature are 
difficult to compare with since utilities are exposed to different operating conditions 
(e.g., weather, residential/industrial balance). To provide a benchmark for the error 
performance achieved by our method, we evaluated three basic forecasting models 
on our data. These methods are based on a pair of features made plausible by the 
scatter plots shown in Figure 2. 
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Figure 2: Evening peaks ('IUe.-Fri.,1989-90) vs. morning peaks and temperatures. 

2.2 Feature Selection and Homogeneous Data Types 

Demand depends on predictable calendar factors such as the season, day-of-the­
week and time-of-day considerations. We grouped separately Mondays, 'IUesdays 
through Fridays, Saturdays, and Sundays, as well as holidays. In contrast to all 
of the earlier work on this problem, we ignored seasonal considerations and let the 
network and training algorithm adjust as needed. The advantage of this was the 
ability to form larger training data sets. We thus constructed twelve networks, one 
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type m(t+1) e(t) d(t+1) 

Monday m(t-3) m(t) d(t-3) 
Tue.-Fri. m(t-1) m(t) d(t-1) 
Saturday m(t-1) m(t-1) d(t-1) 
Sunday m(t-2} m(t-2) d(t- 2) 

Table 1: Most recent peaks of a two-feature set 

type m(t+1} e(t) d(t+1) 
LLS LOESS BP LLS LOESS BP LLS LOESS BP 

Monday 3.78 2.45 2.42 1.73 2.43 1.59 4.40 3.30 2.69 
The.-Fri. 3.01 2.44 1.98 1.89 3.04 1.65 3.29 3.81 2.49 
Saturday 3.37 2.60 2.36 4.54 3.76 3.10 3.48 3.25 2.06 
Sunday 4.83 3.28 3.79 4.89 2.74 3.81 4.26 2.44 3.03 

Table 2: Forecasting accuracies (percentage absolute error) for three basic methods 

for each pair consisting of one of these four types of days and one of the three 
daily extremes to be forecast. Demand also depends heavily upon weather which is 
the primary random factor affecting forecasts. This dependency can be seen in the 
scatter plots of current demand vs. previous demand and temperature in Figure 2, 
particularly in the projection onto the 'current demand-temperature' plane which 
shows a pronounced "U"-shaped nonlinearity. A two-feature set consisting of the 
most recent peaks and average temperatures over the three cities and the preceding 
six hours is employed for testing all three models (Table 1). 

2.3 Benchmark Results 

The three basic forecasting models using the two-featured set are: 

1) linear regression model fitted to the data in Figure 2; 

2) demand vs. temperature models which roughly model the "U-shaped" nonlinear 
relationship, (LOESS with .5 span was employed for scatter plot smoothing); 

3) backpropagation trained neural networks using 5 logistic nodes in a single hidden 
layer. 

The test set errors are given in Table 2. Note that among these three models, 
BP-trained neural networks gives superior test set performance on all but Sundays. 
These models all give results comparable to those obtained in our earlier work on 
forecasting demands for Thesday-Friday using autoregressive neural networks (Yuan 
and Fine [1992]). 
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3 Projection Pursuit Training 

Satisfactory forecasting performance of the neural networks described above relies 
on the appropriate choice of feature sets and network architectures. Unfortunately, 
BP can only address the problem of appropriate architecture and relevant feature 
sets through repeated time-consuming experiments. Modeling of high-dimensional 
input features using gradient search requires extensive computation. We were thus 
prompted to look at other network structures and at training algorithms that could 
make it easier to explore architecture and training problems. Our initial attempt 
combined the dimension reduction algorithm cf SIR (Li [1991]), currently replaced 
by an algorithm of our devising sketched in Section 4, and backfitting (Hastie 
et.al [1990]) to implement a neural network version of projection pursuit regres­
sion (PPR). 

3.1 The Algorithm 

A general nonlinear regression model for a forecast variable y in terms of a vector 
x of input variables and model noise €, independent of x, is gi ven by 

y = f({3ix,{3~x, .. ,{3~X,€) (*). 

A least mean square predictor is the conditional expectation E(ylx). The projection 
pursuit model/approximation of this conditional expectation is given in terms of a 

family of SISO functions 2 1 ,22, ", 2k by 
k 

E(ylx) = I: 2 i ({3:x) + {3o. 
i=l 

A single hidden layer neural network can approximate this representation by intro­
ducing subnets whose summed outputs approximate the individual 2 j . 

We train such a 'projection pursuit network' with nodes partitioned into subnets, 
representing the 2 i , by training the subnets individually in rotation. In this we 
follow the statistical regression notion of backfitting. The subnet 2i is trained to 
predict the residuals resulting from the difference between the weighted outputs of 
the other k - 1 subnets and the true value of the demand variable. After a number 
of training cycles one then proceeds to the next subnet and repeats the process. The 
inputs to each subnet 2i are the low-dimensional projections {3:x of the regression 
model. One termination criteria for determining the number of subnets k is to stop 
adding subnets when the projection appears to be normally distributed; results 
of Diaconis and Freedman point out that 'most' projections will be so distributed 
and thus are 'uninteresting'. The directions {3i can be found by minimizing some 
projection index which defines interesting projections that deviates from Gaussian 
distributions (e.g., Friedman [1987]). Each {3i determines the weights connecting 
the input to sub net 2 i .The whole projection pursuit regression process is simplified 
by decoupling the direction {3 search from training the SISO subnets. Albeit, its 
success depends upon an ability to rapidly discern the significant directions {3i. 

3.2 Implementations 

There are several variants in the implementation of projection pursuit training al­
gorithms. General PPR procedure can be implemented in one stage by computa-
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type m(t+l) e(t) d(t+1) 

Monday 2.35/3.45 1.25/1.60 2.76/3.49 
Tue.-Fri. 2.37/2.83 1.65/1.66 2.15/2.66 
Saturday 2.67/3.16 2.78/3.96 2.57/3.04 
Sunday 3.15/5.38 2.63/3.67 2.29/3.61 

Table 3: Forecasting performance (training/testing percentage error) of projection 
pursuit trained networks 

tionally intensive numerical methods, or in a two-stage heuristic (finding f3i, then 
Bi) as proposed here. It can be implemented with or without back fitting after the 
PPR phase is done. Intrator [1992] has recently suggested incorporating the pro­
jection index into the objective function and then running an overall BPA. Other 
variants in training each Bi net include using nonparametric smoothing techniques 
such as LOESS or kernel methods. BP training can then be applied only in the 
last stage to fit the smoothed curves so obtained. The complexity of each subnet 
is then largely determined by the smoothing parameters, like window sizes, inher­
ent in most nonparametric smoothing techniques. Another practical advantage of 
this process is that one can incorporate easily fixed functions of a single variable 
(e.g. linear nodes or quadratic nodes) when one's prior knowledge of the data 
source suggests that such components may be present. Our current implementation 
employs the two-stage algorithm with simple (either one or two nodes) logistic Bi 
subnets. Each SISO Bi net runs a BP algorithm to fit the data. The directions f3i 

are calculated based on minimizing a projection index (dispersion of level-sets, de­
scribed in Section 4) which can be executed in a direct fashion. One can encourage 
the convergence of backfitting by using a relaxation parameter (like a momentum 
parameter in BPA ) to control the amount updated in the current direction. Train­
ing (fitting) of each (SISO) 3 i net can be carried out more efficiently than running 
BP based on high-dimensional inputs, for example, it is less expensive to evaluate 
the Hessian matrices in a Bi net than in a full BPA networks. 

3.3 Forecasting Results 

Experimental results were obtained using the two-component feature data sets 
which gave the earlier baseline performance. To calibrate the performance we em­
ployed in all twelve projection pursuit trained networks an uniform architecture of 
three subnets ( a (1,2, 2)-logistic network), matching the 5 nodes of the BP net­
work of Section 2. The number of backfitting cycles was set to 20 with a relaxation 
parameter w = 0.1. BPA was employed for fitting each Binet. The training/testing 
percentage absolute errors are given in Table 3. The limited data sets in the cases 
of individual days (Monday, Saturday, Sunday) led to failure in generalization that 
could have been prevented by using one or two, rather than three, subnets. 
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4 Dimension Reduction 

4.1 Index of Level-Set Dispersion 

A key step in the projection pursuit training algorithm is to find for each 3 i net 
the projection direction f3i' an instance of the important problem of economically 
choosing input features/variables in constructing a forecasting model. In general, 
the fewer the number of input features, the more likely are the results to generalize 
from training set performance to test set performance- reduction in variance at the 
possible expense of increase in bias. Our controlled size subnet projection pursuit 
training algorithm deals with part of the complexity problem, provided that the 
input features are fixed. We turn now to our approach to finding input features 
or search directions based on minimizing an index of dispersion of level-sets. Li 
[1991] proposed taking an inverse ('slicing the y's') point of view to estimate the 
directions f3i. The justification provided for this so-called slicing inverse regression 
(SIR) method, however, requires that the input or feature vector x be elliptically 
symmetrically distributed, and this is not likely to be the case in our electric load 
forecasting problem. The basic idea behind minimizing dispersion of level-sets 
is that from Eq. (*) we see that a fixed value of y, and small noise £, implies 
a highly constrained set of values for f3ix, ... ,f3~x, while leaving unconstrained the 

components of x that lie in the subspace B~ orthogonal to that space B spanned by 
the f3i.. Hence, if one has a good number of i.i.d. observations sharing a similar value 
of the response y, then there should be more dispersion of input vectors projected 
into Bl.. than along the projections into B. We implement this by quantizing the 
observed y values into, say, H slices, with Lh denoting the h_th level-set containing 
those inputs with y-value in the h_th slice, and X-h is their sample mean. The f3 are 
then picked as the the eigenvector associated with the smallest eigenvalue of the 
centered covariance matrix: 

H 

L L (Xi - x"h)(Xi. - Xh)'. 

h=l xiELh 

4.2 Implementations 

In practical implementations, one may discard both extremes of the family of H 

level sets (trimming) to avoid large response values when it is believed that they 
may correspond to large magnitudes of input components. One should also stan­
dardize initially the input data to a unit sample covariance matrix. Otherwise, our 
results will reflect the distribution of x rather than the functional relationship of 
Eq. (*). We have applied this projection index both in finding the f3i. during pro­
jection pursuit training and in reducing a high-dimensional feature set to a low­
dimensional feature set. We have implemented such a feature selection scheme for 
forecasting the Monday - Friday evening peaks. The initial feature set consists of 
thirteen hourly loads from lam to 1pm, thirteen hourly temperatures from lam to 
1pm and the temperature around the peak times. Three eigenvectors of the cen­
tered covariance matrix were chosen, thereby reducing a 27-dimensional feature set 
to a 3-dimensional one. We then ran a standard BPA on this reduced featured set 
and tested on the 1991 data. We obtained a percentage absolute error of 1.6% (rms 
error about 100 MWH), which is as good as all of our previous efforts. 
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