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Abstract

This paper studies the error in forecasting a dynamic time series with a deterministic com-
ponent. We show that when the data are strongly serially correlated, forecasts based on a
model which detrends the data before estimating the dynamic parameters are much less precise
than those based on an autoregression which includes the deterministic components. The local
asymptotic distribution of the forecast errors under the two-step procedure exhibits bimodality,
and the forecasts are conditionally median biased in a direction that depends on the order of the
deterministic trend function. We explore the conditions under which feasible GLS detrending
can lead to forecast error reduction. The finite sample properties of OLS and feasible GLS
forecasts are compared with forecasts based on unit root pretesting. The procedures are applied
to fifteen macroeconomic time series to obtain real time forecasts. Forecasts based on feasible
GLS detrending tend to be more efficient than forecasts based on OLS detrending. Regardless
of the detrending method, unit root pretests often improve forecasts.
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1 Introduction

An important use of economic modeling is generating forecasts. If one is interested in forecasting a

single time series variable, the starting point is often statistical models of which ARMAmodels have

become most widely used. In many cases ARMA models perform surprisingly well. Alternatively,

one could base forecasts on structural models that incorporate economic theory. The usefulness of

structural models is often measured by forecast precision compared to forecasts using parsimonious

ARMAmodels. Given the many uses of forecasts from ARMAmodels, it seems sensible to construct

these forecasts using the best methodology possible. We show in this paper that the way in which

deterministic components (mean, trend) are treated matters in important ways for ARMA forecasts

when the data are strongly serially correlated. In particular, we show that using GLS detrending

when estimating AR models can improve forecasts compared to OLS when the errors are highly

persistent.

Suppose we are interested in forecasting the h step ahead value of a covariance stationary process

with a Wold moving-average representation yt = mt + ψ(L)et, where

mt = δ0 + δ1t . . .+ δpt
p = δ0zt

denotes the deterministic component. Assuming a quadratic loss function, the minimum mean

squared error of the h-step ahead forecast conditional upon lags of yt is given by the Kolmogorov-

Wiener (KW) prediction formula:

yt+h|t = mt+h +
·
ψ(L)

Lh

¸
+

1

ψ(L)
(yt −mt),

where [ψ(L)/Lh]+ = ψh + ψh+1L + ψh+2L
2 . . .. If we specialize to data generated with ψ(L) =

(1− αL)−1, we have:
yt = mt + ut, (1)

ut = αut−1 + et. (2)

By the KW prediction formula, the optimal forecast for this AR(1) model is

E(yt+h|yt, yt−1, . . .) = yt+h|t = mt+h + αh(yt −mt). (3)

But (3) is not the only way to forecast the AR(1) model. It is well known that, given information

available at time t, as summarized by some vector xt, the linear forecast conditional on xt with

the smallest mean squared error (MSE) is provided by the linear projection of yt+1 on xt. That is,
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yt+1|t = θ0xt, where θ0 = E(yt+1x0t)[E(xtx0t)]−1. Therefore, if we write the DGP as:

yt =
pX
i=0

βit
i + αyt−1 + et (4)

= Bt + αyt−1 + et,

and let xt = (zt, yt−1), the optimal one-period ahead forecast is yt+1|t = Bt + αyt. By the chain
rule of forecasting, yt+h|t = Bt+h + αBt+h−1 + . . .+ αh−1Bt+1 + αhyt. Equation (4) will sometimes
be referred to as Durbin’s equation below.

If we know α and δ, the two approaches should give the same forecast since one model can be

reparameterized as the other exactly. However, α and δ are population parameters which we do not

observe1. The next best solution is to replace the required population parameters by their unbiased

estimates. But because any estimator of α must involve a lagged dependent variable which is not

fixed in repeated sampling, an unbiased estimator for α does not exist. Thus, the most that one

can do is to replace α by its consistent estimate. To obtain such an estimate when mt is unknown,

we can detrend the data prior to estimating α, or we can estimate Bt and α at the same time. In
this paper, we refer to these as the one-step and the two-steps procedures respectively.

A quick review of textbooks reveals that, although (1) and (2) are always used instead of (4)

to present the theory of optimal prediction,2 the practical recommendation is not unanimous. For

example, Pindyck and Rubinfeld (1998, p. 565) and Johnston and Dinardo (1997, p.192, p.232)

used (1) and (2) to motivate the theory, but their empirical examples are based upon (4) (see, e.g.

Table 6.5). Examples considered in Diebold (1997), on the other hand, are based on an estimated

trend function with a correction for serial correlation in the noise component (see, for example, p.

231). This is consistent with using (1) and (2) as the forecasting model.

This paper is motivated by the fact that while yt+h|t is unique, its feasible counterpart is

not. Depending on how the parameters are estimated, the mean-squared forecast errors should

be expected to be different. A huge body of work exists in the literature which concerns efficient

estimation of the trend coefficients when the error term is serially correlated but strictly stationary.

More recently, Canjels and Watson (1997) and Vogelsang (1998) considered inference on bδ1 when
ut is highly persistent and possibly has a unit root. Inference on bα has also drawn a great deal of
attention, but that literature takes the deterministic components as nuisance parameters. Although

studies by Stock (1995, 1996, 1997) and Diebold and Kilian (1999) are all motivated by the fact

that forecasting time series with a large autoregressive root raises a host of special issues, these

1In principle, the optimal forecast is inoperational also because we do not have information on the infinite lags of
yt. For the AR(p) model which is of interest here, we only need information of the past p lags of yt .

2See, for example, Hamilton (1995, p.81) and Box, Jenkins and Reinsel (1994, p. 157). The exception is
Clements and Hendry (1994).
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analysis have concentrated on the dynamic component of the forecast. But when the objective of

the exercise is forecasting, the properties of bδ and bα can no longer be considered in isolation. Good
forecasts require negatively correlated and precise estimates of both dynamic and deterministic

parameters . As will become clear, the error in estimating the deterministic and the dynamic terms

interact in ways such that the properties of the forecast error can be very different from those

derived under the assumption that the deterministic terms are absent.

In this article, the choice of estimators is assessed from the point of view of forecasting. We

focus on two issues. First, do one and two steps detrending by OLS differ in ways that practitioners

should care? Second, does efficient estimation of the deterministic components improve forecasts?

The answers to both of these questions are yes. Theoretical and empirical properties of the forecast

errors under least squares and GLS detrending are presented in Sections 2 and 3. In Section 4, we

take the procedures considered to the data. We begin in the next section with forecasts under least

squares detrending.

2 Forecasts Under Least Squares Detrending

Throughout our analysis, we assume that the data are generated by (1) and (2). We only consider

the two leading cases for mt. That is, when p = 0, mt = δ0 and zt = 1. When p = 1, mt = δ
0 · zt,

where δ0 = [δ0 δ1] and zt = [1, t]. Given {yt}Tt=1, we consider the one-step ahead forecast error
given information at time T ,

eT+1|T = yT+1 − byT+1|T
= yT+1 − yT+1|T + yT+1|T − byT+1|T
= eT+1 + beT+1|T .

The innovation eT+1 is unforecastable given information at time T and is beyond the control of

the forecaster. A forecast is best in a mean-squared sense if byT+1|T is made as close to yT+1|T as
possible in a mean squared sense. Throughout, we refer to beT+1|T as the forecast error. Several
options are available. If one uses (4) as the forecasting model, one can obtain as a feasible forecast:

yT+h|T = cBT+h + α bBT+h−1 + . . .+ bαh−1cBT+1 + bαhyT , (5)

where bBt and bα can be obtained by maximizing the the exact log likelihood corresponding to (5)
which, through the first observation, imposes the assumption that |α| < 1. If a forecaster so chooses
to apply the KW prediction formula, the feasible forecast is:

byT+h|T = bmT+h + bαh(yt − bmt), (6)
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where estimates of bα and bδ can be obtained by maximizing the exact log-likelihood associated with
(6) which again imposes the assumption that |α| < 1.

In practice, forecasts are rarely based upon maximum likelihood estimates. Instead, one relies

on least squares estimation of the required parameters. This is valid because any bα and bδ that are
consistent for α and δ can be used to produce feasible forecasts. Taking this tradition as given, we

first seek to compare forecasts based upon (5) and (6) with all parameters estimated by OLS. This

leaves two strategies, labelled OLS1 and OLS2 hereafter:

1. OLS1: Estimate (4) by OLS directly in one step.

2. OLS2: Estimate δ from (1) by OLS to obtain but = yt − bmt. Then estimate α from (2) by

OLS but replace ut by but.
Both procedures yield conditional least squares estimates. Evidently, the dependence of bβ on bα

is ignored by OLS1.

2.1 Finite Sample Properties

We first consider the finite sample properties of the forecast errors by monte-carlo experiments.

Our main focus is on AR(1) processes. We consider the constant and the linear trend case, each

for 10 values of α:

δ = 0 when p=0 and δ = [0 0]
0
when p=1;

α = −.4, 0, .4, .8, .9, .95, .975, .99, 1.0, 1.01.

The choice of the parameter set reflects the fact that many macro economic time series are highly

and positively autocorrelated. The errors are N(0, 1) generated using the rndn() function in Gauss

V3.27 with seed=99. For this section, we assume that u1 = 0.

We use T = 100 in the estimations to obtain up to h = 10 steps ahead forecasts. We use

10,000 replications to obtain the forecast errors beT+h|T = yT+h|T − byT+h|T , and then evaluate the
root mean-squared error (RMSE) and the mean absolute error (MAE). The MAE and the RMSE

provide qualitatively similar information and only the RMSE will be reported.

Table 1a reports results for h = 1. As benchmarks, we first consider two infeasible forecasts:-

i) OLSα2 which assumes α is known and ii) OLS
δ
2 which assumes δ is known. From these, we see

that when p = 0, the error in estimating α dominates the error in estimating δ0. But when p = 1,

the error in bδ dominates unless α ≥ .8. The RMSE for OLS2 is smaller than the sum of OLSα2

and OLSδ2, suggesting a negative covariance between bα and bδ. The RMSE at h = 10 confirms
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that the error from estimating α vanishes when α is far away from the unit circle but increases

(approximately) linearly with the forecast horizon when α is close to unity. However, the error in

estimating δ does not vanish with the forecast horizon even when α = 0 as the RMSE for OLSα2

shows.

The RMSE for OLS1 and OLS2 when both parameters have to be estimated are quite similar

when α < .8, but the similarity ends as the error process becomes more persistent.3 When p = 0,

OLS2 exhibits a sudden increase in RMSE and is sharply inferior to OLS1 at α = 1. When p = 1

the RMSE for OLS1 is always smaller than OLS2 when α ≥ .8. The difference is sometimes as

large as 20% when α is close to unity. Results for h = 10 in Table 1b show a sharper contrast in the

two sets of forecast errors. For a given procedure, the forecast errors are much larger when p = 1.

From the finite sample simulations, we see that from a RMSE standpoint, the method of de-

trending is by and large an irrelevant issue when α is small. But for empirically relevant cases when

α is large, one step least squares detrending clearly dominates two steps least squares detrending

in terms of RMSE. In the next subsection, we report an asymptotic analysis which provides some

theoretical explanations for the simulation results. We examine the large sample properties of

OLS1 and OLS2 when the data are persistent.

2.2 Asymptotic Properties of OLS Forecasts

Because the difference between OLS1 and OLS2 occurs for 0.8 ≤ α ≤ 1, we use a local-to-unity

framework with non-centrality parameter c to characterize the DGP as:

yt = δ0 + δ1t+ ut, (7)

ut = αTut−1 + et

αT = 1 +
c

T
,

where et is a martingale difference sequence with 2+d moments for some d > 0 and E(e
2
t ) = 1. We

assume that u0 = 0, and without loss of generality, let δ0 = δ1 = 0. For a given sample size, ut is

locally stationary when c < 0 and locally explosive when c > 0, but becomes an integrated process

as the sample size increases to infinity. In what follows, we let ⇒ denote weak convergence. For

t = [Tr] with 0 ≤ r ≤ 1, the functional central limit theorem implies that:

T−1/2u[Tr] = T−1/2y[Tr] ⇒ Jc(r),

where dJc(r) = cJc(r) + dW (r) is a diffusion and W (r) is a standard Brownian motion. The

demeaned and detrended variants of Jc(r) are then the limits of the residuals, but, obtained from
3Sampson (1991) showed that under least squares detrending, the deterministic terms have a higher order effect

on the forecast errors when ut is non-stationary.
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the projection of ut on 1 when p = 0, and on 1 and t when p = 1. These are, respectively,

p = 0 : T−1/2bu[Tr] ⇒ J̄c(r) = Jc(r)−
Z 1

0
Jc(s)ds, (8)

p = 1 : T−1/2bu[Tr] ⇒ eJc(r) = Jc(r)− (4− 6r) Z 1

0
Jc(s)ds− (12r − 6)

Z 1

0
sJc(s)ds. (9)

If a detrending procedure can remove mt without leaving asymptotic effects on the data, J̄c(r) andeJc(r) would have been identically Jc(r). From the above limits, we see that least squares detrending
leaves non-vanishing effects on the detrended data.

The limiting distribution of T (bα− α) can be conveniently written using the functional:
Φ(Bc,W ) =

R 1
0 Bc(r)dW (r)R 1
0 Bc(r)

2dr

for Bc that depends on the method of detrending. Under least squares detrending, T (bα − α) ⇒
Φ(J̄c,W ) when p = 0 and to Φ( eJc,W ) when p = 1.

We use two theorems to summarize the results.

Theorem 1 One Step Least Squares Detrending: OLS1(p)

• (p = 0): Let the data be generated by (7). Let bβ0 and bα be estimated from yt = β0+αyt−1+et
by OLS. Let J̄c(r) be defined as in (8). For h = 1, we have

beT+1|T = (β0 − bβ0) + (α− bα)yT .√
T beT+1|T ⇒ −J̄c(1)Φ(J̄c,W )−W (1)

≡ P(0).

• (p = 1): Let the data be generated by (7). Let bβ0, bβ1, and bα be estimated from yt = β0 +

β1t+αyt−1+et by OLS. Let eJc(r) be defined as in (9). Let Bt = β0+β1t. For h = 1 we have
beT+1|T = BT+1 − bBT+1 + (α− bα)yT ,

√
T beT+1|T ⇒ − eJc(1)Φ( eJc,W ) + Z 1

0
(2− 6r)dW (r)

≡ P(1).
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Theorem 2 Two Step Least Squares Detrending: OLS2(p)

• (p = 0): Let the data be generated by (7). Let bδ0 = ȳ = bmt ∀t, where ȳ = T−1PT
t−1 yt is the

least squares estimate of δ0. Let bα be the least squares estimate from a regression of but onbut−1 with but = yt − ȳ. Let J̄c(r) be defined as in (8). For h = 1,
beT+1|T = (δ0 − bδ0)(1− α) + (α− bα)(yT − bmT ).

√
T beT+1|T ⇒ −J̄c(1)Φ(J̄c,W ) + c

Z 1

0
Jc(r)dr

≡ Q(0).

• (p = 1): Let the data be generated by (7). Define bmt = bδ0+bδ1t, and let bδ0 and bδ1 be obtained
from least squares regression of yt on 1 and t, with but being the estimated residuals. Let bα be
the least squares estimate from a regression of but on but−1. Let eJc(r) be defined as in (9). For
h = 1, we have

beT+1|T = (mT+1 − bmT+1)(1− αL) + (α− bα)(yT − bmT ).
√
T beT+1|T ⇒ − eJc(1)Φ( eJc,W ) + ·Z 1

0
(6− 12r)Jc(r)dr

¸
− c

h eJc(1)− Jc(1)i
≡ Q(1).

The main implication of the two theorems is that forecasts based upon one and two step least

squares detrending are not asymptotically equivalent. This is in contrast to the often exploited

result that one and two steps detrending yields asymptotically equivalent estimates of α. This is

because bmt is not invariant to the method of detrending.
To further understand the asymptotic non-equivalence of OLS1 and OLS2, let us rewrite the

one step ahead forecast error in terms of but, the residuals from the projection of yt on zt = (1, t).
4

Consider also the artificial regression

yt = A0 +A1t+ et

where et is white noise. Let bA be the least squares estimates of A = (A0 A1)
0 so that bA − A =

(z0z)−1z0e. Then the forecast error for OLS1 can be written as:

beT+1|T = (α− bα)buT + (A0 − bA0) + (A1 − bA1)T + op(1). (10)

For OLS2, we have:

beT+1|T = (α− bα)buT + (1− c)(δ1 − bδ1)− cT−1(δ0 − bδ0). (11)

4When p = 0, the expressions simplify with A1 and δ1 = 0.
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The first term, (α− bα)buT , which we shall refer to as the dynamic factor, has a limiting distribution
that corresponds to the common term in Theorems 1 and 2. It depends on p but not on the method

of least squares detrending and is inconsequential as far as a comparison between the two methods

of least squares detrending is concerned. The remaining two terms in the forecast error, which we

refer to as the deterministic factor, depends not only on p but also on the method of detrending.

For a given p, bA−A = (z0z)−1z0e under OLS1, but bδ − δ = (z0z)−1z0u under OLS2. Since et is a
white noise process but ut is serially correlated, bA has smaller variance than bδ. Reduced parameter
uncertainty translates into smaller forecast errors.

The second reason why two steps least squares detrending is inferior is that δ0 cannot be

identified at c = 0 and hence not consistently estimable when α = 1. By continuity, bδ0 is imprecisely
estimated in the vicinity of c = 0. In our local to unity framework, T−1/2(bδ0− δ0) is Op(1) and has
a non-vanishing effect on OLS2. In consequence, the forecast error has a larger variance under two

steps least squares detrending. Equation (11) also highlights the fact that the deterministic factor

does not depend on c under OLS1 but does so under OLS2. Theorem 2 confirms that in large

samples, c remains in the distribution of OLS2 both directly, and indirectly through the diffusion

process. The forecast errors are thus unstable and sensitive to c around c = 0. This result nicely

illustrates in the most simple of models the care with which deterministic parameters need to be

estimated when constructing forecasts.

The difference between OLS1 and OLS2 extends to long horizon forecasts with horizon h sat-

isfying h/T → λ ∈ (0, 1). It can be shown that under OLS1,

OLS1(p) :
1√
T
beT+h|T ⇒ λP(p)

to a first approximation. Under OLS2, we have, to a first approximation,

OLS2(p) :
1√
T
beT+h|T ⇒ λQ(p),

for p = 0, 1. Thus, the long-horizon forecast errors diverge at rate
√
T , the same as the rate reported

in Stock (1997) for the case of no deterministic terms. Because the estimation of the deterministic

terms does not affect the rate at which the forecast error diverges over long-horizons, the properties

of the forecast errors can be understood by concentrating on h = 1.5

The asymptotic results given by Theorems 1 and 2 can be used to approximate the finite sample

behavior of the conditional forecast errors. In particular the mean and variances of the asymptotic

5The long horizon forecast errors depend on αh which takes a limit of exp(cλ) as h and T approaches infinity. The
stated results make use of the approximation that exp(cλ)− exp(bcλ) ≈ (c− bc)λ, from which it follows that to a first

approximation, the normalized forecast errors increase linearly with the forecast horizon. As in Phillips (1995), bαh is
an exponentiated random variable when α is local to unity instead of the usual result that bαh → 1 when h is fixed.
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distributions can shed light on the behavior of the bias and MSE of the forecast errors as c varies.

We approximate the limiting distributions by approximating W (r) and Bc(r) using using partial

sums of iidN(0, 1) errors with 500 steps in 10,000 simulations.6 Five values of c are considered:

-15, -5, -2, 0, 1. Densities of the asymptotic distributions are given in Figures 1 and 2 for p = 0

and 1 respectively. The result that stands out is that OLS2 is very sensitive to whether c ≥ 0.7

In particular, its dispersion increases and is bimodal when c ≥ 0. While OLS1 is also biomodal

when c > 0 and p = 0, there is no apparent increase in the dispersion of the distribution. These

asymptotic results are consistent with the finding in finite samples that the forecast errors are much

larger for OLS2 when c ≥ 0.
The sharp bimodality of OLS2 when c ≥ 0 warrants further explanation. Consider p = 0. From

Theorem 2, the limit of beT+1|T is the limit of −(yT − bmT )(bα − α) when c = 0. It is well known

that when α is near the unit circle, T (bα− α) is skewed to the left. Therefore if the deterministic
terms were absent and yT > 0, the forecast errors will be concentrated in the positive range.8

Stock (1996) evaluated the forecasts conditional on yT > 0 assuming mt is known and confirms

asymptotic median bias. In our setting, beT+1|T will be upward biased at c = 0 if yT − bmT > 0.

In Figure 3, we present the limiting error distribution conditional on yT − mT > 0. Although

this does not ensure that yT − bmT > 0, this appears to happen sufficiently frequently since the

conditional forecast error is still biased upwards. The bimodality in Figure 1 arises because yT− bmT
is unconditional and can take on positive or negative values. In effect, conditional median bias

in the dynamic component of the forecast error is necessary for bimodality in the unconditional

error distribution, but it is sufficient only for OLS2 when c = 0. Under OLS1, the deterministic

component does not drop out at c = 0. The downward biasedness of bα is no longer sufficient to
determine the sign of the prediction error, even if yT − bmT > 0. For the same reason, bimodality
is not observed when c < 0 under both methods of least squares detrending.

From Figures 1 and 2, we see that the unconditional forecast errors are roughly median unbiased.

However, the conditional forecast errors (conditional on yT −mT > 0) are upward biased when

p = 0 and downward biased when p = 1.9 Further examination reveals that while bα is downward
6The asymptotic MSE are in close range with the finite sample simulations for T = 500 which we did not report.

In particular, the RMSE for p = 0 at α = 1 are .078 and .089 respectively. The RMSE based on the asymptotic
approximations are .0762 and .0877 respectively. For p = 1, the finite sample RMSE are .109 and .143. The asymptotic
approximations are .108 and .142 respectively.

7The finite sample distribution of the forecast errors exhibit the same properties.
8Using Edgeworth expansions and assuming α is bounded away from the unit circle, Phillips (1979) showed that

the exact distribution of beT+h|T will be skewed to the left if yT > 0 once the dependence of bα on yT is taken into
account. His result is for strictly stationary process and applies in finite samples. Thus, the median bias conditional
on yT > 0 observed here does not arise for the same reason.

9In finite sample results not reported, the unconditional median biases are small but the conditional median biases
are noticeable when c = 0, in accord with the asymptotic results.
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biased and induces a force for under-prediction, bmt is upward biased under both methods of least
squares detrending and dominates the error when p = 1. The result underscores the fact forecasting

with deterministic terms can yield errors with properties that can be quite different than when mt

is absent. The result also indicates that depending on the whether yT −mT > 0 in the data, median
bias can be possible.

Figures 1 and 2 also reveal that irrespective of the method of least squares detrending, the

forecast error distributions do not resemble that of bα. Estimation of the deterministic terms removes
much of the asymmetry in bα from the forecast error distribution. As well, except when c is negative
and far from zero, the error distribution for OLS2 does not resemble the normal distribution and

will pose problems for the construction of prediction intervals.

3 GLS Detrending

The foregoing analysis shows that OLS1 will dominate OLS2 when forecasting persistent time

series. But does there exist a two step procedure that can improve upon one step least squares

detrending? Two options come to mind. One possibility is fix α to remove variability due tobα. For highly persistent data, imposing a unit root on yt has been treated as a serious option.
We will return to this option subsequently. The alternative route is to search for estimates of δ

that have better properties than OLS. Indeed, it is well known that different ways of estimating the

serial correlation coefficient could have rather different finite sample implications for the parameters

of a regression model with stationary disturbances.10 The problem is that in the local to unity

framework, δ0 is not consistently estimable by any method.

Consider an alternative decomposition of the forecast error for an arbitrary two-step procedure:

√
T beT+1|T = T (α− bα)T−1/2uT + T (α− bα)T−1/2(buT − uT )

+
√
T (δ1 − bδ1)− cT−1/2(buT − uT ). (12)

The forecast error has three components: the error from estimating α (the first term), the error from

least squares estimation of the deterministic components (the last two terms), and the covariance

between the two errors (the second term). While a consistent estimate of δ0 is not achievable,

there may exist an estimator of δ0 with the property that T
−1/2(buT − uT ) = op(1). This property,

denoted criterion A, is desirable for forecasting because from (12) we see that
√
T beT+1|T will then

not depend, asymptotically, on the error in estimating δ0. If criterion A is not satisfied, then the

10Using the regression model yt = δ
0zt + ut where ut is AR(1) with parameter α strictly bounded away from the

unit circle and zt does not include a constant, Rao and Griliches (1969) showed, via monte-carlo experiments, that
GLS estimation of δ in conjunction with an initial estimate of α obtained from Durbin’s equation [i.e. (4)] is desirable

for the mean-squared-error of bδ when |α| > .3.
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next best is to have an estimator for δ that satisfies criterion B: the estimator should i) have a small

variance, ii) allow for efficient of α, and iii) have errors between bα and bδ that covary negatively.
In the rest of this analysis, we consider the ability of GLS in satisfying these properties.

The usefulness of GLS in forecasting was first analyzed by Goldberger (1962) who considered

optimal prediction based upon the model yt = δ
0zt+ut but E(uu0) = Ω is non-spherical. Goldberger

showed that the best linear unbiased prediction can be obtained by quasi-differencing the data to

obtain GLS estimates of δ, and then exploit the fact that if ut is serially correlated, the relation

between the uT+h and uT can be used to improve the forecast. When ut is an AR(1) process with

known parameter α, the one-step ahead optimal prediction reduces to yT+1 = bδ0zT+1+α(yT−bδ0zT ).
This amounts to application of the KW prediction formula using an efficient estimate of δ, assuming

α is known.

Estimation by GLS requires quasi-differencing the data. We consider the Prais-Winston (PW)

transformation which includes information from the first observation, and the Cochrane-Orcutt

(CO) transformation which drops information of the first observation. Specifically, for a given α,

the quasi-differenced data y+t and z
+
t , are constructed as follows:

• PW : For t = 2, . . . T , y+t = yt − αyt−1, z+t = zt − αzt−1, with y+1 = y1 and z+1 = z1,

• CO: For t = 2, . . . T , y+t = yt − αyt−1, z+t = zt − αzt−1.

Then eδ = (z+0z+)−1(z+0y+) is the GLS estimate of δ, and eut = yt − eδ0zt is the GLS detrended
data. Our treatment of the first observation under PW is necessitated by the fact that the original

PW sets x+1 =
√
1− αx1 which is invalid when α = 1. The stated PW transformation is valid

if u0 = 0 and was used by Elliott, Rothenberg and Stock (1996) to analyze the power of unit

root tests. Phillips and Lee (1996) used the same assumption to show efficiency gains for bδ1 from
quasi-differencing.11

With either way of quasi-differencing, Goldberger’s procedure does not, however, produce a

feasible forecast because α is unknown. The estimation of α affects the forecast error not just

directly through the dynamic component of the forecast, but also because quasi-differencing is

performed at bα rather than α. Rao and Griliches (1969) showed, via monte-carlo experiments,
that estimating bα from Durbin’s equation (4) is much more efficient than estimating it from an

autoregression in but or directly by non-linear least squares when α is positive. We take this result as
the starting point. Using bα estimated from (4) to quasi-difference the data, we now assess whether

11Canjels and Watson (1997) referred to this as conditional GLS. We label this as PW only because it retains
information in the first observation, in the same spirit as the Prais-Winston transformation.
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GLS detrended data satisfy the criterion A. In the local to unity framework above, this requires

that T−1/2eut ⇒ Jc(r), the limiting distribution of T
−1/2ut.

Lemma 1 Suppose eut is the GLS detrended data using the PW transformation at bα estimated from
Durbin’s equation. Let cW (r) = R 1

0 d
cW (r), and cW (r) =W (r)− (bc− c) R 10 Jc(s)ds.

1. p = 0: a) If u1 = Op(1), T
−1/2eut ⇒ Jc(r). b) If T

−1/2u1 ⇒ J−c , T−1/2eut ⇒ Jc(r)− J−c ;

2. p = 1: a) If u1 = Op(1), T
−1/2eut ⇒ Jc(r) − P3(bc,cW ). b) If T−1/2u1 ⇒ J−c , T−1/2eut ⇒

Jc(r)− P4(bc, J−c ,cW ).
The precise expressions for P3 and P4 are given in the Appendix. The important thing is that they

depend on bc, and possibly J−c . Thus, in general, PW detrending fails criterion A. As Canjels and

Watson (1997) noted, the efficiency of bδ1 under GLS detrending can be sensitive to the treatment
of the first observation. When u1 = Op(T 1/2) with limit J−c , the detrended data are not invariant

to this limit both when p = 0 and when p = 1. But if u1 = Op(1), the detrended data does not

depend on the initial condition as the Theorem indicates. When p = 0, this is sufficient for uT to

be treated as though it were known in large samples. When p = 1, this is not sufficient. Elliott

et al. (1996) considered quasi-differencing the data at some fixed ᾱ = 1 − c/T and showed that
when there is a linear trend, ᾱ will remain in the limiting distribution of the detrended data. Not

surprisingly, we find the effects of bα to persist in the detrended data when p = 1. Naturally, bα adds
variability to the forecast errors via quasi-differencing.

Now consider the case of CO GLS detrending. Although PW and CO yields asymptotically

equivalent estimates of δ0 in a covariance stationary framework, as the following lemma shows this

is no longer the case in a nearly integrated setting.

Lemma 2 Suppose eut is the GLS detrended data using the CO transformation. Then for p = 1, 2,
T−1/2eut ⇒ Jc(r)−Cp(bc,cW ),

where Cp(·) for p = 0, 1 are defined in the Appendix.

By construction, CO ignores the initial observation and therefore the limiting distributions of the

detrended data are invariant to the initial condition assumption. This can turn out to be a practical

advantage because the initial condition assumption is difficult to validate. However, under CO,bα always plays a non-vanishing role in the detrended data. Not only is Cp non-degenerate, they
contain terms that are proportional to bc−1 (see the Appendix). The variance of the detrended data
can thus be large when bc is close to zero. Thus, the CO fails both criterion A and B.
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Lemmas 1 and 2 show that detrending by GLS will, in general, have asymptotic effects on the

forecasts, just like OLS. There is only one exception. When p = 0 and u1 = Op(1), then from Lemma

1 we see that criterion A is satisfied and it follows that beT+1|T = (δ0−eδ0)(1− bα)+(α− bα)(yT −mT )
and

√
T beT+1|T ⇒ −Jc(1)Φ(J̄c,W ).

Evidently, the error distribution depends on least squares detrending only to the extent that bα is
based on one step least squares detrending. Therefore, if eα were obtained from GLS detrended

data, the effects of detrending on the forecast error can be completely removed.

Lemma 3 When p = 0, u1 = Op(1) and α is re-estimated from an autoregression using GLS

detrended data, eeT+1|T = (δ0 − eδ0)(1− eα) + (α− eα)(yT −mT ). Then under PW ,
√
T beT+1|T ⇒ −Jc(1)Φ(Jc,W ).

In this very special case, the forecast error has the same properties as if the deterministic terms

were known. But note it entails efficient estimation of both δ and α. More generally, the fact that

GLS detrending yields more efficient estimates of δ and can improve the power of unit root tests

does not imply they will yield more efficient forecasts.

3.1 Finite Sample Properties of Feasible GLS Forecasts

From the above, we see that the efficiency of feasible GLS forecasts cannot be presumed. The

desirability of feasible GLS forecasts thus depends on the data under investigation. In this section,

we consider six GLS estimators. A QDn forecast for QD = PW or CO is constructed as follows,

1. Obtain an initial estimate of α by OLS1.

2. Transform yt and zt by QD to obtain y
+
t and z

+
t . Then

eδ = (z+0z+)−1(z+0y+). The detrended
data is eut = yt − eδ0zt.

3. If n = 0, stop. If n = 1, then re-estimate α from (2) with ut replaced by eut. Denote this
estimate by eα. For n > 1, repeat (a) and (b) until the change in eα between iterations is small.

The objective of iterative estimation (n > 0) is to bring the estimates of α and δ closer to being

jointly optimal.

The simulations are performed using three sets of assumptions on u1:

• Assumption A: u1 = e1 ∼ N(0, 1).
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• Assumption B: u1 ∼ (0,σ2e/(1− α2)) for α < 1.

• Assumption C: u1 =P[κT ]
j=0 α

je1−j, κ > 0.

Under A, u1 = Op(1) and does not depend on unknown parameters. Under B, u1 depends on

α. Elliott (1997) showed that unit root tests based on GLS detrending are farther away from the

asymptotic power envelope under B than A. Under C, u1 = Op(T
1/2). Canjels and Watson (1997)

found that the efficiency of bδ1 under PW-GLS is reduced when κ > 0. Assumption A is a special
case of C with κ = 0. In the local asymptotic framework, u1 is Op(T

1/2) under both Assumptions

B and C.

In practice, application of feasible GLS to persistent data faces the additional problem that bα
could exceed unity, but quasi-differencing is valid only if bα < 1. This problem is circumvented in the
simulations as follows. If an initial bα exceeds one, it is reset to one prior to PW quasi-differencing.

From a theoretical perspective, the distribution of the CO detrended data depends on bc−1 which
does not exist when bc = 0. Numerical problems were indeed encountered if we allow bα to be unity.
Therefore under CO, we set the upper bound of bα to .995. Simulations are performed under the
same experimental design described earlier, except that under Assumption B, only cases with α < 1

are evaluated. Canjels and Watson (1997) found that for small values of κ, the PW performs well.

Here, we report results for κ = 1, which is considerably large, to put the PW to a challenge.

The results are reported in columns 3 through 8 of Table 2 for p = 0 and Table 3 for p = 1.

Because the CO does not use information in the first observation, it is invariant to the assumption

u1. Differences in the results under alternative assumptions merely reflect sampling variability.

When α < .8, the gain in GLS estimation over the two OLS procedures is small, irrespective of

the assumption on u1. This is perhaps to be expected since the asymptotic equivalence of OLS

and GLS detrending follows from the classic result of Grenander and Rosenblatt (1957) when ut is

strictly stationary. However, as persistence in ut increases, there are notable differences.

For p = 0, first notice that PW0 displays a sharp increase in RMSE around α = 1 just like

OLS2. This shows that GLS estimation of δ alone will not always reduce forecast errors. The best

feasible GLS forecast depends on the initial condition. Under Assumption A, PW∞ outperforms all

OLS and GLS estimators at every value of α, sometimes by as much as 20%. Under Assumptions

B and C, OLS1 and CO are best when .8 ≤ α ≤ .9, and PW∞ has large errors. On the other had,

PW∞ performs very well when the data become more persistent. This situation is problematic

because the assumption on u1 cannot be validated in practice, and no single estimator does well

in every case. However, PW1 has errors similar to OLS1 when the data are mildly persistent,

outperforms PW∞ when the data are moderately persistent, dominates OLS1 and is second best
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to PW∞ when the data are extremely persistent. It is perhaps the best feasible GLS forecast when

p = 0.

It is of some interest to understand why PW0 performs so poorly, even worse than OLS2, when

α is at or near unity. Because the least squares error in bα and bδ0 covary negatively, and both bα andbδ enter the limit of OLS2, the two errors partially offset. But there is no independent effect of bδ0
on PW0 except through bα. Thus, PW0 cannot take advantage of the negative covariation betweenbα and bδ. In effect, it fails criterion B. For a feasible GLS forecast to be effective, bδ and bα need to
be jointly optimal.

Results for p = 1 are reported in Table 3. Because the contribution of bδ to the forecast error
is large (as can be seen from OLSα2 in Table 1a), the reduction in forecast error due to efficient

estimation of trends is also more substantial. The results in Table 3 show that irrespective of the

assumption on the initial condition, the forecast errors are smallest with PW∞. Even at the one

period horizon, the error reduction is 30% over OLS2. From a RMSE point of view, the choice

among the feasible GLS forecasts is clear when p = 1.

We also consider two forecasts based on pretesting for a unit root. Setting bα = 1 will generate
the best 1-step ahead forecast if there is indeed a unit root, and in such a case, even long horizon

forecasts can be shown to be consistent. Of course, if the unit root is falsely imposed, the forecast

will continue to be biased. But one can expect forecast error reduction if we impose a unit root for

α close to but not identically one. Campbell and Perron (1991) presented some simulation evidence

in this regard for p = 0, and Diebold and Kilian (1999) considered the case of p = 1.12 Stock and

Watson (1998) considered the usefulness of unit root pretests in empirical applications. However,

they forecast using OLS1 when the hypothesis is rejected, a procedure which we refer to as UP2.

In light of the efficiency of GLS over the OLS, we also consider using PW1 under the alterative of

stationarity. The PW1 is favored over PW∞ because it is somewhat more robust to assumptions

on u1. Specifically, we use the DFGLS (based on the PW transformation) with one lag to test for

a unit root. If we cannot reject a unit root and p = 0, byT+1|T = yT . If p = 1, the mean of the

first differenced series is estimated. Denoting this by ∆y, then byT+1|T = yT +∆y. If a unit root is
rejected and a PW1 forecast is obtained, the procedure is labelled UP1 below.

The UP forecast errors are given in the last two columns of Tables 2 and 3. Irrespective of the

assumption on u1, UP1 has smaller RMSE than UP2, reflecting the improved efficiency of PW1

over OLS1. For both UP procedures, the trade-offs involved are clear: large reduction in RMSE

when the data are persistent versus small increase in error when the largest autoregressive root

12Diebold and Kilian (1999) found that pretesting is better than always setting bα = 1 and is often better than
always using the OLS estimate of α.
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is far from unity. If the unit root test always rejects correctly, the RMSE for α < 1 would have

coincided with PW1 or OLS1. This apparently is not the case and reflects the fact that power

of the unit root test is less than one. The increase in RMSE from falsely imposing a unit root

is larger when p = 0. Nonetheless, the reduction in forecast errors are substantial for values of

α very close to or at unity. This arises not just because variability in bα is suppressed, but also
because first differencing bypasses the need to estimate δ0, the key source of variability with any

two step procedure. Note, however, that although the RMSE are robust to the assumption on u1,

the unconditional median biases (not reported) are quite substantial under Assumption A, but not

under B and C.

An overview of the alternatives to OLS1 is as follows. The two UP procedures clearly yield the

minimum RMSE when α is at or ² away from one. The problem, of course, is that ² is unknown

and varies with the data in question. Of the GLS forecasts, PW∞ performs very well when p = 1,

but the choice is less clear when p = 0 because the results are sensitive to u1. Nonetheless, feasible

GLS and UP forecasts rarely do worse than OLS and should be useful in practice.

4 Empirical Examples

In this section, we take the procedures to fifteen U.S. macroeconomic time series. These are GDP,

investment, exports, imports, final sales, personal income, employee compensation, M2 growth rate,

unemployment rate, 3 month, 1 year, and 10 year yield on treasury bills, FED funds rate, inflation

in the GDP deflator and the CPI. Except for variables already in rates, the logarithm of the data

are used. Inflation in the CPI is calculated as the change in the price index between the last month

of two consecutive quarters. All data span the sample 1960:1-1998:4 and are taken from FRED.

Throughout, we use k = 4 lags in the forecasting model. Stock and Watson (1998) found little

to gain from using data dependent rules for selecting the lag length in forecasting exercises. Four

lags are also used in the unit root tests. We assume a linear time trend for the seven National

Account series. Although the unit root test is performed each time the sample is extended, we

only keep track of unit root test results for the sample as a whole. Except for investment, the unit

root hypothesis cannot be rejected in the full sample for the first seven series. For the remaining

variables, we assume p = 0. The DFGLS rejects a unit root in M1 growth, unemployment rate and

CPI inflation.

Since the proceeding analysis assumes k = 1, a discussion on quasi-differencing when k > 1 is

in order. We continue to obtain bαi, i = 1, . . . , k from Durbin’s equation. We experimented with

two possibilities. The first is to quasi-difference at bα = Pk
i=1 bαi. The alternative option is to let

x+t = xt −Pk
i=1 bαixt−i for t = k + 1, . . . , T . For the CO, we now loose k observations but no
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further modification is required. For the PW , we additionally assume x+i = xi −
Pi
j=1 bαjxi−j for

i = 1, . . . , k. The forecasts are then based on four lags of the quasi-transformed data. Based on

our limited experimentation, both approaches give very similar forecast errors and we only report

results based on the first procedure. That is, quasi-differencing using the sum of autoregressive

parameters.

Our results are based on 100 real time, one period ahead forecasts. Specifically, the first forecast

is based on estimation up to 1973:4. The sample is then extended by one period, the models re-

estimated, and a new forecast is obtained. Because we do not know the data generating process

for the observed data, the forecast errors reflect not only parameter uncertainty, but also potential

model misspecification. Procedures sensitive to model misspecification may have larger errors than

found in the simulations when the forecasting model is correctly specified.

Our results are summarized in terms of the average RMSE. This is reported in Table 4a. Many

of the minimum RMSE is given by UP1. The feasible GLS procedures rarely come out on top. Half

of the worst RMSE is due to the two OLS procedures, with PW0 and CO0 taking two of the worst

positions each. The impression from these results is that the macroeconomic data considered are

sufficiently persistent that we do best by exploiting pretests for a unit root.

Because we only have 100 forecasts on which to average (whereas in the simulations we have

10,000), a procedure may do well very in all but a few periods, but occasional large errors may drag

down the ranking. As a final check, we also consider a relative efficiency index, defined for the 10

forecasts label j = 1 to 10 as:

REjt =
|bet+1,j|t|

maxj|bet+1,j|t| .
It measures the one period ahead MAE of model j given information in time t relative to the worst

model. The model with a smallest index on average is the best. These are reported in Table 4b. By

this measure, OLS accounts for seven of the fifteen worst efficiency, with CO0 and PW0 taking six

of the remaining eight worst forecasts. While the unit root pretest still comes out on top in three

of the sixteen cases, in half the cases, PW1 and PW∞ are the best. The average RMSE and the

efficiency index differ in how big errors are being weighed. A complete analysis on the appropriate

loss function in this situation is beyond the scope of the present analysis, but both measures suggest

a role for feasible GLS and unit root pretest in forecasting dynamic time series. 13

Table 4c reports median bias in the forecasts defined as Pr(beT+h|T > 0). Median bias is generally
larger when a time trend is present. In those seven cases, the forecasts are upward biased, consistent

13The real time forecasts could be more formally compared using the simple test proposed by Diebold and Mariano
(1995). However, their test is applicable for pairwise comparison of forecasts. Because we are considering 10 forecasts,
it is not clear nor obvious how to implement the Diebold and Mariano (1995) test.
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with the finite sample simulation results conditional on yT −mT > 0. Of the remaining series in
rate form, only the M2 growth rate exhibits noticeable median bias. Interestingly, forecasts that

are more efficient also tend to have larger median bias. While the median bias observed is not

large enough to be of serious concern, this bias should be taken into account in the construction of

prediction intervals.

Several results come out in both the simulations and the empirical examples. First, feasible

GLS can usually do better than OLS. Second, PW0 is not to be recommended. As explained earlier,

this is because bα and bδ are not jointly optimal under PW0. Third, the iterative PW is preferred

over iterative CO because the latter could be unstable at bα close to unity. Interesting, because bα
is downward biased, iterative estimation generally leads to upward revision in the estimate, and

aggravates the problem. In results not reported, we count the number of times a procedure gives

the smallest and largest MAE respectively. The numbers confirm that many of the worst forecasts

come from the two OLS procedures and PW0. But CO∞ also has its fair share of worst forecasts.

Fourth, unit root pretesting is desirable when α is very close to unity. But results one and four

together imply that when a unit root is rejected, a feasible GLS (such as PW1) is a better alternative

to OLS1. The numerical results indeed favor UP1 over UP2.

5 Conclusion

In this paper, we show that the forecast errors based upon one step OLS detrending and two steps

OLS detrending have rather different empirical and theoretical properties when the autoregressive

root is large. This is in sharp contrast to the asymptotic invariance of bα to the same two methods
of detrending. We then show that efficient estimation of deterministic trend parameters by GLS

may improve forecasts under some conditions. Finite sample simulations show that iterative GLS,

especially under PW , usually yields smaller forecast errors than one step OLS detrending. In

empirical applications to highly persistent data, unit root pretesting yields the lowest average

RMSE. However, by a measure of relative efficiency, feasible GLS forecasts are found to be desirable.

When forecasting persistent time series with deterministic components, use of PW1 with or without

unit root pretesting dominates least squares detrending.
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Appendix

The following limits are used in the evaluation of the limiting distribution of the forecast errors.

Its derivations are straightforward and hence omitted.

Lemma 4 • When p = 0,

T−1/2(bδ0 − δ0)⇒ Z 1

0
Jc(r)dr.

• When p = 1,

T−1/2(bδ0 − δ0) ⇒
Z 1

0
(4− 6r)Jc(r)dr,

T 1/2(bδ1 − δ1) ⇒
Z 1

0
(12r − 6)Jc(r)dr.

Proof of Theorems 1 and 2:

Under OLS2,

byT+1 = bmT+1 + bα(yT − bmT ),
= bδ0 + bδ1(T + 1) + bα(yT − bδ0 − bδ1T ).

Then

beT+1|T = (mT+1 − bmT+1) + α(yT −mT )− bα(yT − bmT ),
= (mT+1 − bmT+1) + αuT − bα(mT + uT − bmT ),
= (1− bαL)(mT − bmT ) + (α− bα)uT .

When p = 0, mt − bmt = δ0 − bδ0 for all t. Since α = 1 + c/T , we have, for p = 0,
beT+1|T = (α− bα)(uT + δ0 − bδ0)− cT−1(δ0 − bδ0),

T 1/2beT+1|T = T (α− bα)(T−1/2uT + T−1/2(δ0 − bδ0))− cT−1/2(δ0 − bδ0),
= T (α− bα)T−1/2buT − cT−1/2(δ0 − bδ0),
⇒ −φ(J̄c,W )J̄c(1) + c

Z 1

0
Jc(r)dr.

When p = 1, bmt = δ0+ δ1t and therefore (1− bαL)(mT+1− bmT+1) = (1− bα)(mT − bmT )+ (δ1−bδ1).
It follows that

beT+1|T = (1− bα)(mT − bmT ) + (δ1 − bδ1) + (α− bα)uT ,
= (α− bα)(mT − bmT + uT ) + (δ1 − bδ1)− cT−1(buT − uT ),

T 1/2beT+1|T = T (α− bα)T−1/2buT + T 1/2(δ1 − bδ1)− cT−1/2(buT − uT ),
⇒ −Φ( eJc(r),W ) eJc(1)− Z 1

0
(12r − 6)Jc(r)dr − c

h eJc(1)− Jc(1)i .
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Under OLS1, let β = (β0 β1)
0. Then

byT+1|T = bβ0 + bβ1(T + 1)bαyT ,beT+1|T = (β0 − bβ0) + (β1 − bβ1)(T + 1) + (α− bα)(mT + uT ),
= −[1 T + 1](β − bβ) + (α− bα)(mT + uT ).

We first show that the forecast error is invariant to the true values of δ0 and δ1. By partitioned

regression, recall that zt = (1, t), and let y−1 = {y0, y1, . . . , yT−1}. Also let D be a T × 2 matrix
with 0 in the first column and 1 in the first column. Then

bβ − β = (z0z)−1z0e− (z0z)−1z0y−1(bα− α),
= (z0z)−1z0e− (z0z)−1z0(zδ −Dδ + u−1)(bα− α),
= (z0z)−1z0e− (δ0 − δ1, δ1)0(bα− α)− (z0z)−1z0u−1(bα− α).

Substituting this result into the expression for beT+1|T , we have
beT+1|T = −[1 T + 1][(z0z)−1z0e− (z0z)−1z0u−1(bα− α)]

+(δ0 − δ1 + δ1T + δ1)(bα− α) + (α− bα)(mT + uT ),
= −[1 T + 1][(z0z)−1z0e− (z0z)−1z0u−1(bα− α)] + (α− bα)uT ,

which does not depend on δ. Therefore, without loss of generality, we let δ = 0 so that yT = uT .

Consider the artificial regression yt = A0+A1t+et where et is white noise. Then bβ−β and beT+1|T
simplify to

bβ − β = (z0z)−1z0e− (z0z)−1z0u−1(bα− α),
≡

" bA0 −A0bA1 −A1
#
−
" bδ0 − δ0bδ1 − δ1

#
(bα− α),

beT+1|T = (β0 − bβ0) + (β1 − bβ1)(T + 1) + (α− bα)uT .
Therefore,

beT+1|T = (δ0 − bδ0)− ( bA0 −A0) + (δ1 − bδ1)(α− bα)(T + 1)− ( bA1 −A1)(T + 1) + (α− bα)uT ,
= (α− bα)(mT − bmT + uT ) + (δ1 − bδ1)(α− bα)− ( bA0 −A0)− ( bA1 −A1)(T + 1),
= (α− bα)buT + (δ1 − bδ1)(α− bα)− ( bA0 −A0)− ( bA1 −A1)(T + 1),

T 1/2beT+1|T = T (α− bα)T−1/2buT − T 1/2( bA0 −A0)− T 3/2( bA1 −A1) + op(1).
Since "

T 1/2 0

0 T 3/2

#" bA0 −A0bA1 −A1
#
⇒
"
4 6
−6 12

#" R 1
0 dW (r)R 1
0 rdW (r)

#
,
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T 1/2eT+1|T ⇒−Φ( eJc,W ) eJc(1)− Z 1

0
(6r − 2)dW (r).

For p = 0, the last term A1 does not exist and A0 = T
−1PT

t=1 et. Thus,

T 1/2beT+1|T = T (α− bα)buT − T−1/2 TX
t=1

et

⇒ −Φ(J̄c,W )J̄c(1)−W (1).

For long horizon forecasts, consider OLS2 when p = 0.

beT+h|T = (δ0 − bδ0)(1− bαh) + (αh − bαh)(yT − δ0)
= (δ0 − bδ0)(1− αh) + (αh − bαh)(yT − bδ0)

T−1/2beT+1|T = T−1/2(δ0 − bδ0)(1− αh) + (αh − bαh)(yT − bδ0)
⇒ cλ

Z 1

0
Jc(r)dr − λJ̄c(1)Φ(J̄c,W ) ≡ λQ(0),

since αh → exp(cλ) ≈ 1 + cλ. For OLS1,

beT+1|T = (β0 − bβ0)
"
1− bαh
1− bα

#
+ (α− bαh)yT ,

under the assumption that δ0 = 0. Since 1−bαh ≈ −λbc, and 1−bα ≈ −bcT−1, (1−bαh)(1−bα)−1 ≈ λT .
Thus,

T−1/2beT+1|T ≈ √T (β0 − bβ0)λ− (c− bc)λT−1/2yT ⇒ λP(0).

Results for p = 1 can be derived analogously.

GLS Detrending

Under PW and the assumption that u1 = Op(1),

1. When p = 0, T 1/2(eδ0 − δ0 − u1) = Op(1),
T−1/2eut = T−1/2ut − T−1/2(eδ0 − δ0)⇒ Jc(r).

2. When p = 1, (eδ0 − δ0)⇒ J−c . Let bθ = (1 + bc2/3− bc)−1. Then
T 1/2(eδ1 − δ1) ⇒ bθ Z 1

0
(1− bcs)dcW (s),

T−1/2eut = T−1/2ut − T−1/2(eδ0 − δ0)−√T (eδ1 − δ1)t/T,
⇒ Jc(r)− rbθ Z 1

0
(1− bcs)dcW (s),

= Jc(r)− P3(bc,cW ).
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Under PW and the assumption that T−1/2u1 = Op(1),

1. When p = 0, T−1/2(eδ0 − δ0)⇒ J−c . Therefore,

T−1/2eut = T−1/2ut + T−1/2(eδ0 − δ0)⇒ Jc(r)− J−c.

2. When p = 1, T−1/2(eδ0 − δ0)⇒ J−c ,

T 1/2(eδ1 − δ1) ⇒ .5(bc− bc2)J−c + bθ Z 1

0
(1− bcs)dcW (s),

T−1/2eut ⇒ Jc(r)− J−c − .5rbθ(bc− bc2)J− − rbθ Z 1

0
(1− bcs)dcW (s),

≡ P4(bc, J−c ,cW ).
Under CO,

1. When p = 0, eδ0 − δ0 ⇒−bc−1 R 10 dcW (s)
T−1/2but ⇒ Jc(r) + bc−1 Z 1

0
dcW (s) ≡ Jc(r)−C0(bc).

2. When p = 1, T−1/2(eδ0 − bδ0)⇒ bc−2 R 10 (6− 4bc)− (12− 6bc2)sdcW (s),
T 1/2(eδ1 − δ1) ⇒ bc−1 Z 1

0
(6− 12s)dcW (s),

T−1/2eut ⇒ Jc(r)− bc−2 ·Z 1

0
(6 + 2bc)dcW (s) + (12 + 12bc− 6bc2)sdcW (s)¸

≡ Jc(r)−C1(bc,cW ).
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Table 1a: RMSE of OLS Forecast Errors: h = 1

α OLS1 OLS2 OLSα2 OLSδ2 OLS1 OLS2 OLSα2 OLSδ2
p = 0 p = 1

-0.400 0.142 0.141 0.100 0.100 0.228 0.225 0.205 0.100
0.000 0.143 0.141 0.099 0.101 0.228 0.225 0.203 0.101
0.400 0.144 0.143 0.099 0.101 0.230 0.228 0.202 0.101
0.800 0.153 0.152 0.096 0.104 0.242 0.249 0.200 0.104
0.900 0.163 0.162 0.092 0.108 0.253 0.270 0.196 0.108
0.950 0.175 0.173 0.084 0.114 0.263 0.292 0.186 0.114
0.975 0.183 0.179 0.068 0.122 0.264 0.310 0.169 0.122
0.990 0.180 0.180 0.041 0.131 0.257 0.319 0.146 0.131
1.000 0.174 0.196 0.000 0.142 0.244 0.314 0.109 0.142
1.010 0.191 0.292 0.087 0.161 0.220 0.297 0.036 0.161

Table 1b: RMSE of OLS Forecast Errors: h = 10

α OLS1 OLS2 OLSα2 OLSδ2 OLS1 OLS2 OLSα2 OLSδ2
p = 0 p = 1

-0.400 0.071 0.071 0.071 0.001 0.167 0.167 0.167 0.001
0.000 0.100 0.099 0.099 0.000 0.233 0.231 0.231 0.000
0.400 0.166 0.165 0.165 0.001 0.384 0.379 0.379 0.001
0.800 0.471 0.450 0.429 0.159 1.008 0.984 0.972 0.159
0.900 0.767 0.720 0.601 0.410 1.487 1.466 1.365 0.410
0.950 1.054 0.976 0.675 0.669 1.843 1.874 1.569 0.669
0.975 1.244 1.134 0.613 0.897 1.994 2.141 1.572 0.897
0.990 1.305 1.204 0.394 1.123 1.986 2.284 1.427 1.123
1.000 1.315 1.436 0.000 1.345 1.830 2.217 1.090 1.345
1.010 1.715 2.684 0.911 1.681 1.507 1.983 0.364 1.681

Notes:OLSα2 refers to OLS2 with α assumed known. OLS
δ
2 refers to OLS2 with δ assumed known.
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Table 2a: RMSE of GLS and UP Forecast Errors: p = 0, h = 1

u1 follows Assumption A.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.143 0.141 0.143 0.142 0.143 0.142 0.143 0.142 0.148 0.148
0.400 0.144 0.143 0.144 0.143 0.144 0.143 0.144 0.143 0.146 0.147
0.800 0.153 0.152 0.153 0.146 0.153 0.146 0.153 0.147 0.151 0.157
0.900 0.163 0.162 0.163 0.145 0.163 0.144 0.163 0.146 0.175 0.187
0.950 0.175 0.173 0.174 0.145 0.175 0.141 0.175 0.139 0.174 0.182
0.975 0.183 0.179 0.179 0.159 0.180 0.143 0.180 0.140 0.142 0.146
0.990 0.180 0.180 0.173 0.205 0.174 0.152 0.175 0.145 0.102 0.105
1.000 0.174 0.196 0.168 0.287 0.163 0.165 0.164 0.153 0.068 0.070

Table 2b: RMSE of GLS and UP Forecast Errors: p = 0, h = 1

u1 follows Assumption B.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.147 0.146 0.147 0.146 0.147 0.146 0.147 0.146 0.143 0.143
0.400 0.148 0.147 0.148 0.147 0.148 0.147 0.148 0.147 0.144 0.146
0.800 0.154 0.154 0.154 0.155 0.154 0.155 0.154 0.165 0.142 0.155
0.900 0.162 0.163 0.162 0.173 0.162 0.164 0.162 0.177 0.164 0.182
0.950 0.172 0.174 0.172 0.198 0.172 0.165 0.172 0.165 0.172 0.183
0.975 0.180 0.184 0.176 0.225 0.178 0.167 0.178 0.160 0.141 0.146
0.990 0.181 0.190 0.173 0.257 0.175 0.168 0.175 0.158 0.102 0.105

Table 2c: RMSE of GLS and UP Forecast Errors: p = 0, h = 1

u1 follows Assumption C.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.147 0.145 0.147 0.146 0.147 0.146 0.147 0.146 0.156 0.157
0.400 0.148 0.147 0.148 0.147 0.148 0.148 0.148 0.148 0.155 0.155
0.800 0.153 0.153 0.153 0.155 0.153 0.156 0.153 0.166 0.177 0.176
0.900 0.161 0.161 0.161 0.172 0.161 0.163 0.161 0.175 0.198 0.199
0.950 0.171 0.173 0.170 0.196 0.171 0.165 0.171 0.165 0.175 0.176
0.975 0.179 0.182 0.175 0.222 0.176 0.165 0.177 0.160 0.136 0.137
0.990 0.179 0.187 0.171 0.248 0.172 0.165 0.173 0.156 0.100 0.101
1.000 0.171 0.194 0.165 0.289 0.160 0.164 0.161 0.153 0.069 0.069

Notes: UP1 is the forecast based on a unit root pretest where PW1 is used if a unit root is rejected.

UP2 is the forecast based on a unit root pretest where OLS1 is used if a unit root is rejected.
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Table 3a: RMSE of GLS and UP Forecast Errors: p = 1, h = 1

u1 follows Assumption A.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.228 0.225 0.228 0.227 0.228 0.227 0.228 0.227 0.227 0.228
0.400 0.230 0.228 0.230 0.227 0.230 0.227 0.230 0.227 0.227 0.230
0.800 0.242 0.249 0.242 0.227 0.242 0.226 0.242 0.226 0.251 0.262
0.900 0.253 0.270 0.253 0.231 0.253 0.225 0.253 0.223 0.254 0.259
0.950 0.263 0.292 0.280 0.245 0.263 0.227 0.263 0.222 0.209 0.210
0.975 0.264 0.310 0.298 0.265 0.264 0.232 0.264 0.221 0.175 0.176
0.990 0.257 0.319 0.312 0.279 0.257 0.233 0.257 0.218 0.149 0.150
1.000 0.244 0.314 0.332 0.274 0.242 0.222 0.242 0.204 0.123 0.123

Table 3b: RMSE of GLS and UP Forecast Errors: p = 1, h = 1

u1 follows Assumption B.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.230 0.227 0.230 0.229 0.230 0.229 0.230 0.229 0.226 0.228
0.400 0.232 0.231 0.232 0.230 0.232 0.230 0.232 0.230 0.226 0.231
0.800 0.241 0.252 0.241 0.240 0.241 0.237 0.241 0.240 0.243 0.258
0.900 0.253 0.276 0.253 0.253 0.253 0.240 0.253 0.238 0.253 0.259
0.950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.233 0.209 0.211
0.975 0.266 0.318 0.304 0.277 0.266 0.240 0.266 0.228 0.174 0.175
0.990 0.260 0.324 0.336 0.281 0.259 0.236 0.259 0.221 0.150 0.150

Table 3c: RMSE of GLS and UP Forecast Errors: p = 1, h = 1

u1 follows Assumption C.

α OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
0.000 0.229 0.227 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.230
0.400 0.231 0.230 0.231 0.230 0.231 0.230 0.231 0.230 0.230 0.232
0.800 0.241 0.251 0.241 0.238 0.241 0.236 0.241 0.239 0.268 0.272
0.900 0.253 0.275 0.253 0.251 0.253 0.238 0.253 0.237 0.258 0.260
0.950 0.264 0.302 0.273 0.266 0.264 0.240 0.264 0.232 0.211 0.212
0.975 0.267 0.319 0.306 0.278 0.266 0.241 0.266 0.228 0.177 0.177
0.990 0.261 0.325 0.329 0.281 0.260 0.236 0.260 0.221 0.152 0.152
1.000 0.247 0.317 0.349 0.272 0.245 0.223 0.245 0.206 0.123 0.123

Notes: UP1 is the forecast based on a unit root pretest where PW1 is used if a unit root is rejected.

UP2 is the forecast based on a unit root pretest where OLS1 is used if a unit root is rejected.
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Table 4a: Empirical Examples: Average RMSE

OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2 B W
gdpc92 0.280 0.292 0.279 0.294 0.279 0.286 0.287 0.285 0.278 0.278 9 4
gpdic92 1.587 1.605 1.578 1.599 1.579 1.592 1.581 1.591 1.592 1.587 3 2
expgsc92 0.196 0.204 0.195 0.208 0.193 0.184 0.191 0.182 0.181 0.181 9 4
impgsc92 1.198 1.192 1.195 1.152 1.181 1.145 1.178 1.125 1.123 1.123 9 1
finslc92 1.011 1.033 0.999 1.008 0.995 0.974 0.995 0.957 0.870 0.870 9 2
dpic92 0.356 0.365 0.351 0.356 0.349 0.350 0.352 0.347 0.342 0.342 9 2
wascur 0.239 0.247 0.237 0.247 0.237 0.242 0.241 0.240 0.238 0.238 3 2
m2sl 3.002 2.993 2.992 2.991 2.991 2.989 2.991 2.989 2.989 3.002 8 1
unrate 0.353 0.353 0.353 0.354 0.353 0.354 0.358 0.355 0.354 0.353 2 7
tb3ma 1.591 1.605 1.491 1.601 1.573 1.583 1.577 1.569 1.549 1.549 3 2
gs1 1.474 1.476 1.366 1.475 1.447 1.469 1.458 1.468 1.452 1.452 3 2
gs10 0.864 0.857 0.911 0.863 0.854 0.863 0.855 0.864 0.856 0.856 5 3
fed 1.987 1.985 1.957 1.991 1.976 2.009 1.974 2.000 1.934 1.934 9 6

gdpdef 1.156 1.131 1.213 1.155 1.121 1.148 1.117 1.151 1.115 1.115 9 3
cpiaucs 2.221 2.206 2.206 2.207 2.211 2.217 2.199 2.218 2.217 2.221 7 1

Table 4b: Empirical Examples: Relative Efficiency

OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2 B W
gdpc92 0.651 0.683 0.658 0.740 0.660 0.669 0.731 0.663 0.655 0.655 1 4
gpdic92 0.845 0.859 0.844 0.859 0.845 0.858 0.846 0.860 0.858 0.845 3 8
expgsc92 0.626 0.672 0.655 0.695 0.597 0.592 0.616 0.580 0.576 0.576 9 4
impgsc92 0.807 0.831 0.797 0.766 0.793 0.763 0.792 0.762 0.771 0.771 8 2
finslc92 0.748 0.762 0.740 0.700 0.740 0.682 0.740 0.676 0.702 0.702 8 2
dpic92 0.701 0.757 0.696 0.718 0.697 0.689 0.767 0.673 0.673 0.673 8 7
wascur 0.688 0.758 0.680 0.744 0.682 0.698 0.724 0.693 0.685 0.685 3 2
m2sl 0.945 0.928 0.927 0.926 0.926 0.925 0.926 0.925 0.925 0.945 8 1
unrate 0.841 0.836 0.846 0.825 0.842 0.818 0.834 0.822 0.818 0.841 6 3
tb3ma 0.787 0.794 0.780 0.783 0.782 0.752 0.783 0.760 0.775 0.775 6 2
gs1 0.827 0.818 0.830 0.797 0.822 0.806 0.829 0.808 0.800 0.800 4 3
gs10 0.804 0.796 0.818 0.842 0.793 0.797 0.794 0.795 0.795 0.795 5 4
fed 0.803 0.793 0.796 0.770 0.797 0.749 0.796 0.759 0.739 0.739 9 1

gdpdef 0.792 0.784 0.803 0.761 0.788 0.749 0.795 0.753 0.755 0.755 6 3
cpiaucs 0.938 0.939 0.927 0.926 0.936 0.926 0.936 0.925 0.926 0.938 8 2

Notes: UP1 is the forecast based on a unit root pretest where PW1 is used if a unit root is rejected.

UP2 is the forecast based on a unit root pretest where OLS1 is used if a unit root is rejected.

B and W denote the best and worst forecast where the numbering corresponds to the forecasting

procedure from left (1) to right (10).
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Table 4c: Median Bias

OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
gdpc92 0.450 0.350 0.450 0.280 0.450 0.380 0.530 0.410 0.440 0.440
gpdic92 0.420 0.390 0.430 0.400 0.430 0.400 0.430 0.400 0.400 0.420
expgsc92 0.360 0.400 0.310 0.530 0.340 0.470 0.330 0.430 0.430 0.430
impgsc92 0.580 0.540 0.580 0.540 0.580 0.540 0.580 0.550 0.580 0.580
finslc92 0.540 0.530 0.540 0.460 0.540 0.450 0.540 0.430 0.480 0.480
dpic92 0.460 0.320 0.460 0.380 0.460 0.380 0.500 0.400 0.420 0.420
wascur 0.420 0.350 0.430 0.350 0.430 0.410 0.530 0.430 0.430 0.430
m2sl 0.380 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.380
unrate 0.500 0.500 0.500 0.580 0.500 0.550 0.500 0.560 0.550 0.500
tb3ma 0.490 0.500 0.500 0.560 0.490 0.540 0.480 0.550 0.490 0.490
gs1 0.470 0.480 0.480 0.510 0.480 0.500 0.480 0.500 0.510 0.510
gs10 0.490 0.530 0.520 0.560 0.490 0.530 0.500 0.530 0.510 0.510
fed 0.460 0.470 0.460 0.550 0.460 0.530 0.450 0.570 0.510 0.510

gdpdef 0.420 0.440 0.440 0.480 0.430 0.450 0.430 0.440 0.450 0.450
cpiaucs 0.470 0.470 0.480 0.470 0.470 0.480 0.470 0.480 0.480 0.470
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Table 4c: Empirical Examples: Number of Times (out of 100) for Forecast has Minimum RMSE

OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
gdpc92 3 24 0 13 2 4 37 1 16 0
gpdic92 7 20 4 17 0 0 38 14 0 0
expgsc92 3 12 7 21 11 3 31 7 5 0
impgsc92 3 29 2 6 0 2 3 3 52 0
finslc92 22 4 1 18 0 1 0 19 35 0
dpic92 1 31 2 8 2 1 30 4 21 0
wascur 6 18 1 18 5 4 47 0 1 0
m2sl 39 5 0 8 0 2 1 45 0 0
unrate 0 5 3 34 1 6 42 9 0 0
tb3ma 14 5 3 27 2 5 1 16 27 0
gs1 10 6 3 30 2 3 1 17 28 0
gs10 14 7 7 34 1 6 3 17 11 0
fed 12 7 2 27 0 2 6 13 31 0

gdpdef 15 4 11 40 1 4 1 19 5 0
cpiaucs 10 13 8 12 4 1 15 37 0 0

Table 4d: Empirical Examples: Number of Times (out of 100) for Forecast has Largest RMSE

OLS1 OLS2 CO0 PW0 CO1 PW1 CO∞ PW∞ UP1 UP2
gdpc92 0 16 0 40 0 1 40 0 3 0
gpdic92 9 23 1 25 1 0 27 14 0 0
expgsc92 3 20 16 34 1 1 23 2 0 0
impgsc92 14 42 1 2 1 0 0 1 39 0
finslc92 32 14 0 16 0 0 0 7 31 0
dpic92 2 52 0 3 0 0 36 0 7 0
wascur 1 23 0 33 0 1 42 0 0 0
m2sl 61 7 0 3 0 1 0 28 0 0
unrate 2 7 9 36 2 2 34 8 0 0
tb3ma 19 4 1 35 3 3 0 8 27 0
gs1 23 4 3 31 0 5 2 9 23 0
gs10 19 5 7 44 0 4 1 11 9 0
fed 24 0 0 35 0 2 2 13 24 0

gdpdef 19 0 23 37 0 1 1 15 4 0
cpiaucs 12 13 7 13 11 2 11 31 0 0
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