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Abstract We consider the setting of sequential prediction of arbitrary sequences based on
specialized experts. We first provide a review of the relevant literature and present two the-
oretical contributions: a general analysis of the specialist aggregation rule of Freund et al.
(Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing
(STOC), pp. 334–343, 1997) and an adaptation of fixed-share rules of Herbster and War-
muth (Mach. Learn. 32:151–178, 1998) in this setting. We then apply these rules to the
sequential short-term (one-day-ahead) forecasting of electricity consumption; to do so, we
consider two data sets, a Slovakian one and a French one, respectively concerned with hourly
and half-hourly predictions. We follow a general methodology to perform the stated empir-
ical studies and detail in particular tuning issues of the learning parameters. The introduced
aggregation rules demonstrate an improved accuracy on the data sets at hand; the improve-
ments lie in a reduced mean squared error but also in a more robust behavior with respect to
large occasional errors.
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1 Introduction and motivation

We consider the sequential prediction of arbitrary sequences based on expert advice, the
topic of a large literature summarized in the monography of Cesa-Bianchi and Lugosi
(2006). At each round of a repeated game of prediction, experts output forecasts, which
are to be combined by an aggregation rule (usually based on their past performance); the
true outcome is then revealed and losses, which correspond to prediction errors, are suffered
by the aggregation rules and the experts. We are interested in aggregation rules that perform
almost as well as, for instance, the best constant convex combination of the experts. In our
setting, these guarantees are not linked in any sense to a stochastic model: in fact, they hold
for all sequences of consumptions, in a worst-case sense.

The application we have in mind—the sequential short-term (one-day-ahead) forecasting
of electricity consumption—will take place in a variant of the basic problem of prediction
with expert advice called prediction with specialized (or sleeping) experts. At each round
only some of the experts output a prediction while the other ones are inactive. This more
difficult scenario does not arise from experts being lazy but rather from them being special-
ized. Indeed, each expert is expected to provide accurate forecasts mostly in given external
conditions, that can be known beforehand. For instance, in the case of the prediction of elec-
tricity consumption, experts can be specialized to winter or to summer, to working days or
to public holidays, etc.

The literature on specialized experts is—to the best of our knowledge—rather sparse. The
first references are Blum (1997) and Freund et al. (1997); they respectively introduce and
formalize the framework of specialized experts. They were followed only by few other ones:
two papers mention some results for the context of specialized experts only in passing (Blum
and Mansour 2007, Sects. 6–8, Cesa-Bianchi and Lugosi 2003, Sect. 6.2) while another one
considers a somewhat different notion of regret, namely, Kleinberg et al. (2008).

The theory of prediction with expert advice has of course been already applied to real data
in many fields; we provide a list and a classification of such empirical studies in Sect. 2.4.
We only mention here that as far as the forecasting of electricity consumption is concerned, a
preliminary study of some aggregation rules for individual sequences was already performed
for the daily prediction of the French electricity load in Goude (2008a, 2008b).

Contributions and outline of the paper We review in Sect. 2 the framework of sequential
prediction with specialized experts. Three families of aggregation rules are discussed, which
were for two of them obtained by taking a new look at existing strategies; this new look
corresponds to (slight or more important) adaptations of these existing strategies and to
simpler or more general analyses of their theoretical performance bounds. Finally, a practical
online tuning of these aggregation rules is developed and put in perspective with respect to
theoretical methods to do so.

We then study, respectively in Sects. 4 and 5, the performance obtained by the developed
aggregation rules on two data sets. The first one was provided by the Slovakian subbranch
of EDF (“Electricité de France”, a French electricity provider) and represents its local mar-
ket; the second one deals with the French market for which EDF is still the overwhelming
provider. These empirical studies are organized according to the same standardized method-
ology described in Sect. 3: construction of the experts based on historical data; tabulation
of the performance of some benchmark prediction methods; results obtained by the sequen-
tial aggregation rules, first with parameters optimally tuned in hindsight, and then when the
tuning is performed sequentially according to the introduced online tuning. The section on
French data is also followed by a note (Sect. 5.6) on the individual performance of the ag-
gregation rules, i.e., an indication that their behavior is not only good on average but also
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that the large prediction errors occur less frequently for the aggregation rules than for the
base experts.

2 Aggregation of specialized experts: a survey with some new results

The following framework was introduced in Blum (1997) and further studied in Freund et al.
(1997).

A bounded sequence of observations (e.g., hourly or half-hourly electricity consump-
tions) y1, y2, . . . , yT ∈ [0,B] is to be predicted element by element at time instances
t = 1,2, . . . , T . A finite number N of base forecasting methods, henceforth referred to as
experts, are available. Before each time instance t , some experts provide a forecast and the
other ones do not. The first ones are said active and their forecasts are denoted by fj,t ∈ R+,
where j is the index of the considered active expert; the experts of the second group are
said inactive. We assume that the experts know the bound B and only produce forecasts
fj,t ∈ [0,B]. Finally, we denote by Et ⊂ {1, . . . ,N} the set of active experts at a given time
instance t and assume that it is always non empty.

At each time instance t ≥ 1, a sequential convex aggregation rule produces a convex
weight vector pt = (p1,t , . . . , pN,t ) based on the past observations y1, . . . , yt−1 and the past
and present forecasts fj,s , for all s = 1, . . . , t and j ∈ Es . By convex weight vector, we mean
a vector pt ∈ R

N such that pj,t ≥ 0 for all j = 1, . . . ,N and p1,t +· · ·+pN,t = 1; we denote
by X the set of all these convex weight vectors over N elements. The final prediction at t

is then obtained by linearly combining the predictions of the experts in Et according to the
weights given by the components of the vector pt . More precisely, the aggregated prediction
at time instance t equals

ŷt =
∑

j∈Et

pj,tfj,t .

The observation yt is then revealed and instance t + 1 starts.
To measure the accuracy of the prediction ŷt proposed at round t for the observation yt

we consider a loss function ℓ : R×R → R. At each time instance t , the convex combination
pt output by the rule is thus evaluated by the loss function ℓt : X → R defined by

ℓt (p) = ℓ

(∑

j∈Et

pjfj,t , yt

)

for all p ∈ X . The subscript t in the notation ℓt encompasses the dependencies in the expert
forecasts fj,t and in the outcome yt . Our goal is to design sequential convex aggregation
rules A with a small cumulative error

∑T

t=1 ℓt (pt ). To do so, we will ensure that quantities
called regrets (with respect to fixed experts, to fixed convex combinations of experts, or to
sequences of experts with few shifts) are small.

Possible loss functions are the square loss, defined by ℓ(x, y) = (x − y)2 for all x, y ∈
[0,B], the absolute loss ℓ(x, y) = |x − y|, and the absolute percentage of error ℓ(x, y) =
|x − y|/y, which are all three convex and bounded (so that their associated loss functions ℓt

are convex and bounded as well).

2.1 Minimizing regret with respect to fixed experts

This notion of regret was introduced in Freund et al. (1997) and compares the error suffered
by a rule A to the one of a given expert j only on time instances when j was active; formally,
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the regret of A with respect to expert j up to instance T equals

RT (A, j) =
T∑

t=1

(
ℓt (pt ) − ℓt (δj )

)
I{j∈Et }, (1)

where δj ∈ X is the Dirac mass on j (the convex weight vector with weight 1 on j ).

The exponentially weighted average aggregation rule It relies on a parameter η > 0 and
will thus be denoted by Eη . It chooses p1 to be the uniform distribution over E1 and uses at
time instance t ≥ 2 the convex weight vector pt given by

pj,t =
eηRt−1(Eη,j)

I{j∈Et }∑
k∈Et

eηRt−1(Eη,k)
; (2)

that is, it only puts mass on the experts j active at round t and does so by performing an ex-
ponentially weighted average of their past performance, measured by the regrets Rt−1(Eη, j).

The following performance bound is a straightforward consequence of the results pre-
sented in Cesa-Bianchi and Lugosi (2003) (its Corollary 2 and the methodology followed in
its Sects. 3 and 6.2).

Theorem 1 We assume that the loss functions ℓt are convex and uniformly bounded; we

denote by L a uniform bound on the quantities |ℓt (δi)− ℓt (δj )| when i and j vary in Et and

t varies from 1 to T . The regret of Eη is bounded over all such sequences of expert forecasts

and observations as

max
j=1,...,N

RT (Eη, j) ≤
lnN

η
+

η

2
L2T . (3)

The (theoretically) optimal choice η⋆ =
√

(2 lnN)/(L2T ) leads to the uniform bound
L

√
2T lnN on the regret of Eη⋆ . This choice depends on the horizon T and of the bound

L, which are not always known in advance; standard techniques, like the doubling trick or
time-varying learning rates ηt can be used to cope with these limitations as far as theoretical
bounds are concerned, see Auer et al. (2002), Cesa-Bianchi et al. (2007).

Remark 1 A slightly different family of aggregation rules based on exponentially weighted
averages, referred to as H in the sequel (which stands for Hedge), was presented in Blum
and Mansour (2007, Sect. 6). It replaces the update (2) by

wj,t = exp

(
−ηj

t−1∑

s=1

(
ℓs(δj ) − e−ηj ℓs(ps)

)
)

and

pj,t =
wj,t (1 − e−ηj )I{j∈Et }∑

k∈Et
wk,t (1 − e−ηk )I{k∈Et }

,

where the learning rates ηj now depend on the experts j = 1, . . . ,N . By carefully setting
these rates, uniform regret bounds of the form

RT (H, j) = O

(
L

√√√√
T∑

t=1

I{j∈Et } lnN + L lnN

)
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Parameters: learning rate η > 0

Initialization: w1 is the uniform convex weight vector, wi,1 = 1/N for i = 1, . . . ,N

For each time instance t = 1,2, . . . , T ,

(1) predict ŷt = 1∑
k∈Et

wk,t

∑
j∈Et

wj,tfj,t ;

(2) observe yt and compute the convex weight vector wt+1 as

wi,t+1 =

⎧
⎨
⎩

wi,te
−ηℓt (δi )

∑
j∈Et

wj,t∑
k∈Et

wk,t e
−ηℓt (δk ) if i ∈ Et ,

wi,t if i /∈ Et .

Fig. 1 The specialist aggregation rule Sη

can be obtained. However, we checked in Devaine et al. (2009, Sect. 2.1) that the empirical
performance of the families of rules H and E were equal. This is why only the simplest of
the two, E , will be considered in the sequel.

The specialist aggregation rule The content of this section revisits and (together with the
gradient trick recalled in the next section) improves on the results of Freund et al. (1997,
Sects. 3.2–3.4). In the latter reference, aggregation rules designed to minimize the regret
were introduced but their statement, analyses, and regret bounds heavily depended on the
specific1 loss functions at hand. Two special cases were worked out (absolute loss and square
loss). In contrast, we provide a compact and general analysis, solely based on Hoeffding’s
lemma.

The specialist aggregation rule is described in Fig. 1; it relies on a parameter η > 0 and
will be denoted by Sη . It is close in spirit to but different from the rule Eη: as we will see
below, the two rules have comparable theoretical guarantees, their statements might be found
to exhibit some similarity as well, but we noted that in practice the output convex weight
vectors pt had little in common (even though the achieved performance was often similar).

Theorem 2 We assume that the loss functions ℓt are convex and uniformly bounded; we

denote by L a constant such that the quantities ℓt (δi) all belong to [0,L] when i varies in

Et and t varies from 1 to T . The regret of Sη is bounded over all such sequences of expert

forecasts and observations as

max
j=1,...,N

RT (Sη, j) ≤
lnN

η
+

η

8
L2T .

The proof of this theorem is postponed to Appendix A. The (theoretically) optimal choice
η⋆ =

√
(8 lnN)/(L2T ) leads to the uniform bound L

√
(T /2) lnN on the regret of Sη⋆ . The

same comments on the calibration of η as in the previous sections apply.

2.2 Minimizing regret with respect to fixed convex combinations of experts

This notion of regret was introduced in Freund et al. (1997) as well and compares the error
suffered by a rule A to the one of a given convex combination q ∈ X as follows. Formally,

1See (6) in Freund et al. (1997) and the comments after its statement: “Here, a and b are positive constants
which depend on the specific on-line learning problem [...].”
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for a set E ⊂ {1, . . . ,N} of active experts, we define

q(E) =
∑

j∈E

qj

and denote by q
E = (qE

1 , . . . , qE
N ) the convex weight vector obtained by “conditioning” q

to E:

q
E =

{
(0, . . . ,0) if q(E) = 0;
(

q1I{1∈E}
q(E)

, . . . ,
qN I{N∈E}

q(E)
) if q(E) > 0.

Now, the definition (1) can be generalized as

RT (A,q) =
T∑

t=1

(
ℓt (pt ) − ℓt

(
q

Et
))

q(Et ). (4)

This is indeed a generalization as we have RT (A, δj ) = RT (A, j).
We deal with this more ambitious goal by resorting to the so-called gradient trick, see

Cesa-Bianchi and Lugosi (2006, Sect. 2.5) for more details. When the loss function ℓ :
[0,B]2 → R is convex and (sub)differentiable in its first argument, then the functions ℓt

are convex and (sub)differentiable over X ; we denote by ∇ℓt their (sub)gradient function.
By denoting by · the inner product in R

N and viewing X as a subset of R
N , we have the

following inequality: for all t , for all q ∈ X ,

ℓt (pt ) − ℓt (q) ≤ ∇ℓt (pt ) · (pt − q) = ℓ̃t (pt ) − ℓ̃t (q),

where we denoted by ℓ̃t (q) = ∇ℓt (pt ) · q the pseudo-loss function associated with time
instance t . It is linear over X . Now, the gradient trick simply consists of replacing the loss
functions ℓt by the pseudo-loss functions ℓ̃t in the definitions of the forecasters. In particular,
this replacement in (2), where the loss functions are hidden in the regret terms, respectively,
in Fig. 1, leads to an aggregation rule denoted by E

grad
η , respectively, S

grad
η .

Now, the above convexity inequality and the linearity of the ℓ̃t imply that for any rule A,

max
q∈X

RT (A,q) ≤ max
q∈X

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t

(
q

Et
))

q(Et )

= max
q∈X

N∑

j=1

qj

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (δj )

)
I{j∈Et };

the following result is thus a corollary of Theorems 1 and 2.

Corollary 1 We assume that the loss functions ℓt are convex and (sub)differentiable over

X , with (sub)gradient functions uniformly bounded in the supremum norm as t varies by G.
The regret of E

grad
η is bounded over all such sequences of expert forecasts and observations

as

max
q∈X

RT

(
E

grad
η ,q

)
≤

lnN

η
+ 2ηG2T
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while the one of S
grad
η is also uniformly bounded as

max
q∈X

RT

(
S

grad
η ,q

)
≤

lnN

η
+

η

2
G2T .

2.3 Minimizing regret with respect to sequences of (convex combinations of) experts with
few shifts

This third and last definition of regret was introduced by Herbster and Warmuth (1998)
and compares the performance of a rule not to the performance of a fixed expert or a fixed
convex combination of the experts, but to sequences of experts or of convex combinations of
experts (abiding by the activeness constraints given by the Et ). To the best of our knowledge,
this approach of considering sequences of experts had not been used before to deal with
specialized experts.

Formally, we denote by L the set of all legal sequences of expert instances jT
1 =

(j1, . . . , jT ), where legality means that for all time instances t , the considered expert jt

is active (i.e., is in Et ). We call compound experts the elements of L. Similarly, we denote
by C the set of all legal sequences of convex weight vectors q

T
1 = (q1, . . . ,qT ), where legal-

ity means that for all time instances t , the considered convex weight vector q t puts positive
masses only on elements in Et . We call compound convex weight vectors the elements of C .

For such compound experts jT
1 or compound convex weight vectors q

T
1 , we denote by

size
(
jT

1

)
=

T∑

t=2

I{jt−1 	=jt } and size
(
q

T
1

)
=

T∑

t=2

I{q t−1 	=qt }

their numbers of switches (the number minus one of elements in the partition of {1, . . . , T }
into integer subintervals corresponding to the use of the same expert or convex weight vec-
tor). For 0 ≤ m ≤ T − 1, we then respectively define Lm and Cm as the subsets of L and of
C containing the compound experts and compound convex weight vectors with at most m

shifts. When m is too small, the subsets Lm and Cm might be empty.
The regrets of a rule A with respect to jT

1 ∈ L and q
T
1 ∈ C are respectively given by

RT

(
A, jT

1

)
=

T∑

t=1

(
ℓt (pt ) − ℓt (δjt )

)
and RT

(
A,qT

1

)
=

T∑

t=1

(
ℓt (pt ) − ℓt (q t )

)
.

Since Lm ⊆ Cm (up to the identification of expert indexes j to convex weight vectors δj ), it
is more difficult to control the regret with respect to all elements of Cm than the one with
respect to simply Lm.

The aggregation rule presented in Fig. 2 (when used directly on the losses ℓt ) is actually
nothing but an efficient computation of the rule that would consider all compound experts
and perform exponentially weighted averages on them in the spirit of the rule Eη but with
a non-uniform prior distribution. We will call it the fixed-share rule for specialized experts;
we denote it by Fη,α as it depends on two parameters, η > 0 and 0 ≤ α ≤ 1. This rule
is a straightforward adaptation to the setting of specialized experts of the original fixed-
share forecaster of Herbster and Warmuth (1998), see also Cesa-Bianchi and Lugosi (2006,
Sect. 5.2).

Its performance bound is stated below; it follows from a straightforward but lengthy
adaptation of the techniques used in Herbster and Warmuth (1998) and Cesa-Bianchi and
Lugosi (2006, Sect. 5.2). We thus provide it in Appendix B of this paper, for the sake of
completeness and to show how the share update of Fig. 2 was obtained.
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Parameters: learning rate η > 0 and mixing rate 0 ≤ α ≤ 1

Initialization: (w1,0, . . . ,wN,0) = 1
|E1| (I{1∈E1}, . . . , I{N∈E1})

For each round t = 1,2, . . . , T ,

(1) predict ŷt = 1∑N
k=1 wk,t−1

∑N

j=1 wj,t−1fj,t ;

(2) [loss update] observe yt and define for each i = 1, . . . ,N ,

vi,t =

{
wi,t−1e

−ηℓt (δi ) if i ∈ Et ,

undefined if i /∈ Et ;

(3) [share update] let wj,t = 0 if j /∈ Et+1 and

wj,t =
1

|Et+1|
∑

i∈Et \Et+1

vi,t +
α

|Et+1|
∑

i∈Et ∩Et+1

vi,t + (1 − α)I{j∈Et ∩Et+1}vj,t

if j ∈ Et+1, with the convention that an empty sum is null and denoting by |Et+1| the
cardinality of Et+1.

Fig. 2 The fixed-share aggregation rule Fη,α

Theorem 3 We assume that the loss functions ℓt are convex and uniformly bounded; we

denote by L a constant such that the quantities ℓt (δi) all belong to [0,L] when i varies

in Et and t varies from 1 to T . For all m ∈ {0, . . . , T − 1}, the regret of Fη,α is uniformly

bounded over all such sequences of expert forecasts and observations as

max
jT

1 ∈Lm

RT

(
Fη,α, j

T
1

)
≤

m + 1

η
lnN +

1

η
ln

1

αm(1 − α)T −m−1
+

η

8
L2T . (5)

The (theoretically almost) optimal bound in the theorem above can be obtained by defin-
ing the binary entropy H as H(x) = x lnx + (1 − x) ln(1 − x) for x ∈ [0,1], by fixing a
value of m, and by carefully choosing parameters α⋆ and η⋆ depending on m, L, and T :

max
jT

1 ∈Lm

RT

(
Fη⋆,α⋆ , jT

1

)
≤ L

√
T

2

(
(m + 1) lnN + (T − 1)H

(
m/(T − 1)

))
,

which is o(T ) as desired as soon as m = o(T ). Of course, the theoretical optimal choices
depend on T and m, so that here also sequential adaptive choices are necessary; see Sect. 2.4
for a discussion.

By resorting to the gradient trick defined in Sect. 2.2, i.e., by replacing the losses ℓt in the
loss update of Fig. 2 by the pseudo-losses ℓ̃t , one obtains a variant of the previous forecaster,

denoted by F
grad
η,α . The following performance bound is a corollary of Theorem 3; a formal

proof is provided in Appendix C.

Corollary 2 We assume that the loss functions ℓt are convex and (sub)differentiable over

X , with (sub)gradient functions uniformly bounded in the supremum norm as t varies by G.
For all m ∈ {0, . . . , T − 1}, the regret of F

grad
η,α is uniformly bounded over all such sequences
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of observations and of expert forecasts as

max
q

T
1 ∈Cm

RT

(
F

grad
η,α ,qT

1

)
≤

m + 1

η
lnN +

1

η
ln

1

αm(1 − α)T −m−1
+

η

2
G2T . (6)

2.4 Sequential automatic tuning of the parameters on data

The aggregation rules discussed above are only semi-automatic strategies, as they rely on
fixed-in-advance parameters η (and possibly α) that are not tuned on data. Fully sequential
aggregation rules need to set these parameters online. Theoretically almost optimal ways
of doing so exist; for instance, Auer et al. (2002), Cesa-Bianchi et al. (2007) indicate ways
to online tune the learning rates η for exponentially weighted average rules E and E grad so
as to achieve almost the same regret bounds as if the parameters L, G, and T were known
in advance. However, the learning rates thus obtained usually perform poorly in practice;
see Mallet et al. (2009) for an illustration of this fact on different data sets. The same is
observed on our data sets (results not reported); this does not come as a surprise as the
theoretically optimal parameters η⋆ themselves perform poorly, see Remarks 2 and 3 in the
empirical studies. Therefore, in spite of the existence of theoretically satisfactory methods,
other ones need to be designed based on more empirical considerations.

We do so below but for the sake of completeness we discuss first the symmetric case
of the tuning of the parameter α of the fixed-share type rules. These rules need actually to
tune two parameters, η and α; the two tunings are equally important, as is illustrated by the
performance reported in Tables 4 and 10. The tuning of η could be done according to the
same theoretical methods as mentioned above (e.g., Auer et al. 2002; Cesa-Bianchi et al.
2007) but the same issues of practical performance arise. As for α, it is possible in theory
not to tune it but to aggregate instances of the rule corresponding to different values of α,
where these values lie in a thin enough grid; again, the rule performing this aggregation, e.g.,
an exponentially weighted average rule, needs to be properly tuned as far as its learning rate
η′ is concerned. Such a double-layer aggregation was proposed by Monteleoni and Jaakkola
(2003), see also de Rooij and van Erven (2009). We implemented it on our second data
set and it turned out to have a performance similar to the empirical method we detail now,
as long as the learning rates η and η′ were properly set both in the base rules and in the
second-layer aggregation, e.g., as follows.

An empirical online tuning of the parameters We describe the method in a general frame-
work; it is due to Vivien Mallet and was proposed in the technical report by Gerchinovitz
et al. (2008) (but never published elsewhere to the best of our knowledge). Let Aλ be a
family of sequential aggregation rules relying each on some parameter λ (possibly vector-
valued) taking its values in some set Λ. Given the past observations and the past and present
forecasts of the experts, the rule index by λ prescribes at time instance t a convex weight
vector which we denote by pt (Aλ).

The weights used by the fully sequential aggregation rule based on the family of rules
Aλ, where λ ∈ Λ, will be denoted by p̂t . We assume that the considered family is such that
p1(Aλ) is independent of λ, so that p̂1 equals this common value. Then, at time instances
t ≥ 2,

p̂t = pt (Aλ̂t−1
) where λ̂t−1 ∈ argmin

λ∈Λ

t−1∑

s=1

ℓs

(
ps(Aλ)

)
; (7)
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that is, we consider, for the prediction of the next time instance, the aggregated forecast
proposed by the best so far member of the family of aggregation rules. Because of this
formulation, we will speak of a meta-rule in the sequel. We can however offer no theoretical
guarantee for the performance of the meta-rule in terms of the performance of the underlying
family.

Computationally speaking, we need to run in parallel all the instances of Aλ, together
with the meta-rule. This of course is impossible as soon as Λ is not finite; for the families
considered above we had Λ = (0,+∞) and Λ = (0,+∞) × [0,1]. This is why, in practice,
we only consider a finite grid Λ̃ over Λ and perform the minimization of (7) only on the
elements of Λ̃ instead of performing it on the whole set Λ. A final choice still seems to be
left to the user, namely, how to design this finite grid Λ̃. For the first data set (in Sect. 4.3)
we fix it somewhat arbitrarily. Based on the observed behaviors, we then propose for the
second data set (in Sect. 5.5) a way to construct online the grid Λ̃, finally leading to a fully
sequential meta-rule.

Literature review of empirical studies in our framework Several articles report applications
of prediction based on expert advice to real data. They do not investigate the online tuning
issues discussed above and can be clustered into three categories as far as the tuning of the
parameters is concerned (there is often only a learning rate η to be set).

The first group chooses in the experiments the theoretically optimal parameters (some-
times, for instance, in the case of square losses, these are given by the rates η such that a
property of exp-concavity holds). This would be possible as well in our context with im-
proved regret bounds but only for the basic versions of our forecasters, not for their gradient
versions (which will be seen to obtain a much improved performance in practice). Further-
more, even such choices of η are slightly suboptimal on our data sets with respect to the fully
sequential tuning described above. Actually, tuning η in such a way, one only targets the per-
formance of the best expert, not the one of the best convex combination of the experts (which
is significantly better). Examples of such articles and fields of application include the man-
agement of the tradeoff between energy consumption and performance in wireless networks
(Monteleoni and Jaakkola 2003), the tracking of climate models (Monteleoni et al. 2011;
Jacobs 2011), the network traffic demand (Dashevskiy and Luo 2011), the prediction of
GDP data (Jacobs 2011), and also the online aggregation of portfolios (e.g., Cover 1991;
Stoltz and Lugosi 2005, but the literature is vast). In particular, as far as the latter applica-
tion is concerned, we note that Borodin et al. (2000) indicates that the studied forecasters do
not differ significantly from uniform averages of the experts; this is because the parameter
η is not set large enough. This is why we designed a method to tune it automatically based
on past data to get the right scale of the problem.

The second group of articles only reports results of optimal-in-hindsight parameters (and
sometimes argues that the performance is not very sensitive to the tuning, a fact that we do
not observe on the data sets studied in this paper). The studied topics are, for instance, the
forecasting of air quality (Mallet et al. 2009; Mallet 2010) and the prediction of outcomes
of sports games (Dani et al. 2006).

The third group reports the performance of various values of the parameters without
choosing between them in advance, for instance, Vovk and Zhdanov (2008) for the latter
application or Stoltz and Lugosi (2005) already mentioned above.

3 Methodology followed in the empirical studies

We provide a standardized outline of the treatment of the two data sets discussed in the next
sections.
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Outline of the empirical studies of performance of the sequential aggregation rules

1. Design experts (based on some historical data).
2. Choose a loss function and evaluate the performance of the experts (on new data).
3. For each family of strategies compute the performance corresponding to the best con-

stant choices of the parameters in hindsight.
4. Assess the quality of the operational performance, i.e., the performance obtained after

some automatic and sequential tuning (see Sect. 2.4).
5. Provide additional results and comments (e.g., a robustness study).

By evaluation of the performance of the experts we mean the assessment of the accuracy
obtained by some simple strategies like the uniform average of the forecasts of the active
experts (a strategy easily implementable online) or by some oracles, like the best single
expert or the best constant convex combination of the experts. Finally, the so-called prescient
strategy is the strategy that picks at each time instance the best forecast output by the set of
experts; it indicates a bound on the performance that no aggregation strategy can improve
on given the data set (given the expert forecasts and the observations). It corresponds to the
best element in LT −1.

4 A first data set: Slovakian consumption data

The data was provided by the Slovakian subbranch of the French electricity provider EDF.
It is formed by the hourly predictions of 35 experts and the corresponding observations
(formed by hourly mean consumptions) on the period from January 1, 2005 to December 31,
2007. In this part and unlike for the French data set of the next part, we have absolutely no
information on how the experts were built and we merely consider them as black boxes.

As the behavior of electricity consumption depends heavily on the hour of the day and
the data set is large enough, we parsed it set into 24 subsets (one per hour interval of the
day) and only report the results obtained for one-day-ahead prediction on a given (some-
what arbitrarily chosen) hour interval: the interval 11:00–12:00. The characteristics of the
observations yt of this hour frame are described in Table 1 while all observations (for all
hour frames) are plotted in Fig. 3.

The considered loss function is the square loss and we will not report cumulative losses
but root mean square errors (RMSE), i.e., roots of the per-round cumulative losses. For in-
stance, for a given convex combination q ∈ X ,

RMSE(q) =

√√√√ 1
∑T

t=1 q(Et )

T∑

t=1

(∑

j∈Et

q
Et

j fj,t − yt

)2

q(Et )

while for an aggregation rule A,

RMSE(A) =

√√√√ 1

T

T∑

t=1

(ŷt − yt )2.

In this section, we will omit the unit MW (megawatt) of the observations and predictions
of the electricity consumption, as well as the one of their corresponding RMSE.
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Fig. 3 The observed hourly
electricity consumptions
encountered by the Slovakian
subbranch between January 1,
2005 and December 31, 2007

Table 1 Some characteristics of
the observations yt (hourly mean
consumptions) of the Slovakian
data set for the time intervals
11:00–12:00

Number of days D 1095

Time intervals Only 11:00–12:00

Number of instances T 1095 (= 1095 × 1)

Number of experts N 35

Unit MW

Median of the yt 702.6

Bound B on the yt 1020.0

4.1 Benchmark values: performance of the experts and of some oracles

The characteristics of the experts are depicted in Fig. 4. The bar plot represents the values of
the RMSE of the 35 available experts. The scatter plot relates the RMSE of each of the expert
to its frequency of activity, that is, it plots the pairs, for all experts j ,

(
RMSE(j),

∑T

t=1 I{j∈Et }

T

)
. (8)

We present in Table 2 the values2 of the RMSE of several procedures, all of them but the
first two being oracles. The procedure U is an aggregation rule that simply chooses at each
time instance t the uniform convex weight vector on Et . Its RMSE differs from the one of
the uniform convex weight vector (1/35, . . . ,1/35) as the RMSE of the latter gives a weight
to each instance t that depends on the cardinality of Et .

The fact that the RMSE of the best compound expert with size at most 10 is larger than
the RMSE of the best single expert is explained by the fact that some overall good experts
refrain from predicting at some time instances when all active experts perform poorly, while

2All of them have been computed exactly, except the ones that involve minimizations over simplexes of
convex weights, for which a Monte-Carlo stochastic approximation method was used.
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Fig. 4 Graphical representations of the performance of the experts of the Slovakian data set: sorted RMSE

(left) and RMSE–frequency of activity pairs (right)

compound experts are required to output a prediction at each time instance. The fact that
such good experts tend not to form predictions at instances that are more difficult to cope
with can also be seen from the fact that RMSE(U ) is larger than RMSE((1/35, . . . ,1/35)),
since the second uniform average rule is evaluated with unequal weights put on the different
time instances (more weight put on instances when more experts are active).

A final series of oracles is given by partitioning time into subsets of instances with con-
stant sets of active experts; that is, by defining

{
E(1), . . . ,E(K)

}
=

{
Et , t ∈ {1, . . . , T }

}

and by partitioning time according to the values E(k) taken by the sets of active experts Et .
The corresponding natural oracles are

min

{√√√√ 1

T

K∑

k=1

∑

t :Et =E(k)

(fjk ,t − yt )2, with j k ∈ E(k) for all k = 1, . . . ,K

}
, (9)

which corresponds to the choice of the best expert on each element of the partition, and

min

{√√√√√
1

T

K∑

k=1

∑

t :Et =E(k)

( ∑

j∈E(k)

q
(k)
j fj,t − yt

)2

,

with q
(k) a convex weight vector on E(k) for all k = 1, . . . ,K

}
, (10)

which corresponds to the choice of the best convex weight vector on each element of the
partition. Even if there are relatively many elements in this partition, namely, K = 74, the
gain with respect to constant choices throughout time exists (RMSE of 29.1 versus 30.4 and
24.5 versus 29.2) but is less significant than the one achieved with compound experts (which
achieve a smaller RMSE of 23.1 already with a size m = 50).



244 Mach Learn (2013) 90:231–260

Table 2 Definition and performance of several (possibly off-line) benchmark procedures on the Slovakian
data set; they serve as comparison points for on-line procedures

Name of the benchmark procedure Formula Value

Uniform sequential aggregation rule RMSE(U ) = 31.1

Uniform convex weight vector RMSE((1/35, . . . ,1/35)) = 30.7

Best single expert minj=1,...,35 RMSE(j) = 30.4

Best convex weight vector minq∈X RMSE(q) = 29.2

Best compound expert

Size at most m = 10 min
jT
1 ∈L10

RMSE(jT
1 ) = 32.1

Size at most m = 50 min
jT
1 ∈L50

RMSE(jT
1 ) = 23.1

Size at most m = 200 min
jT
1 ∈L200

RMSE(jT
1 ) = 15.2

Prescient strategy (size at most m = T − 1 = 1094) min
jT
1 ∈E1×E2×...×ET

RMSE(jT
1 ) = 9.4

On the K = 74 elements of a partition of time according to the values of the active sets Et

Best expert on each element See (9) = 29.1

Best convex weight vector on each element See (10) = 24.5

4.2 Results obtained with constant values of the parameters

We now detail the practical performance of the sequential aggregation rules introduced in
Sect. 2, for fixed values of the parameters η and α of the rules. We report for each rule the
best performance obtained; the corresponding parameters are said the best constant choices
in hindsight. The performance of the families Eη , E

grad
η , and S

grad
η is summarized in Table 3.

We note that E
grad
η and S

grad
η , when tuned with the best parameter η in hindsight, outperform

their comparison oracle, the best convex weight vector (with a relative improvement of 3 %
in terms of the RMSE), while the performance of the best Eη comes very close to the one
of its respective comparison oracle, the best single expert (RMSE of 30.4 versus 30.5). The
performance of the fixed-share type rules Fη,α and F

grad
η,α is reported in Table 4.

Remark 2 As in Mallet et al. (2009), the best constant choices in hindsight are far away
from the theoretically optimal ones, given by η⋆ ≈ 8 × 10−8 for Eη , η⋆ ≈ 4 × 10−8 for S

grad
η ,

and η⋆ ≈ 2 × 10−8 for E
grad
η .

We close this preliminary review of performance by showing in Fig. 5 that the considered
rules fully exploit the whole set of experts and do not concentrate on a limited subset of the
experts. They carefully adapt their convex weights as time evolves and remain reactive to
changes of performance; in particular, the sequences of weights do not converge to a limit
vector.

4.3 Results obtained with an online tuning of the parameters

We show in this section how the meta-rules constructed in Sect. 2.4 can get performance
close to the one of the rules based on the best constant parameters in hindsight; we do so,
for this data set only, by fixing somewhat arbitrarily the used grids. Based on the observed
behaviors we then indicate for the second data set (in Sect. 5.5) how these grids can be
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Table 3 Performance obtained by the sequential aggregation rules Eη , E
grad
η , and S

grad
η for various choices

of η; the smallest RMSE obtained for each rule is underlined

Value of η 10−8 10−7 10−6 4 × 10−6 10−5 10−4 10−3

RMSE of Eη 31.3 31.2 30.8 30.5 30.9 32.7

E
grad
η 31.3 30.9 29.8 28.2 33.5

S
grad
η 31.3 30.9 29.8 28.2 34.7

Table 4 Performance obtained by the sequential aggregation rules Fη,α and F
grad
η,α for various choices of η

and α; the smallest RMSE obtained for each rule is underlined

Value of η 10−4 10−4 10−3 10−3 10−2 10−2 2 × 10−4 2 × 10−3

α 0.05 0.2 0.1 0.2 0.05 0.2 0.07 0.2

RMSE of Fη,α 29.3 29.5 27.5 27.2 28.0 27.8 27.0

F
grad
η,α 28.0 28.9 29.3 29.2 28.7 28.5 27.2

Table 5 Performance obtained by the rules Eη and E
grad
η for the best constant choice of η in hindsight (left)

and when used as keystones of a meta-rule selecting sequentially the values of η on the chosen grids (middle
and right)

Best constant η Grid Λ̃s Grid Λ̃ℓ

RMSE of Eη 30.5 31.1 30.7

E
grad
η 28.2 28.2 28.4

constructed online. For the exponentially weighted average rules Eη and E
grad
η , the order of

magnitude of the optimal values η⋆ being around 10−8, we considered two finite grids for the
tuning of η, both with endpoints 10−8 and 1: a smaller grid, with 9 logarithmically evenly
spaced points,

Λ̃s =
{
10−k, for k ∈ {0,1, . . . ,8}

}
,

and a larger grid, with 25 logarithmically evenly spaced points,

Λ̃ℓ =
{
m × 10−k, for k ∈ {1, . . . ,8} and m ∈ {1,2.5,5}

}
∪ {1}.

The performance on these grids with respect to the best constant choice of η in hindsight
is summarized in Table 5. We note that the good performance obtained for the best choices
of the parameters in hindsight is preserved by the adaptive meta-rules resorting to the grids.
The sequences of choices of η on the largest grid Λ̃ℓ are depicted in Fig. 6.

For the fixed-share type rules Fη,α and F
grad
η,α , two parameters have to be tuned: we need

to take a finite grid in Λ = (0,+∞) × [0,1], e.g., similarly to above,

Λ̃FS =
{(

10−k, α
)
, for k ∈ {0,1, . . . ,8} and α ∈ {0.01,0.05,0.1,0.2,0.3,0.4}

}
.

The performance on this grid is summarized in Table 6 while the sequences of choices
of η and α on the grid Λ̃FS are depicted in Fig. 7. The same comments as above on the
preservation of the good performance apply.
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Table 6 Performance obtained by the rules Fη,α and F
grad
η,α for the best constant choices of η and α in

hindsight (left) and when used as keystones of a meta-rule selecting sequentially the values of η and α on the
grid Λ̃FS (right)

Best constant pair (η,α) Grid Λ̃FS

RMSE of Fη,α 27.0 27.8

F
grad
η,α 27.2 28.5

Fig. 5 Graphical representations of the convex weights associated at each time instance with the 35 experts

by the rules E
grad
10−4 (left) and F2×10−3,0.2 (right)

Fig. 6 Graphical representations of the sequences of tuning parameters η chosen by the meta-rule selecting

sequentially the values on the grid Λ̃ℓ; the base rules are E
grad
η (left) and Eη (right)

5 A second data set: operational forecasting on French data

The data set used in this part is a standard data set used by EDF R&D department. It contains
the observed electricity consumptions as well as some side information, which consists of
all the features that were shown to have a strong effect on electricity load; see, e.g., Bunn and
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Fig. 7 Graphical representations of the sequences of tuning parameters η (left) and α (right) chosen by the

meta-rule selecting sequentially the values on the grid Λ̃FS; the base rule is F
grad
η,α

Farmer (1985). Among others, one can cite seasonal effects (most importantly, the seasonal
variations of day lengths), calendar events like vacation periods or public holidays, weather
conditions (temperature, cloud cover, wind), and weekly patterns of days. We summarize
below some of its characteristics and we refer the interested reader to Dordonnat et al. (2008)
for a more detailed description.

It is divided into two sets. The first set ranges from September 1, 2002 to August 31,
2007. We call it the estimation set and use it to design the experts, which then provide
forecasts throughout the period corresponding to the second set. This second set covers the
period from September 1, 2007 to August 31, 2008. We call it the validation set and use it
to evaluate the performance of the considered aggregation rules. Actually, we exclude some
special days from the validation set. Out of the 366 days between September 1, 2007 and
August 31, 2008, we keep 320 days. The excluded days correspond to public holidays (the
day itself, as well as the days before and after it), daylight saving days and winter holidays
(that is, the period between December 21, 2007 and January 4, 2008); however, we include
the summer break (August 2008) in our analysis as we have access to experts that are able to
produce forecasts for this period. The characteristics of the observations yt of the validation
set (formed by half-hourly mean consumptions) are described in Table 7. In this part as
well, we omit the unit GW (gigawatt) of the observations and predictions of the electricity
consumption, as well as the one of their corresponding RMSE.

Note that this time we do not split anymore the data set into subsets by the half-hours;
this is explained in detail below and comes from two facts: the data set is smaller (and thus
the data subsets would be too small) and we need to abide by an operational constraint as
far as the forecasting in France is concerned.

5.1 Brief description of the construction of the considered experts

The experts we consider here come from three main categories of statistical models: para-
metric, semi-parametric, and non-parametric models. We do so to get experts that are het-
erogenous and exhibit varied enough behaviors.

The parametric model used to generate the first group of 15 experts is described in Bruhns
et al. (2005) and is implemented in an EDF software called “Eventail.” (For conciseness
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Fig. 8 Graphical representations of the performance of the experts of the French data set: sorted RMSE (left)
and RMSE–frequency of activity pairs (right); Eventail experts are depicted by the symbols •, GAM experts
are represented by △, while ⋆ stands for the similarity expert

Table 7 Some characteristics of
the observations yt (half-hourly
mean consumptions) of the
French data set of operational
forecasting

Number of days D 320

Time intervals Every 30 minutes

Time instances T 15 360 (= 320 × 48)

Number of experts N 24 (= 15 + 8 + 1)

Unit GW

Median of the yt 56.33

Bound B on the yt 92.76

Table 8 Definition and performance of several (possibly off-line) benchmark procedures on the French data
set; they serve as comparison points for on-line procedures

Name of the benchmark procedure Formula Value

Uniform sequential aggregation rule RMSE(U ) = 0.724

Uniform convex weight vector RMSE((1/24, . . . ,1/24)) = 0.748

Best single expert minj=1,...,24 RMSE(j) = 0.782

Best convex weight vector minq∈X RMSE(q) = 0.683

Best compound expert

Size at most m = 50 min
jT
1 ∈L50

RMSE(jT
1 ) = 0.534

Size at most m = 100 min
jT
1 ∈L100

RMSE(jT
1 ) = 0.474

Size at most m = T − 1 = 15 359 min
jT
1 ∈E1×E2×...×ET

RMSE(jT
1 ) = 0.223

we refer to them as the Eventail experts.) This model is based on a nonlinear regression
approach that consists of decomposing the electricity load into a main component including
all the seasonality effects of the process together with a weather-dependant component. To
this nonlinear regression model is added an autoregressive correction of the error of the
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short-term forecasts of the last seven days. Changing the parameters (the gradient of the
temperature, the short-term correction) of this model led to the indicated 15 experts.

The second group of 8 experts comes from a generalized additive model presented
in Pierrot et al. (2009), Pierrot and Goude (2011) and implemented in the software R by
the mgcv package developed by Wood (2006). (We refer to them as the GAM experts.)
The considered generalized additive model imports the idea of the parametric modeling pre-
sented above into a semi-parametric modeling. One of its key advantages is its ability to
adapt to changes in consumption habits while parametric models like Eventail need some
a priori knowledge on customers behaviors. Here again, we derived the 8 GAM experts by
changing the trend extrapolation effect (which accounts for the yearly economic growth)
or the short-term effects like the one-day-lag effect; these changes affect the reactivity to
changes along the run.

The last expert is drastically different from the two previous groups of experts as it relies
on a univariate method (i.e., a method not requiring any exogenous factor like weather con-
ditions); this method is presented in Antoniadis et al. (2006, 2010). Its key idea is to assume
that the load is driven by an underlying stochastic curve and to view each day as a discrete
recording of this functional process. Forecasts are then performed according to a similarity
measure between days. We call this expert the similarity expert.

5.2 Benchmark values: performance of the experts and of some oracles

The characteristics of the experts presented above are depicted in Fig. 8, here again with a
bar plot representing the (sorted) values of the RMSE of the 24 available experts and a scatter
plot relating the RMSE of each of the expert to its frequency of activity. Out of the 15 Even-
tail experts, 3 are active all the time; they correspond to the operational model actually used
at the R&D center of EDF and to two variants of it based on different short-term correc-
tions. The other 12 Eventail experts are inactive during the summer as their predictions are
redundant with the 3 main Eventail experts (they were obtained by changing the gradient of
the temperature for the heating part of the load consumption, which generates differences to
the operational model in winter only). GAM experts are active on an overwhelming fraction
of the time and are sleeping only during periods when R&D practitioners know beforehand
that they will perform poorly (e.g., in time periods close to public holidays); the lengths of
these periods depend on the parameters of the expert. Finally, the similarity expert is always
active.

We report in Table 8 the performance obtained by most of the oracles already discussed
in Sect. 4.1. We do not report here the performance obtained by considering partitions of the
time in terms of the values of the active sets Et , as, on the one hand, the study of Sect. 4.1
showed that even when the number of elements K in the partition was large, the compound
experts had better performance, and on the other hand, as the value of K is small here
(K = 7); these two facts explain that the performance of the oracles based on partitions is to
expected to be poor on this data set.

We note the disappointing performance of the best single expert with respect to the naive
rule U . Unlike in Sect. 4.1, this comes from our experts being more active in challenging
situations. Indeed, the rule U also performs better than the uniform convex weight vector,
which induces at each time instance the same forecast as the rule U but for which the loss
incurred at a given time instance is more weighted as more experts are active. All in all, the
poor performance of the best single expert or of the uniform convex weight vector are caused
by the considered specialized experts being more active and more helpful when needed.

From Table 8 we mostly conclude the following. The true benchmark values from the first
part of the table are the RMSE of the rule U —that all fancy rules have to outperform to be
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considered worth the trouble—and the RMSE of the best convex weight vector. The second
part of the table indicates that important gains in accuracy are obtained with compound
experts (and therefore, fixed-share type rules are expected to perform well, which will turn
out to be the case).

5.3 Extension of the considered rules to the operational forecasting constraint

We consider prediction with an operational constraint required by EDF consisting of pro-
ducing half-hourly forecasts every day at 12:00 for the next 24 hours; that is, of forecasting
simultaneously the next 48 time instances. (The experts presented above also abide by this
constraint.) The high-level idea is to run the original rules on the data (called below the
base rules), access to the proposed convex weight vectors only at time instances of the form
tk = 48k + 1, and use these vectors for the next 48 time instances, by adapting them via a
renormalization or a share update to the values of the active sets Etk+1, . . . ,Etk+48.

We also propose another extension related to the structure of the set of experts. The latter
are of three different types and experts of the same type are obtained as variants of a given
prediction method (GAM, Eventail, or functional similarity estimation). It would be fair to
allocate an initial weight of 1/3 to the group of GAM experts, which turns into an initial
weight of 1/24 to each of the 8 GAM experts; a weight of 1/3 to the group formed by the
15 Eventail experts, that is, an initial weight of 1/45 to each of them; and an initial weight
of 1/3 to the similarity expert. We denote by pj,0 the initial weight of an expert j . We will
call fair initial weights the convex weight vector described above (with components equal
to 1/3, 1/24, or 1/45) and uniform initial weights the vector defined by pj,0 = 1/24 for all
experts j . The effect of this on the regret bounds, e.g., (3) or (5), is the replacement of lnN

by maxj ln 1/pj,0. This does not change the order of magnitude in T of the regret bounds
but only increases them by a multiplicative factor.

All in all, we denote by Wη and W
grad
η the adaptations to the operational constraint of the

rules Eη and E
grad
η of Sects. 2.1 and 2.2; by Tη and T

grad
η the ones of the rules Sη and S

grad
η

of Sects. 2.1 and 2.2; and by Gη,α and G
grad
η,α the ones of the rules Fη,α and F

grad
η,α described in

Sect. 2.3. For instance, Wη uses, at time t = 1,2, . . . , T , the weight vector pt defined by

pj,t =
pj,0e

ηR48⌊(t−1)/48⌋(Eη,j)
I{j∈Et }∑

k∈Et
pk,0e

ηR48⌊t/48⌋(Eη,k)
, (11)

for all experts j , with the usual convention that empty sums equal 0. (The notation ⌊x⌋
denotes the lower integer part of a real number x.)

Similarly, as is illustrated in its statement in Fig. 9, Gη,α basically needs to run an instance
of Fη,α and to access to its proposed weight vector every 48 rounds. Between two such
synchronizations, only share updates (and no loss update) are performed, to deal with the
fact that experts are specialized. Indeed, the values of the sets of active experts Et may (and
do) vary within a one-day-ahead period of time.

Theoretical bounds on the regret can be proved since, as is clear from the algorithmic
statements of the extensions, the weights output by the base rules are, for all t , close to the
ones of their adaptations (and of course, coincide with them at the time instances tk). This is
because these weights are computed on almost the same sets of losses; these sets differ by
at most 47 losses, the ones between the last tk and the current instance t . A quantification of
this fact and a sketch of a regret bound, e.g., for Wη , are provided in Appendix D.
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Parameters: η > 0 and 0 ≤ α ≤ 1, as well as an initial convex weight vector (p1,0, . . . , pN,0)

Initialization: (w1,0, . . . ,wN,0) = (p1,0I{1∈E1}, . . . , pN,0I{N∈E1})

For each round t = 1,2, . . . , T ,

(1) ŷt = 1∑N
k=1 wk,t−1

∑N

j=1 wj,t−1fj,t ;

(2) [loss and share updates]
if t = 48k for some k, observe yt−47, . . . , yt and takea (w1,t , . . . ,wN,t ) = pt+1(Fη,α);

(3) [share update]
otherwise (when t is not a multiple of 48), let wj,t = 0 if j /∈ Et+1 and

wj,t =
1

|Et+1|
∑

i∈Et \Et+1

wi,t−1 +
α

|Et+1|
∑

i∈Et∩Et+1

wi,t−1 + (1 − α)I{j∈Et ∩Et+1}wj,t−1

if j ∈ Et+1 (with the convention that an empty sum is null).

a
pt+1(Fη,α) is the convex weight vector chosen by the rule Fη,α after seeing the sequence of observations

y1, . . . , yt and the corresponding expert predictions; we use here the same notation as in Sect. 2.4, where we
indicated in parentheses the name of the rule whenever it was needed. Here, the rule Gη,α thus synchronizes
again with Fη,α at steps t of the form tk = 48k for some k.

Fig. 9 The extension Gη,α of the (basic) fixed-share aggregation rule Fη,α to operational forecasting

5.4 Results obtained with constant values of the parameters

The performance of the extensions Wη , W
grad
η , Tη , and T

grad
η described above is summarized

in Table 9. We note that the gradient versions of the forecasters (for both priors) outperform
the comparison point formed by the RMSE of the best convex weight vector, equal to 0.696,
and which was the only interesting benchmark value among the oracles of the first part
of Table 8. They do so by a relative factor of about 5 %; on the other hand, their basic
versions (in case of a fair prior) get only a slightly improved performance with respect to
this comparison point. It is also worth noting that the performance of the gradient versions
is not sensitive to the initial allocation of weights.

Remark 3 Here again, as already mentioned for the Slovakian data set in Sect. 4.2, the best
constant choices in hindsight are far away from the theoretically optimal ones, given by
values η⋆ of the order of 10−6 on the present data set. For such small values of η, the rules
are basically equivalent to the uniform aggregation rule U , as is indicated by the performance
reported in Table 9.

The performance of the extensions Gη,α and G
grad
η,α described above is summarized in Ta-

ble 10. (It turned out that the performance of the algorithms did not depend much on whether
the initial weight allocation was fair or uniform and we report only the results obtained by
the latter in the sequel.) The comparison points are given by the best compound experts
studied in Table 8, which exhibited an excellent performance. This is why we expected and
actually see a significant gain of performance for the aggregation rules when resorting to
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Table 9 Performance obtained by the sequential aggregation rules Wη , W
grad
η , Tη , and T

grad
η for various

choices of η; the smallest RMSE obtained for each rule is underlined

Values of η Prior 10−6 10−5 2 × 10−4 10−3 2 × 10−2 10−1 2

RMSE Wη (unf.) 0.724 0.722 0.718 0.731 0.784 0.783 0.784

Wη (fair) 0.736 0.731 0.684 0.722 0.785 0.784 0.785

W
grad
η (unf.) 0.724 0.722 0.705 0.683 0.631 0.640 0.629

W
grad
η (fair) 0.737 0.733 0.697 0.674 0.633 0.641 0.640

Tη (unf.) 0.724 0.722 0.718 0.731 0.785 0.783 0.752

Tη (fair) 0.736 0.731 0.684 0.721 0.786 0.784 0.753

T
grad
η (unf.) 0.724 0.712 0.705 0.683 0.631 0.640 0.741

T
grad
η (fair) 0.737 0.733 0.697 0.674 0.633 0.641 0.855

Table 10 Performance obtained by the sequential aggregation rules Gη,α and G
grad
η,α run with an initial uni-

form allocation of the weights for various choices of η and α; the smallest RMSE obtained for each rule is
underlined

Values of η 0.01 0.01 0.01 1 1 1 500 500 500

of α 0.001 0.01 0.05 0.001 0.01 0.05 0.001 0.01 0.05

RMSE Gη,α 0.678 0.683 0.704 0.711 0.659 0.652 0.674 0.633 0.632

G
grad
η,α 0.646 0.669 0.700 0.622 0.598 0.637 0.683 0.675 0.671

forecasters tracking the performance of the compound experts. Table 10 shows a relative
improvement in the performance of about 5 % with respect to the results of Table 9.

5.5 Results obtained with a fully online tuning of the parameters

In Sects. 2.4 and 4.3 we indicated that our simulations showed that the step of the grid was
not too crucial parameter and that the results were not too sensitive to it; we however did
not clarify how to choose the maximal (and also the minimal) possible value(s) of η in the
considered grids, i.e., how to determine the right scaling for η. The procedure is based on
the observation that in Figs. 6 and 7 of Sect. 4.3 the selected parameters η̂t are eventually
constant or vary in a small range. It thus simply suffices to ensure that the constructed grid
covers a large enough span. This can be implemented by extending online the considered
grid as follows. We let the user fix an arbitrary finite starting grid, say, reduced to {1}. At any
time t when the selected parameter η̂t−1 is an endpoint of the grid, we enlarge it by adding
the values 2r η̂t−1, for r ∈ {1,2,3}, respectively, for r ∈ {−1,−2,−3}, if the endpoint was
the upper limit, respectively, the lower limit of the grid. (We tested different factors than the
factor of 2 considered here and also tried to increase the grid with more than three points; no
such change had an important impact on the performance.) The possible choices for α are in
the (known) bounded range [0,1] and therefore no scaling issue takes place. We considered
a fixed grid of possible α given by

α ∈ {0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1}.

The performance of this adaptive construction of the grids used by the meta-rules with
respect to the best constant choices in hindsight is summarized in Tables 11 and 12. We
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Table 11 Performance obtained by the rules Wη , W
grad
η , Tη , and T

grad
η for the best constant choice of η

in hindsight and when used as keystones of a meta-rule selecting sequentially the values of η based on an
adaptive grid; results are reported for both the uniform and fair priors

Uniform prior Fair prior

Best constant η Adaptive grid Best constant η Adaptive grid

RMSE of Wη 0.718 0.724 0.684 0.696

W
grad
η 0.629 0.640 0.633 0.644

Tη 0.718 0.723 0.684 0.698

T
grad
η 0.631 0.640 0.633 0.645

Table 12 Performance obtained by the rules Gη,α and G
grad
η,α run with an initial uniform weight allocation for

the best constant choices of η and α in hindsight (left) and when used as keystones of a meta-rule selecting
sequentially the values of η based on an adaptive grid and the values of α according to a fixed grid (right)

Best constant pair (η,α) Adaptive grid

RMSE of Gη,α 0.632 0.658

G
grad
η,α 0.598 0.623

observe that the now fully sequential character of the meta-rule comes at a limited cost in
the performance. (That cost would be almost insignificant if a training period was allowed,
so as to start the evaluation period with a grid already large enough.)

5.6 Robustness study of the considered aggregation rules

In this section we move from the study of global average behaviors of the aggregation rules
(as measured by their RMSE) to a more individual analysis, based on the scattering of the
prediction residuals ŷt − yt . The RMSE is indeed a global criterion and we want to check
that the overall good performance does not come at the cost of local disasters in the accuracy
of the aggregated forecasts. To that end we split the data set by the half hours into 48 sub-
data sets; for each of these subsets we compute the RMSEs of some of the benchmarks
and aggregation rules discussed above and study also the scattering of the (absolute values
of the) prediction residuals. To do so we consider two fully sequential aggregation rules,
namely, the meta-rules based on families of W

grad
η and G

grad
η,α run with initial uniform weight

allocations. We use as benchmarks the (overall) best single expert and the (overall) best
convex weight vector, whose performance was reported in Table 8.

Figure 10 plots the half-hourly RMSE of these two aggregation rules and of these two
benchmarks. It shows that the performance of the rule based on exponential weighted aver-
ages is, uniformly over the 48 elements of the partition of days in half hours, at least as good
as the one of the best constant convex combination of the expert forecasts. The performance
of the rule based on fixed-share aggregation rules is intriguing: its accuracy is significantly
improved with respect to the one of the latter benchmark between 12:00 and 21:00 but is
also slightly worse between 6:00 and 12:00. It thus seems that this rule has excellent perfor-
mance on very short-term horizon and would probably strongly benefit from an intermediate
update around midnight (this is however not the purpose of the present study: intra-day fore-
casting is left for future research). A similar behavior is observed in Fig. 11, which depicts
the medians, the third quartiles, and the 90 % quantiles of the absolute values of the residuals
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Fig. 10 Half-hourly RMSE of the
meta-rules based on the rules
W

grad
η (symbol: �) and G

grad
η,α

(symbol: •); as well as the ones
of the best overall single expert
(solid line) and of the best overall
convex weight vector (dashed

line)

Fig. 11 Using the same rules
and benchmarks as in Fig. 10,
with the same legend: 50 %
(black), 75 % (grey), and 90 %
(black) quantiles of the absolute
values of the residuals, grouped
per half hours

grouped by half hours. In addition, we see that the distributions of the errors of the aggre-
gation rules are more concentrated than the ones of the best benchmarks, which indicates
that their good overall performance does not come at the cost of some local disasters in the
quality of the predictions.

All in all, we conclude that the best aggregation rules never encounter large prediction
errors in comparison to the best expert or to the best convex combination of experts and
often encounter much smaller such errors. This is strongly in favor of their use in an in-
dustrial context where large errors can be highly prejudicious (potential issues range from
financial penalties to black outs). In a nutshell, aggregation rules are seen to reduce the risk
of prediction, which is one important pro for operational forecasting.
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6 Conclusions

On the theoretical side, we reviewed and extended known aggregation rules for the case of
specialized (sleeping) experts. First, we provided a general analysis of the specialist aggrega-
tion rules of Freund et al. (1997) for all convex loss functions, while the original reference
needed an ad hoc analysis for each loss function of interest. Second, we showed how the
fixed-share rules of Herbster and Warmuth (1998) can accommodate specialized experts:
they form a natural and efficient alternative to the specialist aggregation rules. Finally, for
all these rules, as well as the exponentially weighted average ones, we indicated how to ex-
tend them so as to take into account some operational constraint of outputting simultaneous
forecasts for a fixed number of future time instances.

We then followed a general methodology to study the performance of these rules on real
data of electricity consumption. In particular, we provided fully adaptive methods that can
tune online their parameters based on adaptive grids; doing so, they outperform clearly the
rules tuned with the theoretically optimal parameters. All in all, for the two data sets at
hand the best rules, given by fixed-share type rules, improve on the accuracy of the best
constant convex combination of the experts by about 5 % (Slovakian data set) to about
15 % (French data set). In addition, we noted that resorting to the gradient trick described
in Sect. 2.2 always improved the performance of the underlying aggregation rule. Finally,
the raw improvement in terms of the global performance, as measured by the RMSE, of the
sequential aggregation rules over the (convex combinations of) experts, also comes together
with a reduction of the risk of large errors: the studied aggregation rules are more robust
than the base forecasters they are using.
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Appendix A: Proof of Theorem 2

Proof One can show by induction that the vectors wt are convex weight vectors. We use the
notation defined in Sect. 2.2 for the normalization q

E of convex weight vectors q to a given
set of active experts E; then, the convex combination used by Sη at round t can be written
as pt = w

Et
t .

By convexity of the loss functions ℓt , the regret with respect to some expert j can be
bounded as

RT (Sη, j) ≤
T∑

t=1

(∑

i∈Et

w
Et

i,t ℓt (δi) − ℓt (δj )

)
I{j∈Et }.

Hoeffding’s lemma (see, e.g., Cesa-Bianchi and Lugosi 2006, Lemma A.1) entails that for
all t such that j ∈ Et ,

∑

i∈Et

w
Et

i,t ℓt (δi) ≤ −
1

η
ln

(∑

i∈Et

w
Et

i,t e
−ηℓt (δi )

)
+

η

8
L2

= −
1

η
ln

wj,te
−ηℓt (δj )

wj,t+1
+

η

8
L2 = ℓt (δj ) −

1

η
ln

wj,t

wj,t+1
+

η

8
L2,
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where we used that the update of the weight of an expert j ∈ Et can be rewritten by definition
as

wj,t+1 = wj,te
−ηℓt (δj ) 1

∑
k∈Et

w
Et

k,te
−ηℓt (δk)

.

For j /∈ Et , we have that wj,t+1 = wj,t , again by definition of the rule. Thus a telescoping
sum appears and we get

T∑

t=1

(∑

i∈Et

w
Et

i,t ℓt (δi) − ℓt (δj )

)
I{j∈Et } ≤ −

1

η
ln

wj,1

wj,T +1
+

η

8
L2

T∑

t=1

I{j∈Et }.

The proof is concluded by noting that wj,1/wj,T +1 ≥ 1/N as wj,1 = 1/N and wj,T +1 ≤ 1. �

Appendix B: Proof of Theorem 3

The following proof is a straightforward adaptation of the techniques presented in Cesa-
Bianchi and Lugosi (2006, Sect. 5.2). Its only merit is to show how the share update was
obtained in Fig. 2.

Proof We first note that by convexity of the ℓt ,

max
jT

1 ∈Lm

RT

(
Fη,α, j

T
1

)
≤

T∑

t=1

(∑

i∈Et

pi,tℓt (δi) − ℓt (δjt )

)
. (12)

We now use the same proof scheme as in Cesa-Bianchi and Lugosi (2006, Sect. 5.2) and
show that the rule Fη,α is simply an efficient implementation of the rule that would, at each
round t , choose a convex weight vector p

′
t with components proportional to

p′
j,t ∝ w′

j,t−1 =

{
0 if j /∈ Et ,∑

jT
1 ∈L

ν(jT
1 )e−η

∑t−1
s=1 ℓs (js )I{jt =j } if j ∈ Et ,

where ν is some prior probability distribution over L, to be defined below. It then follows
from Cesa-Bianchi and Lugosi (2006, Lemma 5.1) that for all jT

1 ∈ L,

T∑

t=1

(∑

i∈Et

p′
i,tℓt (δi) − ℓt (δjt )

)
≤

1

η
ln

1

ν(jT
1 )

+
ηL2T

8
. (13)

To get the stated bound, we thus need, one the one hand, to define the distribution ν, and
on the other hand, to show that Fη,α indeed performs the efficient implementation indicated
above.

[First part: Definition of ν] In the sequel we denote by |E| the cardinality of a subset
E of {1, . . . ,N}. We fix a real number α ∈ [0,1] and consider the following probability
distribution ν over the sequences of (legal and illegal) experts, i.e., over {1, . . . ,N}T . For
each element jT

1 ∈ L, we denote by m its size, by t1, . . . , tm the instances 1 ≤ t ≤ T −1 such
that jt 	= jt+1, and by T the set of instances 1 ≤ t ≤ T − 1 such that jt = jt+1; we then set

ν
(
jT

1

)
=

1

|E1|
∏

t∈T

(
1 − α +

α

|Et+1|

) m∏

s=1

(
α

|Ets+1|
I{jts ∈Ets+1} +

1

|Ets+1|
I{jts /∈Ets+1}

)
;
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for jT
1 /∈ L, we set ν(jT

1 ) = 0. This application ν indeed defines a probability distribution as
can be seen by introducing the uniform distribution μ1 over E1 and the following transition
functions Trt : {1, . . . ,N}2 → [0,1]; for all i, j ,

Trt (i → j) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if j /∈ Et+1; (14)

(1 − α) + α/|Et+1| j ∈ Et+1 and i = j ; (15)

α/|Et+1| j ∈ Et+1, i ∈ Et+1, and i 	= j ; (16)

1/|Et+1| j ∈ Et+1 and i /∈ Et+1. (17)

Its interpretation is as follows. We never switch to an inactive expert, as is ensured by (14).
If we can stay on the same expert (if the current expert remains active), then we do so with a
probability slightly larger than 1 − α, see (15). If we could have stayed on the same expert,
then (14) indicates that we switch with probability α/|Et+1| to a different expert in Et+1.
Finally, (17) controls the case when the current expert becomes inactive and we need to
switch to a new expert for the compound expert to be legal.

Now, we note that for all i and t , by distinguishing whether i ∈ Et+1 or i /∈ Et+1,

N∑

j=1

Trt (i → j) = 1

and that, for all jT
1 ∈ {1, . . . ,N}T (all of them–the legal and the illegal ones),

ν
(
jT

1

)
= μ1(j1)

T −1∏

t=1

Trt (jt → jt+1). (18)

To prove the stated bound, assuming we have proven as well that pt = p
′
t for all t (which

we do below, in the second part of the proof), it suffices to combine (12) and (13) with the
following immediate lower bound on the ν(jT

1 ),

ν
(
jT

1

)
≥

1

N

(∏

t∈T

(1 − α)

)(
m∏

s=1

α

N

)
=

1

N
(1 − α)T −m−1

(
α

N

)m

,

which we obtained by upper bounding all cardinalities |Et | by N in the definition of ν and
by using 0 ≤ α ≤ 1. (The obtained bound is actually exactly the one of Cesa-Bianchi and
Lugosi (2006, Theorem 5.2), due to the loose way we lower bounded ν.)

[Second part: Proof of the efficient implementation] The proof goes by induction and
mimics exactly the one of Cesa-Bianchi and Lugosi (2006, Theorem 5.1). It suffices to
show that for all j ∈ {1, . . . ,N} and t ∈ {0, . . . , T − 1}, one has wj,t = w′

j,t . To do so, we
first note that thanks to (18), the distribution ν can be interpreted as the distribution of an
inhomogeneous Markov process, hence (18) indicates the distribution that ν induces over
{1, . . . ,N}s , for all 1 ≤ s ≤ T ; the latter is given by simply replacing T by s in (18). We can
therefore rewrite w′

j,t as

w′
j,t =

∑

j1,...,jt+1

ν
(
j t+1

1

)
e−η

∑t
s=1 ℓs (js )I{jt+1=j }, (19)
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where the first sum is (indifferently) taken over {1, . . . ,N}t+1 or E1 × · · ·×Et+1. For t = 0,
we get

w′
j,0 =

N∑

j1=1

ν(j1)I{j1=j } = μ1(j) = wj,0,

by definition of ν and of the wj,0 (we recall that μ1 denotes the uniform distribution
over E1). Now, we assume that for some t ≥ 1, we have proved that wi,t−1 = w′

i,t−1 for all
i ∈ {1, . . . ,N}. For j ∈ Et+1, by the share update in Fig. 2 and by the induction hypothesis,

wj,t =
1

|Et+1|
∑

i∈Et \Et+1

w′
i,t−1e

−ηℓt (δi ) +
α

|Et+1|
∑

i∈Et∩Et+1

w′
i,t−1e

−ηℓt (δi )

+ (1 − α)I{j∈Et ∩Et+1}w
′
j,t−1e

−ηℓt (δj ).

By definition of the transition functions (14)–(17), this equality can be rewritten as

wj,t =
∑

i∈Et

w′
i,t−1e

−ηℓt (δi ) Trt (i → j).

Substituting (19) in this equality, we get

wj,t =
∑

j1,...,jt

∑

i∈Et

ν
(
j t

1

)
I{jt =i} Trt (i → j)e−η

∑t−1
s=1 ℓs (js )e−ηℓt (δi )

=
∑

j1,...,jt

ν
(
j t

1

)
Trt (jt → j)e−η

∑t
s=1 ℓs (js )

=
∑

j1,...,jt ,jt+1

ν
(
j t+1

1

)
I{jt+1=j }e

−η
∑t

s=1 ℓs (js ) = w′
j,t ,

where the last but one equality follows from (18). For j /∈ Et+1, by definitions, wj,t = 0 and
w′

j,t = 0. This concludes this proof. �

Appendix C: Proof of Corollary 2

This proof uses the same methodology as the one of Corollary 1.

Proof We fix a compound weight vector q
T
1 ∈ Cm and denote by L(qT

1 ) ⊆ Lm the set of com-
pound experts jT

1 that are compatible with q
T
1 in the following sense: denoting by t1, . . . , tm

the time instances 1 ≤ s ≤ T − 1 such that qs 	= qs+1, the elements jT
1 in L(qT

1 ) are char-
acterized by the fact that js 	= js+1 only if s = tk for some k ∈ {1, . . . ,m}. We insist on the
fact that this is a “only if” statement and not an “if and only if” statement; this means that
the switches in the sequences jT

1 ∈ L(qT
1 ) can only occur (but are not bound to occur) at the

indexes of the switches in q
T
1 .

Now, we recall that by the gradient trick recalled in Sect. 2.2,

RT

(
F

grad
η,α ,qT

1

)
≤ R̃T

(
F

grad
η,α ,qT

1

)
=

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (q t )

)
.
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Since the ℓ̃t are linear over X , the last expression can be upper bounded by

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (q t )

)
≤ max

jT
1 ∈L(qT

1 )

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (δjt )

)
,

which shows that in particular,

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (q t )

)
≤ max

jT
1 ∈Lm

T∑

t=1

(
ℓ̃t (pt ) − ℓ̃t (δjt )

)
= max

jT
1 ∈Lm

R̃T

(
F

grad
η,α , jT

1

)
.

The proof is concluded by noting that Theorem 3 exactly ensures that the rule F
grad
η,α is such

that

max
jT

1 ∈Lm

R̃T

(
F

grad
η,α , jT

1

)
≤

m + 1

η
lnN +

1

η
ln

1

αm(1 − α)T −m−1
+

η

8
(2G)2T .

�

Appendix D: Sketch of a regret bound on the operational adaptation Wη of Eη

We provide a proof by approximation and show that the regret of Wη is bounded by the
regret of Eη plus some small term. To do so, we compare the definitions (2) and (11), e.g.,
in the case when pj,0 = 1/24 for all experts j .

Since R48⌊(t−1)/48⌋(Eη, j) and Rt−1(Eη, j) differ by at most 47 instantaneous regrets, each
of which is bounded between −B2 and B2, the ratio between the numerators of (2) and (11),
as well as the one between their denominators, lie in the interval [e−47ηB2

, e47ηB2 ]. Therefore,
the ratios of the weights defined in (2) and (11) are in the interval [e−94ηB2

, e94ηB2 ]. Thus,
using a gradient bound, the difference between the regrets of interest can be bounded as

RT (Wη, j) − RT (Eη, j) ≤ 2B2 max
{
eη94B2 − 1,1 − e−η94B2}

T ,

which, for η small enough, is of the order of B4ηT . Taking η of the order of 1/
√

T , which is
also the optimal order of magnitude for the bound on RT (Eη, j) stated in Theorem 1, entails
that RT (Wη, j) = O(

√
T ) = o(T ), as asserted above.
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