
264 © IWA Publishing 2019 Water Supply | 19.1 | 2019

Downloaded fr
by guest
on 20 August 2
Forecasting failure rate of water pipes

M. Kutyłowska
ABSTRACT
This paper presents the results of failure rate prediction by means of support vector machines

(SVM) – a non-parametric regression method. A hyperplane is used to divide the whole area in such a

way that objects of different affiliation are separated from one another. The number of support

vectors determines the complexity of the relations between dependent and independent variables.

The calculations were performed using Statistical 12.0. Operational data for one selected zone of the

water supply system for the period 2008–2014 were used for forecasting. The whole data set (in

which data on distribution pipes were distinguished from those on house connections) for the years

2008–2014 was randomly divided into two subsets: a training subset – 75% (5 years) and a testing

subset – 25% (2 years). Dependent variables (λr for the distribution pipes and λp for the house

connections) were forecast using independent variables (the total length – Lr and Lp and number of

failures – Nr and Np of the distribution pipes and the house connections, respectively). Four kinds of

kernel functions (linear, polynomial, sigmoidal and radial basis functions) were applied. The SVM

model based on the linear kernel function was found to be optimal for predicting the failure rate of

each kind of water conduit. This model’s maximum relative error of predicting failure rates λr and λp

during the testing stage amounted to about 4% and 14%, respectively. The average experimental

failure rates in the whole analysed period amounted to 0.18, 0.44, 0.17 and 0.24 fail./(km·year) for the

distribution pipes, the house connections and the distribution pipes made of respectively PVC and

cast iron.
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INTRODUCTION
The condition of water-pipe networks should be a major

concern not only for their operators, but also for scientists

who are able to propose more accurate ways of condition

deterioration modelling. The necessity to ensure the

proper protection and management (Hamchaoui et al.

) of water supply systems is increasingly often high-

lighted. These are undoubtedly vital issues which together

with reliability analyses, water demand analyses and the

properly planned modernization (Tscheikner-Gratl et al.

) of the pipelines and the whole water supply infrastruc-

ture should be and currently are the subject of numerous
studies and projects. The research findings indicate that

such studies need to be continued in order to gain deeper

knowledge in this field, especially with regard to mathemat-

ical modelling, which owing to the development of

computing techniques is constantly improved and uses

increasingly more accurate modelling methods (Scheidegger

et al. ).

Prior to modelling it is necessary to investigate the

number and kinds of failures occurring in the water-pipe net-

works as well as the causes and effects (Iwanek et al. ;

Pietrucha-Urbanik & Studziński ) of the failures and
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the level of risk (Boryczko & Tchórzewska-Cieślak ).

The analysis of the failure frequency of water pipes has

been the subject of many investigations. For example, Hu

& Hubble () studied conduits made of asbestos

cement. They demonstrated that the climate and the soil

surrounding the pipe had a great influence on the failure

rate. The deterioration of old water pipes was examined

by Shahata & Zayed (). The authors concluded that

relatively old conduits (dating back to the 19th century)

were less deteriorated than ones from the second half of

the 20th century. In contrast to this, Arai et al. ()

found that in Japan at the beginning of the 21st century

the water-pipe network built about 60 years ago needed to

be renovated. The type of conduits (water mains, distri-

bution pipes or house connections) and fluctuations in

pressure inside the pipe have a great influence on the

level of failure frequency (Pelletier et al. ; Piratla

et al. ; Martínez-Codina et al. ).

Failure analyses used to be based on typical mathemat-

ical modelling. For example, Shamir & Howard ()

proposed a model in which the failure rate exponentially

depended on time (Shamir & Howard ). A few years

later the model was expanded by Walski & Pelliccia

(). Many statistical and physically based models con-

cerning water-pipe deterioration were discussed in Kleiner

& Rajani () and Rajani & Kleiner (). There have

been numerous studies relating to failure rate prediction

and new investigations are still undertaken.

Nowadays typical statistical modelling is substituted by

other kinds of mathematical modelling, e.g. Bayesian

models (Tchórzewska-Cieślak ), which are successfully

used in environmental engineering. For instance, sediment

transport in sewers and the failure frequency of water

pipes are estimated by artificial neural networks (ANNs)

(Tabesh et al. ; Jafar et al. ; Nishiyama & Filion

; Ebtehaj et al. a; Kutyłowska ). Genetic algor-

ithms are used to model and optimize the failure

frequency or the time between failures (Xu et al. ;

Sattar et al. ). The risk level of a water distribution

system has been assessed (as part of a failure analysis) by

means of artificial intelligence and Monte Carlo simulation

(Yung et al. ). Also environmental engineering problems

have been investigated using mathematical modelling. For

example, the degradation of organic compounds in the
://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf
environment has been assessed using the K-nearest neigh-

bours method (Manganaro et al. ) and raw water

quality has been modelled for chemical dosing process con-

trol in a water purification plant, by means of support vector

machines (SVM) (Wang ).

The SVM method is used in many fields, e.g. to predict

bus arrivals in municipal transport systems (Bin et al.

) and to forecast the cash demand in cash machines

(Ramírez & Acuña ). Shirzad et al. () proposed

applying SVM and ANNs to predict the rate of failure of

water pipes. The authors suggested that neural networks

generated results more convergent with experimental data

than the results yielded by support vector models. Using

the SVM method one can also locate water leakages from

pipes (Mashford et al. ; Candelieri et al. ). The pre-

diction of sludge transport, which is essential for the

proper operation of sewers, can be based on SVM modelling

(Ebtehaj et al. b). Also the condition of sewerage sys-

tems can be assessed (Mashford et al. ) and the

inspection schedule can be planned (Harvey & McBean

) by means of SVM. The SVM can be a valuable tool

for solving hydrological and hydrogeological problems relat-

ing to, e.g., flood wave height (Liu & Pender ), surface

water quality (Kisi & Parmar ) and hydraulic conduc-

tivity (Elbisy ). However, there are very few studies

concerning the deterioration and failure analysis of water

conduits by means of SVM. Therefore this subject was

undertaken by the present author.

The main aim of this paper was to verify whether the

regression method called SVM could be used to forecast

the failure rate (λ, fail./(km·year)) of the water pipelines (dis-

tribution pipes and house connections) in a selected zone of

the water supply system in a Polish city.
MATERIALS AND METHODS

The SVM method is a regression and classification algor-

ithm which takes nonlinear decision space into account.

A hyperplane divides the whole area in such a way that

objects of different affiliation are separated from one

another. It is also necessary to keep a maximum margin of

error, i.e. the distance from the separating plane. The

number of support vectors determines the complexity of
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the relations between dependent and independent variables

(Statistica Electronic Manual). In the case of a qualitative

analysis of such a dependent variable as the failure rate of

water conduits, no classification but regression is performed.

Four kinds of SVMs, characterized by four types of kernel

functions, linear (SVM-L), polynomial (SVM-P), sigmoidal

(SVM-S) and radial basis functions (SVM-RBF), are distin-

guished (Statistica Electronic Manual). The notion of

kernel functions derives from investigations of linear

vector spaces. In the case of the problem considered here,

all SVM models (based on all kernel functions) were built

and verified. In the course of a regression analysis a relation

between the dependent variable and the independent vari-

ables (predictors) is sought. This relation should possibly

most accurately generate a dependent variable value for

new cases (testing sample data), i.e. the ones which the

SVM model has not ‘seen’ before, having been trained on

a training sample. The mapping function φ(x) is called a

kernel function which meets the Mercer condition while

the feature map for the Mercer kernel is as follows (Guo

et al. ):

k x, yð Þ ¼ φ xð ÞTφ yð Þ (1)

The kernel functions are described by equations (2)–(5),

respectively for linear, polynomial, sigmoidal and RB func-

tions (Guo et al. ):

k x, yð Þ ¼ x � yð Þ (2)

k x, yð Þ ¼ s x � yð Þ þ γð Þd (3)

k x, yð Þ ¼ tanh s x � yð Þ þ γð Þ (4)

k x, yð Þ ¼ exp � x� yk k2
2σ2

 !
(5)

where:
γ – learning rate,

x – independent variable,

y – dependent variable,
om http://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf

022
d – degree of polynomial,

σ – dispersion parameter,

s – indicator of kernel function (parameter similar to dis-

persion in radial function).

The prediction function is calculated from the relation

(Aydogdu & Firat ):

y Xð Þ ¼ wTφ xð Þ þ b (6)

where:

y – dependent variable,

b – bias,

w – matrix of weights,

φ – mapping function.

There are many advantages of SVM modelling, e.g. the

size of the learning vector can be relatively small, outliers

do not have a significant influence on the modelling quality

(Williams ), the modelling is possible even if the relation-

ships between dependent and independent variables are

complicated and the application of typical mathematical

models is difficult and limited (Bin et al. ), and in fact

the solution cannot reach the so-called local minimum (Cris-

tianini & Shave-Taylor ). Several regression methods are

used for prediction purposes, e.g. ANNs, which belong to

‘black box’ models. SVM models seem to be a little bit

easier in application in comparison with ANNs. Neural net-

works require a relatively large data set for training,

validating and testing the model. Moreover, artificial net-

works are not so resistant to outliers as the SVM method.

ANNs are trained using training methods, learning epochs

and neurons activated by functions. The number and kind

of model parameters depend on the problem being solved

and often can be determined by trial and error. A proper

activation function and training method as well as a

number of hidden layers and hidden neurons need to be

selected. Generally, a hidden layer behaves like a ‘black

box’ and it is impossible to identify the procedures and the

relationships occurring in it, which is the main disadvantage

of neural networks. Because of fewer limitations the SVM

method seems to be easier in application and in modelling.

The calculations were performed using Statistica 12.0.

Operating data for a selected zone of the water supply



Figure 1 | Structure of the water-pipe network in the analysed zone.
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system for the period 2008–2014 were used for forecasting.

The whole set of data (for respectively distribution pipes

and house connections) for the years 2008–2014 was

divided randomly into two subsets: a training subset – 75%

(5 years) and a testing subset – 25% (2 years). Dependent

variables (λr for the distribution pipes and λp for the house

connections) were forecast using independent variables

(the total length – Lr and Lp and number of failures – Nr

and Np of the distribution pipes and the house connec-

tions, respectively). The independent variables, the total

length and the number of failures (basic information

about the water pipes), were adopted to check, using a rela-

tively simple case, if the SVM algorithm was suitable for

failure frequency forecasting. This paper continues the sub-

ject of the author’s previous investigations in which SVM

modelling was applied to another water distribution

system (Kutyłowska ). In that case (Kutyłowska ),

the diameter, the year of installation and the material

were used as independent variables. In the present work

more basic parameters (the length and the number of

failures) are used to explore the possibilities of SVM

modelling based on less complicated information about

the water pipeline.

The whole city, with c. 230,000 inhabitants, was divided

into 55 water supply zones. The failure frequency of the dis-

tribution pipes and the house connections was investigated

in only one selected zone in which the pressure inside the

pipe-network amounted to about 0.4 MPa. The total length

of the distribution pipes and the house connections

amounted to 17.5 km and 14.2 km, respectively. The distri-

bution pipes were made mainly of grey cast iron (48.6%,

8.5 km) and PVC (38.9%, 6.8 km), and the remaining

12.5% of the total length was made of PE. The analysed

zone has the area of c. 41 km2 and about 10,000 citizens

who are all connected to the water-pipe network. The

water is supplied, in the amount of 1,920 m3/d, from a

well. The water-pipe network architecture is shown in

Figure 1.
RESULTS AND DISCUSSION

The values of the dependent and independent experimental

variables for the years 2008–2014 are shown in Table 1. The
://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf
data are for one zone selected from the whole water supply

system. The detailed temporal and spatial clustering of pipe

failures within this zone will be the subject of future investi-

gations. The values of failure frequency λr and λp were

calculated for the whole length of each kind of water pipe-

line in the analysed zone. Moreover, Table 1 shows the

length (Lr PVC, Lr CI), the number of failures (Nr PVC,

Nr CI) and the failure rate of the distribution pipes (λr PVC

and λr CI) for two kinds of material (PVC and cast iron –

CI). The total number of failures in the selected area over

the whole analysed time was equal to 22, 44, 8 and 14 for

the distribution pipes, the house connections and the distri-

bution pipes made of respectively PVC and cast iron. The

average experimental failure rates in the whole analysed

period amounted to 0.18, 0.44, 0.17 and 0.24 fail./

(km·year) for the distribution pipes, the house connections

and the distribution pipes made of respectively PVC and

cast iron. All types of kernel functions (L, P, S and RBF)

were applied. As mentioned above, the whole data set

(2008–2014) was randomly divided into a training sample

(5 years: 2008–2010, 2012 and 2014) and a testing sample

(2 years: 2011 and 2013).

The main model parameters are shown in Table 2. The

polynomial degree was equal to 3 in all the SVM-P

models. Since the SVM method is a kind of nonparametric

regression, the correlations between the dependent variables

(the predicted values) and the independent variable need



Table 1 | Dependent and independent variables

Lr, km Lr PVC, km Lr CI, km Lp, km Nr Nr PVC Nr CI Np λr, fail./(km·year) λr PVC, fail./(km·year) λr CI, fail./(km·year) λp, fail./(km·year)

17.5 6.8 8.5 14.2 2–5 0–3 1–3 3–10 0.11–0.29 0.00–0.44 0.12–0.35 0.21–0.70
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not be known. V-fold cross-validation was used to find the

optimal model parameters. In this type of cross-validation,

data are divided into V randomly selected disjoint parts.

Using the V�1 parts of the data as training examples the

dependent variable is predicted and the prediction error is

calculated on the basis of the residual sum of squares. The

procedure is executed for all the V data segments. Then a

model quality measure is determined on the basis of the

averaged errors of the particular cycles. The optimal

model parameters are selected during a quality analysis.
Table 2 | Model parameters

Type of conduit/parameter Distribution pipes Dist

SVM-L

Gamma – –

Capacity (C) 4 2

Epsilon (ε) 0.1 0.1

Number of support vectors (localized) 2 (0) 2 (0

Cross-validation error 0.024 0.01

SVM-P

Gamma 0.5 0.5

Capacity (C) 1 1

Epsilon (ε) 0.5 0.5

Number of support vectors (localized) 2 (0) 2 (0

Cross-validation error 0.024 0.01

SVM-S

Gamma 0.5 0.5

Capacity (C) 1 1

Epsilon (ε) 0.5 0.5

Number of support vectors (localized) 2 (2) 4 (4

Cross-validation error 0.650 1.50

SVM-RBF

Gamma 0.5 0.5

Capacity (C) 4 3

Epsilon (ε) 0.1 0.1

Number of support vectors (localized) 2 (0) 2 (0

Cross-validation error 0.069 0.01

om http://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf

022
The parameters determined in the course of the V-fold

cross-validation are: gamma, capacity, epsilon and the

number of SVM (including localized vectors) (Statistica

Electronic Manual). Tenfold (V¼ 10) cross-validation was

applied to the considered problem, whereby it was possible

to select proper values for such parameters (learning con-

stants) as capacity (C) and epsilon (ε), since they are not a

priori known.

The data presented in Table 2 should be analysed

together with the prediction results shown in Table 3 and
ribution pipes – PVC Distribution pipes – CI House connections

– –

2 4

0.1 0.1

) 2 (0) 2 (0)

0 0.008 0.023

0.5 0.5

1 1

0.5 0.5

) 2 (0) 2 (0)

0 0.008 0.023

0.5 0.5

1 1

0.1 0.5

) 4 (4) 2 (2)

0 1.800 0.689

0.5 0.5

3 4

0.1 0.1

) 2 (0) 2 (0)

0 0.008 0.072



Table 3 | Experimental and predicted failure rates

Experimental SVM-L SVM-P SVM-S SVM-RBF

λr, fail./(km·year)

0.11 0.12 0.14 0.14 0.12

0.11 0.12 0.14 0.14 0.12

0.17 0.17 0.17 0.14 0.17

0.23 0.22 0.20 0.14 0.22

0.11 0.12 0.14 0.14 0.12

λp, fail./(km·year)

0.28 0.30 0.39 0.42 0.30

0.70 0.68 0.60 0.42 0.68

0.49 0.49 0.49 0.42 0.49

0.35 0.36 0.42 0.42 0.36

0.49 0.49 0.49 0.42 0.49

λr PVC, fail./(km·year)

0.15 0.14 0.11 0.11 0.14

0.00 0.01 0.04 0.11 0.01

0.00 0.01 0.04 0.11 0.01

0.15 0.14 0.11 0.11 0.14

0.15 0.14 0.11 0.11 0.14

λr CI, fail./(km·year)

0.12 0.13 0.18 0.24 0.13

0.24 0.24 0.23 0.24 0.24

0.35 0.34 0.29 0.24 0.34

0.35 0.34 0.29 0.24 0.34

0.12 0.13 0.18 0.24 0.13

Figure 3 | Experimental and predicted failure rates of distribution pipes: (a) PVC, (b) CI.

Figure 2 | Experimental and predicted failure rates of (a) distribution pipes, (b) house

connections.
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in Figures 2 and 3. The prediction results in Table 3 are for

the training sample and they are compared with the exper-

imental results.

An analysis of the failure rate (λr) and (λp) prediction

results (Table 3) shows that the SVM models based on the

linear kernel function and the radial basis kernel function

are the optimal ones for each case (the distribution pipes,

the house connections and the distribution pipes made of

two different materials). The relative errors of the exper-

imental values and the forecast values ranged from 0.00%

to 9.09%. The SVM-S models (the sigmoidal function)

yielded senseless results since the predicted failure rate

was constant in all the cases. The models based on the poly-

nomial kernel function forecast the failure rate with a higher

error than models SVM-L and SVM-RBF. The results of
://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf
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prediction based on the testing sample (2011 – the black bar

and 2013 – the green bar) are shown in Figures 2 and 3 for

the distribution pipes, the house connections and the distri-

bution pipes made of respectively PVC and CI.

The models based on the linear kernel function are the

most suitable for forecasting failure rates λr and λp (Figure 2)

during the testing stage.

The results of forecasting λr for the two different

materials (Figure 3) are surprising. In comparison with

the experimental values, the models based on all the

kernel functions ideally predict the failure rate of the pipe-

lines made of cast iron (Figure 3(b)). The failure frequency

of the conduits made of PVC (Figure 3(a)) is predicted

quite well by means of the linear kernel function. The

other functions yielded senseless results. The quality and

applicability of a model should be evaluated on the basis

of the forecasting results obtained from testing since they

are more representative (the model has no prior knowledge

of the dependent variables and the predictors) than the sol-

utions obtained from the learning phase. Considering the

above, the SVM model based on the linear kernel function

is the optimal one for predicting the failure rate of each

kind of water conduit. In this model (the testing stage)

the maximum relative error amounted to about 4% and

14% for predicting respectively λr and λp. For the RBF

model the maximum errors were higher, amounting to

about 13% and 23%, respectively. In the case of the

SVM-P models (Table 2), the cross-validation error was

the same as for the SVM-L models, but it did not influence

the prediction quality. In the case of any kind of modelling,

one should answer the question whether the aim is to

obtain a perfect data fit at any cost, i.e. at the expense of

model architecture complication. Even if the capacity

(C¼ 1) is lower in SVM-P and SVM-S models and the epsi-

lon values are higher (ε¼ 0.5) than in linear models, one

should choose the model which is characterized by the

highest convergence between the real (experimental) and

forecast failure rate values. One should bear in mind that

water-pipe networks belong to the critical buried infrastruc-

ture and so the condition of the water pipelines should be

estimated accurately. Model structure is important, but first

of all one should consider the model which estimates

the dependent variable in the most optimal way with the

lowest error between the real and forecast values. The
om http://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf
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number of localized vectors, whose weights are equal to

± the capacity value, is also a crucial issue. The more loca-

lized vectors there are, the more difficult it is to divide the

whole area by means of the hyperplane. This means that

the problem becomes then more complicated. For example,

when the sigmoidal kernel function (Table 2) was used, the

model had more localized support vectors than the other

models. In fact, all the support vectors were localized.

The model architecture (the values of C and ε and the

number of support vectors) will change if more and other

independent variables are included.
CONCLUSIONS

The SVM method is useful for forecasting the failure rate of

water conduits. The methodology is applicable to any water

supply system, but the results presented in this paper are

valid for only the particular water-pipe network and the par-

ticular pressure zone. Another model based on SVM needs

to be built to predict the failure rate in another city. For

the purposes of failure rate modelling, the length of the con-

duits and the number of registered failures (separately for

the distribution pipes and the house connections) were trea-

ted as independent variables (predictors). The whole data

set (time span: 2008–2014) was randomly divided into two

subsets (for model training and testing). An analysis of the

testing results indicated that the models based on the

linear kernel function were the most optimal and suitable

for failure rate prediction for all the types of pipelines and

the two kinds of material. In the case of the optimal SVM-

L model, the correlation between the experimental and pre-

dicted failure rates of the distribution pipes and the house

connections was almost perfect for the testing sample. The

same was observed for the distribution pipes made of

respectively PVC and cast iron. The SVM-L model was

characterized by the following parameters:

• capacity equal to 4 for the distribution pipes and the

house connections and to 2 for the distribution pipes

made of respectively PVC and CI;

• epsilon equal to 0.1;

• two support vectors and none of them localized;

• the cross-validation error ranging from 0.008 to 0.024;
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• maximum relative errors (the testing sample) equal to 4.4%

and 14.3% for respectively the distribution pipes and the

house connections and to 9.1% and 0.0% for the distri-

bution pipes made of respectively PVC and CI. From the

engineering point of view such errors are acceptable.

As mentioned earlier, this paper continues the subject of

the author’s previous study concerned with the SVM model-

ling of a water distribution system (Kutyłowska ). One

should note that simple comparisons should be avoided

because the previous water-pipe network was completely

different and the operating conditions were not the same.

In the earlier work more detailed information about the

water pipes was taken into consideration as predictors, e.g.

the year of construction and the diameter of the pipes.

This approach strongly affected the model structure. In the

earlier paper (Kutyłowska ) the number of support vec-

tors was larger, amounting to 56 and 14 for the distribution

pipes and the house connections, respectively. This means

that the model architecture was more complicated, but the

prediction quality was not affected since the cross-validation

error (for the optimal model based on the linear kernel func-

tion) was higher, amounting to 0.094 and 0.112 for the

distribution pipes and the house connections, than in the

case of the model proposed in the present paper. Generally,

the optimal model should be relatively simple and forecast

the dependent variable in good agreement with the exper-

imental values. If detailed information about the pipelines

is not available or some data are missing or are considered

to be outliers, one can still use SVM modelling based on

simple operational data as described above. For this

reason the total length of the conduits and the registered

number of their failures (basic information about the water

conduits) were treated as independent variables. It is

highly important to create a relatively simple model using

available operational data. The methodology, the solutions

and the prediction results meet the above requirement for

model simplicity. Nevertheless, one should remember that

each water supply system is different and it is necessary to

check all the modelling possibilities with simple and more

detailed predictors in order to select the optimal solution.

The proposed methodology can be useful for water utili-

ties and their managers. The models can be used to forecast

the failure frequency solely on the basis of two variables.
://iwaponline.com/ws/article-pdf/19/1/264/507177/ws019010264.pdf
This approach does not require collecting a lot of oper-

ational data, which are sometimes very difficult to acquire,

especially when the prognosis is to be made on the basis

of sparse historic information not collected in the Geo-

graphic Information System. The advantage of SVM

modelling is that it is possible to extend once-created

models using other operational data (the pressure inside the

pipe, the depth of laying, the diameter, the material, etc.) if

this is required by the operators to understand the processes

responsible for the failures of the water pipes. Moreover,

building two separate models (for distribution pipes and

house connections) is a good solution since the operation

of the two types of conduits is completely different. Then

the water utility can use the proposed methodology indepen-

dently for larger and smaller pipes. One should note that

damage to one distribution pipe has a more disruptive

effect (e.g. a pressure drop or no supply of water for some

hours) on the operation of the whole water supply system

than even several failures of house connections. The next

step can be an analysis of failures over time and their spatial

clustering which will provide the water utility with detailed

information about the failures and help it to draw up a mod-

ernization or replacement schedule.
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