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Since the breakdown of the BrettonWoods system in the early 1970s, the foreign exchange (FX) market has become an important
focus of both academic and practical research. -ere are many reasons why FX is important, but one of most important aspects is
the determination of foreign investment values. -erefore, FX serves as the backbone of international investments and global
trading. Additionally, because fluctuations in FX affect the value of imported and exported goods and services, such fluctuations
have an important impact on the economic competitiveness of multinational corporations and countries. -erefore, the volatility
of FX rates is a major concern for scholars and practitioners. Forecasting FX volatility is a crucial financial problem that is
attracting significant attention based on its diverse implications. Recently, various deep learning models based on artificial neural
networks (ANNs) have been widely employed in finance and economics, particularly for forecasting volatility. -e main goal of
this study was to predict FX volatility effectively using ANN models. To this end, we propose a hybrid model that combines the
long short-term memory (LSTM) and autoencoder models. -ese deep learning models are known to perform well in time-series
prediction for forecasting FX volatility.-erefore, we expect that our approach will be suitable for FX volatility prediction because
it combines the merits of these two models. Methodologically, we employ the Foreign Exchange Volatility Index (FXVIX) as a
measure of FX volatility. In particular, the three major FXVIX indices (EUVIX, BPVIX, and JYVIX) from 2010 to 2019 are
considered, and we predict future prices using the proposed hybrid model. Our hybrid model utilizes an LSTM model as an
encoder and decoder inside an autoencoder network. Additionally, we investigate FXVIX indices through subperiod analysis to
examine how the proposed model’s forecasting performance is influenced by data distributions and outliers. Based on the
empirical results, we can conclude that the proposed hybrid method, which we call the autoencoder-LSTM model, outperforms
the traditional LSTM method. Additionally, the ability to learn the magnitude of data spread and singularities determines the
accuracy of predictions made using deep learning models. In summary, this study established that FX volatility can be accurately
predicted using a combination of deep learning models. Our findings have important implications for practitioners. Because
forecasting volatility is an essential task for financial decision-making, this study will enable traders and policymakers to hedge or
invest efficiently and make policy decisions based on volatility forecasting.

1. Introduction

Among various financial asset markets, the foreign exchange
(FX) market has become increasingly volatile and fluid over
the past decade. According to data released by BIS (Bank for
International Settlements) in April of 2019, the global
trading volume of FX commodity markets was $6.6 trillion
per day, representing a 30% increase compared to April of

2016 ($5.1 trillion). With the advent of globalization and
increased demand for overseas investment, the number of
FX transactions has increased rapidly based on investments
in companies in various countries. Additionally, FX rates
significantly affect the estimation of currency risks and
profits for international trades. Governments and policy-
makers are keeping a close watch on FX fluctuations to
perform risk management. -erefore, FX is considered to be
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the most important financial index for international mon-
etary markets (Huang et al. [1]).

In addition to FX rates, FX volatility has also been a
significant source of concern for practitioners. FX volatility
is defined by fluctuations in FX rates, so it is also known as a
measure of FX risk. Because FX risk is directly linked to
transaction costs related to international trade, it is of great
importance for multinational firms, financial institutions,
and traders who wish to hedge currency risks. In this regard,
FX volatility has affected the external sector competitiveness
of international trade and the global economy.

In particular, financial asset price volatility is a crucial
concern for scholars, investors, and policymakers. -is is
because volatility is important for derivative pricing,
hedging, portfolio selection, and risk management (see
Vasilellis and Meade [2], Knopf et al. [3], Brownlees and
Gallo [4], Gallo and Otranto [5], and Bollerslev et al. [6]).
-erefore, the forecasting and modeling of volatility have
recently become the focus of many empirical studies and
theoretical investigations in academia. Forecasting volatility
accurately remains a crucial challenge for scholars.

Because many academics and practitioners are interested
in volatility, many studies on volatility prediction have been
reported. In these studies, many approaches have been
utilized for forecasting. -e autoregressive conditional
heteroscedasticity (ARCH) and generalized ARCH
(GARCH) models proposed by Bollerslev [7] are mainly
used to predict volatility (Vee et al. [8], Dhamija and Bhalla
[9], Bala and Asemota [10], Kambouroudis et al. [11], and
Köchling et al. [12]). Various characteristics of volatility,
such as leverage effects, volatility clustering, and persistence
(Cont [13] and Cont [14]), are the main reasons for
employing GARCH-based models. Based on the recent
development of artificial neural network (ANN) models, the
use of ANN methods for forecasting volatility has increased
(Pradeepkumar and Ravi [15], Liu [16], Ramos-Pérez et al.
[17], and Bucci [18]). Previous studies have employed
various ANN models, such as the random forest (RF)
(Breiman [19]), support vector machine (SVM) (Cortes and
Vapnik [20]), and long short-term memory (LSTM)
(Hochreiter and Schmidhuber [21]). Several studies have
shown that ANN methods outperform GARCH-based
models for forecasting time series (see Pradeepkumar and
Ravi [15], Liu [16], and Bucci [18]). Additionally, hybrid
models based on ANNs and GARCH-type models have been
introduced (Hajizadeh et al. [22], Kristjanpoller et al. [23],
Kristjanpoller and Minutolo [24], Kim and Won [25],
Baffour et al. [26], and Hu et al. [27]). Such models are
reported to have advantages compared to using ANNs or
GARCH-based models alone. Additional literature on this
topic will be covered in Section 2.

Based on the discussion above, we focus on volatility
forecasting based on FX volatility. As measures of FX vol-
atility, we adopt three FX volatility indexes (FXVIXs),
namely, the FX euro volatility index (EUVIX), FX British
pound volatility index (BPVIX), and FX yen volatility index
(JYVIX), which are equally weighted indices of the Chicago
Board Option Exchange’s (CBOE’s) 30 day implied volatility
readings for the euro (EUR), pound sterling (GBP), and

Japanese yen (JPY), respectively. Because the three currency
pairs of EUR/USD, USD/JPY, and GBP/USD are the three
most heavily traded currency pairs on the FX market, we
selected the three corresponding FXVIX indices. Addi-
tionally, these indexes reflect global economic trends (see
Ishfaq et al. [28], Dicle and Dicle [29], and Pilbeam [30]). As
mentioned previously, the forecasting of volatility in the FX
market is important for global firms, financial institutions,
and traders who wish to hedge currency risks (see Guo et al.
[31], Abdalla [32], and Menkhoff et al. [33]).

Practically, the FX market consists of three associated
components: spot transactions, forward transactions, and
derivative contracts (Baffour et al. [26]). Additionally, be-
cause FX was originally defined by two currencies, FX has
more observable factors that affect changes compared to
other financial indices. Furthermore, according to Liu et al.
[34], the periodic characteristics of the FX market are some
of the main reasons why it is difficult to predict changes in
the FX market. -erefore, we utilize ANN models as data-
driven methods, rather than model-driven methods such as
GARCH-type models, to forecast the three aforementioned
FXVIXs. In particular, we employ the LSTM and autoen-
coder (Rumelhart et al. [35]) models as ANN techniques.We
propose a hybrid neural network model based on these two
models. To combine an autoencoder with LSTM, we apply
LSTM as an encoder and decoder for sequence data inside an
autoencoder network.-erefore, the proposed hybrid model
can leverage the advantages of both the autoencoder and
LSTM. A detailed discussion of this topic is presented in
Section 3.

Methodologically, we adopt a machine learning algo-
rithm (LSTM) to implement an autoencoder-LSTM model
for forecasting FXVIXs from 2010 to 2019. We optimize the
adopted algorithms using a grid search procedure provided
by Full-Stack Python. Testing is also performed using
subperiod analysis to investigate whether data deviations
and outliers affect model training. Such subperiod analysis
has been commonly implemented in previous studies
(Sharma et al. [36], Garćıa and Kristjanpoller [37], Ramos-
Pérez et al. [17], and Choi and Hong [38]). Specifically, we
split the entire sample period into three subperiods called
Period 1 (January, 2010 to December, 2015), Period 2
(January, 2016 to December, 2016), and Period 3 (January,
2017 to December, 2019). Period 2 exhibits uncertainty in
the European market based on the Brexit movement. In this
manner, we investigate the accuracy of prediction andmodel
performance according to different data states.

-ere are two major aspects of this study that differ from
previous studies. First, we use FXVIXs, which play key roles
in the FX market. Although previous empirical studies have
predicted various types of financial asset price volatility
using various models, research on forecasting FXVIXs is
scarce. Additionally, research on FX price prediction and
volatility prediction using various approaches is being
conducted, but research on the prediction of the FXVIX is
relatively rare. -erefore, it is necessary to predict FXVIX
volatility. Second, we propose a hybrid model based on an
autoencoder and LSTM to forecast the three FXVIXs. LSTM
is known to be good at forecasting time series (Fischer and
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Krauss [39], Kumar et al. [40], and Muzaffar and Afshari
[41]), and one of the advantages of an autoencoder is that it
can automatically extract features from input data (Phai-
sangittisagul and Chongprachawat [42], Zhang et al. [43],
and Zeng et al. [44]). -erefore, the autoencoder technique
has been widely used to predict time series data (Saha et al.
[45], Lv et al. [46], Sagheer and Kotb [47], and Boquet et al.
[48]).-e proposed hybrid model has excellent potential as a
novel method for forecasting the FXVIX and time series.

-e main contributions of this paper can be summarized
as follows:

First, we expand upon previous studies by forecasting
the FXVIX using ANN models. Our experiments were
motivated by the observation that previous studies on
the FX market have mainly focused on the FX rate,
volatility of returns, or historical volatility. In partic-
ular, FXVIXs represent future FX risk measures for
market participants. -erefore, our findings have im-
portant implications for practitioners managing FX risk
exposure.

Second, we propose a hybrid ANN model based on an
autoencoder and LSTM. Forecasting performance re-
sults demonstrate that the proposed hybrid model
outperforms traditional LSTM models. Consequently,
this study contributes to the literature on developing
ANN models by introducing a novel hybrid model.

Our third major contribution is the optimization of
model forecasting performance through subperiod
analysis. Based on the empirical results of subperiod
analysis, we can conclude that a wide distribution of
input data and acceptable number of outliers improve
forecasting performance.

-e remainder of this paper is organized as follows.
Section 2 presents a brief literature review on FX volatility
and studies using machine learning in finance. Section 3
describes the data and methodology adopted in this study.
Section 4 presents the results of empirical analysis for the full
sample period and subperiod analysis. Finally, we provide
concluding remarks in Section 5.

2. Literature Review

-ere is a vast body of literature on forecasting financial time
series. In this section, we divide previous research into FX
rate and FX volatility research according to the main focus of
previous papers. Additionally, we also discuss literature on
time-series forecasting using ANNs.

First, because the FX rate directly affects the income of
multinational firms, many studies have focused on the
forecasting FX rate and many studies have used ANN
models to predict future FX rates. For example, Liu et al. [34]
predicted EUR/USD, GBP/USD, and JPY/USD rates using a
model based on a convolutional neural network (CNN).
-ey demonstrated that such a model is suitable for pro-
cessing 2D structural exchange rate data. Fu et al. [49]
developed evolutionary support vector regression (SVR)
models to forecast four Renminbi (RMB, Chinese yuan)

exchange rates (CNY against USD, EUR, JPY, and GBP).
-ey also demonstrated that the proposed model outper-
forms the multilayer perceptron (MLP) neural network,
Elman neural network, and SVR models in terms of level
forecasting accuracy measures. -e authors of Sun et al. [50]
introduced a novel ensemble deep learning approach based
on LSTM and a bagging ensemble learning strategy to
predict four major currencies (EUR/USD, GBP/USD, JPY/
USD, and USD/CNY). According to their empirical results,
their proposed model provided significantly improved
forecasting accuracy compared to a traditional LSTMmodel.

As discussed in the previous section, FX volatility is also
important for many academics and practitioners, so many
studies have focused on FX volatility forecasting. In general,
GARCH-based models have been used in many studies to
predict FX volatility. Additionally, some studies have pre-
dicted FX volatility by incorporating different methodolo-
gies into GARCH models to improve forecasting power. For
example, the authors of Vilasuso [51] predicted various FX
rate volatilities (Canadian dollar, French franc, German
mark, Italian lira, Japanese yen, and British pound) using a
fractionally integrated GARCH (FIGARCH) model (Baillie
et al. [52]). -e empirical results of their study demonstrated
that the FIGARCH model is better at capturing the features
of FX volatility compared to the original GARCH model.
-e authors of Rapach and Strauss [53] demonstrated that
structural breaks in the unconditional variance of FX rate
returns can improve the forecasting performance of
GARCH(1,1) models for FX volatility by incorporating the
daily returns of the US dollar against the currencies of
Canada, Denmark, Germany, Japan, Norway, Switzerland,
and the UK. Pilbeam and Langeland [54] investigated
whether various GARCH-based models can effectively
forecast the FX volatility of the four currency pairs of the
euro, pound, Swiss franc, and yen against the US dollar. In
particular, their empirical results demonstrated that
GARCH models perform better in periods of low volatility
compared to periods of high volatility. You and Liu [55]
employed the GARCH-MIDAS approach (Engle et al. [56])
to forecast the short-run volatility of six FX rates based on
monetary fundamentals. -ey demonstrated that the fore-
casting power of daily FX volatility is significantly improved
by including monthly monetary fundamental volatilities.

Various machine learning models have also been used to
forecast time series originating from various fields, including
engineering and finance. In finance, many studies have used
machine learning to predict future stock prices. For example,
Trafalis and Ince [57] compared SVR with backpropagation
to a radial basis function network on the task of forecasting
daily stock prices. Similarly, Henrique et al. [58] utilized SVR
and a random walk (RW) method to predict daily stock
prices in three different markets (Brazilian, American, and
Chinese). Based on comparisons of the price prediction
results of the SVR and RW models, they determined that
SVR models may perform better than RW models in terms
of predictive performance. Recently, various studies using
machine learning methods and deep learning methodologies
have been reported. For example, the authors of Selvin et al.
[59] employed deep learning models, namely, a recurrent
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neural network (RNN), LSTM, and CNN to predict minute-
wise stock prices. -ey determined that the CNN algorithm
provided the best performance. Chong et al. [60] employed
an autoencoder to extract features from stock data and
constructed a deep neural network (DNN) to predict future
stock returns. -ey determined that it is possible to extract
features from a large set of raw data without relying on prior
knowledge regarding predictors, which is one of the main
advantages of DNNs. Pradeepkumar and Ravi [15] proposed
a particle swarm optimization-trained quantile RNN to
forecast FX volatility. -eir model provides superior fore-
casting performance compared to the GARCH model. In
[16] and [18], various ANN models were employed to
predict the volatility of the S&P 500 stock index. According
to the findings of these studies, ANN models are able to
outperform traditional econometric methods, including
GARCH and autoregressive moving average models. In
particular, LSTM models seem to improve the accuracy of
volatility forecasts. Additionally, Ramos-Pérez et al. [17]
predicted S&P 500 index volatility using a stacked ANN
model based on a set of various machine learning tech-
niques, including gradient descent boosting, RF, and SVM.
-ey demonstrated that volatility forecasts can be improved
by stacking machine learning algorithms. Additionally, re-
gardless of the volatility model adopted, high-volatility re-
gimes lead to higher error rates.

Several studies have proposed hybrid models based on
GARCH-based models and ANN models. For example,
various GARCH-based models have been combined with
ANNs based on MLPs and many hybrid models have been
used to enhance the ability of GARCHmodels to forecast the
volatility of stocks, gold, and FX rate returns (Hajizadeh et al.
[22], Kristjanpoller et al. [23], Kristjanpoller and Minutolo
[24], and Baffour et al. [26]). Additionally, some studies have
proposed hybrids of LSTM and GARCH models and have
used such models to predict the volatility of financial assets
(Kim and Won [25] and Hu et al. [27]). According to
empirical results, hybrid models based on GARCH and
ANN techniques exhibit improved forecasting performance
in terms of volatility accuracy.

In particular, we focus on studies using LSTM and
autoencoder approaches for forecasting time series. LSTM,
which was introduced by Hochreiter and Schmidhuber [21],
has been widely used to forecast time series in many pre-
diction studies. -is method is mainly used to analyze time-
series data because it can keep records of past data. Some
studies have compared LSTM to traditional methods using
neural networks or investigated such models by recon-
structing both types of methods. As discussed by Siami-
Namini et al. [61] and Ohanyan [62], as computing power
improves, implementing deep learning models becomes
more practical, and their performance exceeds that of tra-
ditional models. Additionally, Deorukhkar et al. [63]
demonstrated that neural network models combined with
autoregressive integrated moving average or LSTM models
provide greater accuracy than either type of model indi-
vidually. In [64], the method of applying preprocessed stock
prices to an LSTM model using a wavelet transform was
shown to be superior to traditional methods.

-e autoencoder presented in [35] aims to generate a
representation as close to an original input as possible from
reduced encoding results.-ismethod is a transformation of
the basic model using stacked layers, denoising, and sparse
representation and is used for financial time series predic-
tion. Bao et al. [65] used LSTM and stacked autoencoders to
forecast stock prices and demonstrated that this type of
hybrid model is more powerful than an RNN or LSTM
model alone. In [66], a stacked denoising autoencoder ap-
plied to gravitational searching was effective at predicting
the direction of stock index movement, which is affected by
underlying assets. Additionally, Sun et al. [67] explained that
a stacked denoising autoencoder formed through the se-
lection of training sets based on a K-nearest neighbors
approach can improve the accuracy compared to traditional
methods.

-is study enhances the existing literature in two main
aspects. We first propose a hybrid model that combines
LSTM and an autoencoder to forecast FX volatility.-ere are
other studies that have used hybrid models, but they have
used models other than autoencoders and LSTM. Addi-
tionally, most studies have developed hybrid models based
on GARCH models. However, as discussed above, LSTM
and autoencoders perform well at time-series prediction, so
we adopted these two types of models to forecast FX vol-
atility. Second, as discussed in Section 1, FX volatility has
great significance, but there is a significant lack of research
on forecasting its changes. We contribute to the finance
literature by forecasting FXVIXs using the proposed hybrid
model.

3. Data Description and Methodologies

3.1. Data Description. -e VIX was firstly implemented on
the CBOE in 1993.-is index is based on the real-time prices
of options in the S&P 500 index. Because it is derived from
the price inputs of S&P 500 index options, this index not
only represents market expectations regarding 30 day for-
ward-looking volatility but also provides a measure of
market risk and investor sentiments. Subsequently, various
VIXs with different basic assets were developed.

In this study, we investigated whether machine learning
methods are suitable for forecasting FX volatility time-series
data. Our data samples come from the CBOE. -e CBOE is
one of the world’s largest exchange holding companies, and
it provides several derivatives related to implied VIXs. We
adopted three currency-related volatility indices, namely, the
BPVIX, JYVIX, and EUVIX. Similar to a VIX, FX volatility is
calculated using a formula that averages the weighted prices
of out-of-the-money puts and calls.

We collected 2520 daily time series FXVIX data from
January of 2010 to December of 2019. Based on fluctuations
caused by the Brexit movement, the data were divided into
subsets from 2010 to 2015, 2016, and 2017 to 2019 based on
instabilities in 2016. -e first period represents the period of
recovery following the subprime mortgage crisis and con-
tains the most data (1514 daily data). As shown in Figure 1,
the variability of the entire section appears to be large. -is
observation is confirmed by Table 1.-e standard deviations
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of BPVIX, JYVIX, and EUVIX in this section are the largest
among all periods, excluding BPVIX in 2016.

-e second period represents the time around Brexit,
which caused fluctuations in the global stock market, par-
ticularly in the European market. As shown in Figure 2, the
UK index fluctuates the most, which affects the volatility of
the European index. According to Table 1, BPVIX not only
exhibits a high standard deviation but also has the largest
difference between the maximum and minimum values.

-e final period represents the time of uncertainty
following the Brexit movement and recovery around the
world. -is period exhibits cyclic characteristics because the
same problems arise repeatedly. Because intermediate trends
between features of the first and second sections are visible,
this section does not have any noteworthy features relative to
the other sections. As shown in Figure 3, this period is longer
than the second period, shorter than the first period, and less
volatile than both periods, except JYVIX.

In this paper, for convenience, the three periods are
referred to as Period 1, Period 2, and Period 3. Specifically,

Period 1 ranges from 2010 to 2015, Period 2 covers 2016, and
Period 3 ranges from 2017 to 2019. Similar subperiod
analysis has been conducted in other studies (Gazioglu [68]
and Grammatikos and Vermeulen [69]).

In machine learning, when constructing a model, per-
formance evaluations are conducted. At this time, if a model
trained on a particular training data set is evaluated on the
same set, performance will be inflated by overfitting.
-erefore, an original dataset should be divided into training
and testing data, and a model should be trained on the
training data. When evaluating performance, testing data,
which were not used for training, are fed into the trained
model.-ere is no ideal data allocation ratio for training and
testing. With more training data, a model can see more
examples and find better solutions, but overfitting may
occur. Conversely, more testing data can lead to better
generalization, but there underfitting may occur (Hastie
et al. [70]).

According to Gu et al. [71], a simple data organization
strategy generally uses 90% of the data for training and 10%
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Figure 1: FXVIXs in period 1.

Table 1: Summary statistics for the three daily volatility indices.

Max Min Mean Std

Period 1
BPVIX 19.67 4.33 8.93 2.46
JYVIX 19.17 5.03 10.58 2.36
EUVIX 20.51 4.43 10.78 3.04

Period 2
BPVIX 29.10 5.31 12.02 4.21
JYVIX 17.54 9.60 12.80 1.70
EUVIX 19.41 4.62 9.67 1.75

Period 3
BPVIX 15.68 5.16 9.24 2.03
JYVIX 14.66 4.29 8.18 1.81
EUVIX 12.74 3.99 7.11 1.42
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of the data for testing. -is strategy was applied to the
development of the Cubist regression tree model. We or-
ganized our data to use 85% of the data for training and 15%
of the data for testing to avoid overfitting. Various data
divisions are summarized in Table 2.

Cross-validation techniques were also applied to prevent
overfitting. However, when a cross-validation method that
selects random samples (e.g., K-fold cross-validation) is

applied to time-series data, past values are predicted using
future values. -erefore, in this study, time-series nested
cross-validation was adopted to maintain the temporal order
of the dataset for gradual overlapping and learning. -e
proposed model was trained and tuned on training and
validation sets in each fold and then evaluated on a testing
set. -is allowed errors to be averaged to obtain an unbiased
error estimate (Varma and Simon [72]).
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3.2. LSTM. An RNN is a representative neural network
with a recurrent hidden layer. -rough this hidden layer,
updates are backpropagated to train the model. By taking
the results of previous hidden nodes as input data, it is
possible to learn continuous forms. -erefore, RNNs are
often used to analyze or predict time-series sequential
data, such as stocks.

LSTM, which is a specific case of an RNN, was proposed
by Hochreiter and Schmidhuber [21].-is model is designed
to overcome the vanishing gradient problem of RNNs,
where early layers are not trained properly when a network
becomes deeper. Figure 4 presents the flow of RNN and
LSTM progression. In contrast to the hidden units of the
RNN, the LSTM structure consists of memory blocks. -ere
are three steps (layers) in the LSTM model: the forget layer,
which is the main advantage of LSTM, the input layer, and
output layer. First, the forget gate ft uses the sigmoid
function, which is an activation function that converts
current input data xt and the previous hidden state ht−1 into
numbers ranging from zero to one. Specifically, if an output
is close to zero, it means that information cannot be passed
to the next cell. In contrast, an output close to one means
that information is passed to the next cell.

Second, the input gate it is a sigmoid function and
decides which information in xt and ht−1 is stored in the cell
state Ct. At this step, there is also a tanh layer which creates a
vector of new candidate values ( �Ct) that could be added to
the cell stateCt.-e cell stateCt is updated by combining the
outputs from the forget gate ft and input gate it. By mul-
tiplying ft and Ct−1, the amount of information from the
previous time step cell that will be retained is determined.
Furthermore, it times �Ct represents the update information
from the input gate.

Finally, the output gate Ot applies the sigmoid function
to the previous hidden state ht−1 and current input xt to
decide what the next hidden state should be. In addition, the
current cell state Ct is passed through a tanh function. We
multiply the tanh output with the sigmoid output to decide
what information the hidden state should carry. In sum-
mary, the LSTM transition equations are defined as follows:

Gates:

ft � σ Wf · ht−1, xt[ ] + bf( ),

it � σ Wi · ht−1, xt[ ] + bi( ),
Ot � σ Wo · ht−1, xt[ ] + bo( ).

(1)

Input transformation:

�Ct � tanh WC · ht−1, xt[ ] + bC( ). (2)

Memory update:

Ct � ft × Ct−1 + it × �Ct,

ht � Ot × tanh Ct( ),
(3)

where W and b are the weights and biases, respectively.
-e× denotes elementwise multiplication.

In Figure 5, the input values xt travel through three
layers to overcome long-term dependencies using the fol-
lowing activation functions: σ (sigmoid) and tanh. -e
sigmoid function outputs a number between zero and one,
which is a measure of how much information each com-
ponent should convey. tanh helps keep the gradient as long
as possible to prevent vanishing gradient problems.

3.3. Autoencoder

3.3.1. Basic Autoencoder. -e autoencoder, which was first
introduced in [35], utilizes a neural network consisting of an
input layer, output layer, and hidden layers for self-super-
vised learning. Although this structure is similar to that of a
typical neural network, the output and input layers have
isomorphic vectors. -e goal of this model is to derive a
representation for an input dataset (e.g., dimensionality
reduction) and make the reorganized data as close as pos-
sible to the input data. As shown in Figure 6, the encoder
represents a stage at which the model can learn important
characteristics of inputs and the decoder forms outputs
similar to the inputs. -e output represents a state in which
the noise of the inputs is removed, resulting in more distinct
characteristics. Based on these features, autoencoders are
mainly used for image restoration or noise reduction.

Y � f W1 ·X + b( ) , (4)

X̃ � f̃ W2 · Y + b( ), (5)

where W1 is the weight between input an X and hidden
representation Y, W2 is the weight between a hidden rep-
resentation Y and output X̃, and b is the bias, f and f̃
represent the encoder and decoder, respectively, f accepts
and compresses the input data (X) into a latent space (Y),
and f̃ is responsible for accepting latent space (Y) repre-
sentations and reconstructing original inputs (X̃).

-is type of model is utilized in several methods to
improve performance by manipulating hidden layers. A
stacked autoencoder is used to solve the vanishing gradient
problem by stacking hidden layers when a neural network is
deep. Figure 7(a) presents a simple example of a stacked
autoencoder. -is structure increases the number of hidden
nodes by stacking autoencoders hierarchically. A denoising
autoencoder aims to extract stable structured data from
dependent data by adding noise to input data and

Table 2: Descriptions of the training and testing datasets for each period.

Period Training set Test dataset

Period 1 (2010/01/04–2015/03/20) (2015/03/23–2015/12/31)
Period 2 (2016/01/04–2016/11/15) (2016/11/16–2016/12/30)
Period 3 (2017/01/03–2019/08/30) (2019/09/03–2019/12/31)

Complexity 7



confirming that the output data correspond to pure input
values. As shown in Figure 7(b), this model has a structure
similar to that of a typical autoencoder, but it takes input
data with added noise as new input data.

3.3.2. Autoencoder-LSTM. -e autoencoder-LSTM model,
which combines an autoencoder and advanced RNN, is
implemented with an LSTM encoder and decoder for

sequence data. -is model has the same basic frame as an
autoencoder, but is composed of LSTM layers, as shown in
Figure 8(a). -is model can learn complex and dynamic
input sequence data from adjacent periods by using memory
cells to remember long input sequence data.

-e encoder and decoder components consist of two
LSTM layers. To implement this structure, we adopted the
“RepeatVector” tool provided by Keras, which is a deep
learning API. Figure 8(b) presents the resulting structure.

3.4. Hyperparameter Optimization. A hyperparameter is a
parameter that has a significant impact on the learning
process. Maximizing model performance by finding optimal
hyperparameter values to minimize a loss function is called
hyperparameter optimization. -is method is widely used in
machine learning and deep learning. In this study, the well-
known grid search method was adopted.
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Figure 4: (a) RNN process. (b) LSTM process.
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A grid search finds the best parameters among a pa-
rameter set defined by a user and applies several parameter
candidates to the model sequentially to identify the cases
with the best performance. If there are few parameter
candidates, optimal values can be obtained rapidly. How-
ever, if there are many candidates, optimization requires
exponentially more time.

In this study, we adopted the grid search algorithm
because it is the simplest and most widely used algorithm for
obtaining optimal hyperparameters (Schilling et al. [73]).
Although a random search can perform much better than a
grid search on high-dimensional problems according to
Hutter et al. [74], our data represent a simple time series and
the candidate parameter set is limited. -ese are the main
reasons why we adopted the grid search algorithm (Sun et al.
[75] and -ornton et al. [76]). -e Python technological
stack was used for our experiments. We implemented the
machine learning algorithms and grid search using the Scikit
Learn, Keras, and TensorFlow packages.

We used a grid search to identify and apply optimal
parameters for each section of our model. -e optimized
parameters are the batch size, activation function, and op-
timizer function. Two or three candidate groups were de-
fined for each parameter.

More parameters and candidate groups could be defined,
but it would increase training time significantly. We divided
the data into three intervals and attempted to compare two
models, thereby limiting the candidate groups to make the
most of our limited resources.

Next, we optimized three parameters for stochastic
gradient descent. -e candidate batch sizes were 50 and 100,
the activation functions were linear and ReLU, and the
optimization functions were Adam, rmsprop, and nadam.
-e learning rates were default values built into each acti-
vation function (sprosprop: 0.001, Adam: 0.001, and nadam:
0.002).

Finally, the autoencoder and autoencoder-LSTMmodels
were unified into four layers: two encoding layers and two
decoding layers. Based on the small amount of testing data,
this small depth was determined to be sufficient.

4. Empirical Results

We used the aforementioned grid search to find optimal
parameter combinations. Among a total of 12 parameter
combinations, the best parameters were identified and six
optimizations were performed for the two models (LSTM
and autoencoder-LSTM) and three periods in the same
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Figure 7: (a) Deep autoencoder. (b) Denoising and deep autoencoder (xN denotes inputs with added noise).
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Table 3: Hyperparameter table.

Activation Optimizer Batch size

Period 1
LSTM ReLU RMSProp 50
AutoEncoder-LSTM Linear Nadam 100

Period 2
LSTM Linear RMSProp 100
AutoEncoder-LSTM Linear RMSProp 100

Period 3
LSTM Linear Adam 50
AutoEncoder-LSTM Linear Adam 100
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Figure 9: (a) Outliers in period 1. (b) Outliers in period 2. (c) Outliers in Period 3.

Table 4: Five error measures for each model in the BPVIX.

MSE RMSE MAE MPE (%) MAPE (%)

Period 1
LSTM 0.1550 0.3937 0.2656 −0.4904 3.0105
Autoencoder-LSTM 0.1846 0.4296 0.2839 −0.2830 3.2280

Period 2
LSTM 2.6645 1.6323 1.3887 9.5562 19.0619
Autoencoder-LSTM 1.4706 1.2127 0.8508 −3.0532 10.1669

Period 3
LSTM 2.2017 1.4838 1.0805 −6.1679 11.1552
Autoencoder-LSTM 1.6874 1.2990 0.9039 −0.5791 9.1082

Table 5: Five error measures for each model in the JYVIX.

MSE RMSE MAE MPE (%) MAPE (%)

Period 1
LSTM 0.6152 0.7843 0.4611 −0.4230 4.6438
Autoencoder-LSTM 0.4359 0.6602 0.4430 −1.3870 4.5153

Period 2
LSTM 0.3321 0.5763 0.4525 −0.2644 3.5579
Autoencoder-LSTM 0.4261 0.6528 0.4933 0.79419 3.9160

Period 3
LSTM 3.8273 1.9563 1.0422 −5.3252 15.0497
Autoencoder-LSTM 2.7176 1.6485 0.9447 2.6840 13.4985
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manner. -e results obtained via hyperparameter optimi-
zation are listed in Table 3.

-e goal of this study was to obtain an accurate model for
forecasting FXVIXs. We considered three FXVIXs with
different distributions and outliers were different. We
compare the forecasting performances of our models in
terms of distributions and outliers. To this end, the fore-
casting results are split by period and separated by index. As

methods for measuring error, the regression error metrics of
mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) were adopted. Additionally, dis-
tributions were defined by variances and standard devia-
tions. Outlier detection was applied using Tukey’s box plot
method, which defines outliers as samples that do not fall
within the scope defined below:

Table 6: Five error measures for each model in the EUVIX.

MSE RMSE MAE MPE (%) MAPE (%)

Period 1
LSTM 0.4104 0.6406 0.4893 2.5107 4.0954
Autoencoder-LSTM 0.2874 0.5361 0.3974 −0.2569 3.3006

Period 2
LSTM 4.5074 2.1231 1.4746 3.8257 19.3755
Autoencoder-LSTM 3.8284 1.9566 1.4937 −6.4252 18.0702

Period 3
LSTM 1.5205 1.2331 0.4530 0.5383 7.8089
Autoencoder-LSTM 1.3250 1.1511 0.5018 −1.9384 8.7721
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Figure 10: MSE, RMSE, and MAE values of the BPVIX for the three periods. (a) Period 1. (b) Period 2. (c) Period 3.

LSTM

AE-LSTM

MAPEMPE

–0.5

0

0.5

1

1.5

2

2.5

3

3.5

(a)

LSTM

AE-LSTM

MAPEMPE

–5

0

5

10

15

20

(b)

LSTM

AE-LSTM

MAPEMPE

-10

-5

0

5

10

15

(c)
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Figure 12: MSE, RMSE, and MAE values of the JYVIX for the three periods. (a) Period 1. (b) Period 2. (c) Period 3.
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Figure 13: MPE and MAPE values of the JYVIX for the three periods. (a) Period 1. (b) Period 2. (c) Period 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MSE RMSE MAE

LSTM

AE-LSTM

(a)

0

1

2

3

4

5

MSE RMSE MAE

LSTM

AE-LSTM

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MSE RMSE MAE

LSTM

AE-LSTM

(c)
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12 Complexity



Q1 − 1.5IQR, Q3 + 1.5IQR[ ], (6)

where Q is the quantile and IQR is an interquantile range
defined as follows: IQR � Q3 − Q1. To identify extreme
outliers, multiplication by 1.5 was replaced with multipli-
cation by 3.

Our main findings can be summarized as follows. First, the
opportunities to learn volatility and forecast accuracy have a
proportional relationship. In other words, there are many
sections that rise and fall in the training data and learning these
trends can improve prediction accuracy. As shown in Figure 9,
the distribution is broad and there are many outliers in the
order of (a) outliers in Period 1, (c) outliers in Period 3, and (b)
outliers in Period 2. Second, as shown in Tables 4–6 and
Figures 10–15, autoencoder-LSTM is affectedmore by variance
and outliers than LSTM alone. In situations where variance and
outliers exist in moderation, the LSTM model using an
autoencoder, which can derive the features of inputs accurately,
performs better than themodel without an autoencoder.-ird,
among the deep learning methods, the autoencoder-LSTM
exhibits the best prediction performance. In Tables 4–6, the
results of the autoencoder-LSTM were analyzed to verify that
the input data characteristics outperformed those of the general
LSTM. Visual graphs of this trend are presented in
Figures 10–15.

5. Summary and Concluding Remarks

-e goal of this study was to develop a hybrid model based
on deep learning models for forecasting FX volatility. In
particular, we utilized the three FXVIXs as measures of FX
volatility. An FXVIX represents the relationship between the
currency of a country and the US dollar. -erefore, this
study is meaningful because the FXVIX, which is related to
the US and the global economy, sensitively reflects inter-
national economic trends.

Data-driven methods are more powerful than model-
driven methods for forecasting asset price time-series data
(see Kim et al. [77]). In this study, we investigated how
event-driven data, which focus on events such as outliers in

data-driven analysis, contribute to model performance.
According to Shahid et al. [78], events and outliers are
different, but outliers can be considered as a type of event.
Because there is only one type of outlier in the data con-
sidered in this study, comparing differences in model per-
formance accordingly is meaningful.

Our empirical results provide several interesting con-
clusions with useful practical implications. Our main
findings can be summarized as follows. First, the spread of
data and presence of outliers increase the accuracy of
forecasting performance of the proposed model. Second,
improvements in prediction accuracy are more pronounced
with autoencoder-LSTM than with LSTM. Finally, for
predicting FXVIXs, the autoencoder-LSTM model is su-
perior to the LSTM.

Based on the empirical findings in Section 4, some
implications can be observed. First, because the neural
network model is a model created by mimicking the human
brain, the data to be learned are important. As shown in this
study, the forecasting accuracy of the hybrid model is af-
fected by the number of cases for which variability and
outliers can be learned. However, extreme outliers in Period
2 degraded the model’s performance. Next, the use of an
autoencoder, which can transform important properties of
input data, similar to principal component analysis, is
meaningful. Autoencoders are used for denoising images,
watermark removal, dimensionality reduction, and feature
variation among other tasks. In this study, we conceived the
concept of feature variation. Additionally, several studies
using autoencoders to predict time series have been recently
published (Gensler et al. [79], Bao et al. [65], and Sagheer
and Kotb [47]). Our study contributes to the literature by
introducing a new approach called the autoencoder-LSTM
for forecasting time series.

In practice, our findings can be helpful to researchers in
economic research laboratories or policy managers who
determine national economic policies because FXVIXs re-
veal important trends for FX that impact the global economy
and volatility, meaning they can reveal market participant
psychology. For example, Menkhoff et al. [33] demonstrated
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Figure 15: MPE and MAPE values of the EUVIX for the three periods. (a) Period 1. (b) Period 2. (c) Period 3.
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that global exchange volatility has a significant effect trading
strategies based on financial data. Guo et al. [31] confirmed
the effects of exchange rate volatility on the stock market.
Similar experiments can be considered for future research on
different financial indices, such as the S&P 500 and Dow
Jones Industrial Average, which are important indices for
understanding US and global markets (Ivanov et al. [80] and
Liu et al. [81]). -e US has the world’s largest financial
market and plays an important role in determining the
trends of the international financial market. -erefore, we
expect that predicting these indices will be as meaningful as
predicting FXVIXs. Additionally, we expect that we can
improve prediction accuracy by learning and incorporating
data that can affect each index based on the results of this
study, where we only considered FXVIXs. Additionally,
hyperparameter optimization was performed using only a
grid search, which is a commonly used machine learning
algorithm, but we could increase the reliability of prediction
by considering additional optimization algorithms.
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