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Human mobility is a primary driver of infectious disease spread. However, existing data is

limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease

dynamics are crucial for decision-making by health officials and private citizens alike. In this

work, we focus on a machine-learned anonymized mobility map (hereon referred to as

AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in

forecasting epidemics. We factor AMM into a metapopulation model to retrospectively

forecast influenza in the USA and Australia. We show that the AMM model performs on-par

with those based on commuter surveys, which are sparsely available and expensive. We also

compare it with gravity and radiation based models of mobility, and find that the radiation

model’s performance is quite similar to AMM and commuter flows. Additionally, we

demonstrate our model’s ability to predict disease spread even across state boundaries. Our

work contributes towards developing timely infectious disease forecasting at a global scale

using human mobility datasets expanding their applications in the area of infectious disease

epidemiology.
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S
easonal influenza causes significant health impacts (infec-
tions, hospitalizations, and deaths) and economic burden
(medical care costs and productivity loss) each year world-

wide. A recently updated estimate of global influenza burden
shows even higher than previously thought magnitude:
291,000–645,000 seasonal influenza-related deaths each year1.
The 2017/2018 influenza season was of particularly high severity2.
It resulted in 960,000 hospitalizations in the United States alone
and extended periods of high influenza activity. Even with sus-
tained efforts to improve vaccine coverage, influenza continues to
strain the healthcare system. This highlights the need for devel-
oping systems that provide reliable and relevant forecasts of
short-term and seasonal influenza activity. Forecasting seasonal
influenza, especially within the United States, has been an area of
active investigation in the epidemiological community. Contests
such as the CDC Forecasting Challenge3–6 have fostered inno-
vation and constant information exchange among researchers in
the field7, and8 provide extensive reviews on the different
approaches and methodologies used in practice for forecasting
seasonal influenza. In order to forecast the influenza activity
characterized by percentage of visits with influenza-like illness
symptoms, researchers have used wide-ranging data sources
including search trends9, social media10, medical claims11, and
weather data12.

While some of the techniques used to forecast influenza are
statistical, i.e., using the patterns in the time-series data of cases
and associated datasets, other methods involve a mechanistic
representation of the disease process itself. This usually involves
capturing the mechanisms and associated factors by which indi-
viduals are exposed to the pathogen, infect each other, acquire
immunity by recovery or vaccination, etc. In addition to being
more descriptive, mechanistic models allow incorporation of
interventions and study of potential counterfactual scenarios.
Metapopulation models are a popular class of mechanistic
models, and are well suited to capture spatial heterogeneity in
disease dynamics. Variants of this approach have been success-
fully used to model and forecast infectious diseases13–17. When
modeling infectious diseases mechanistically, it is useful to note
that in the human population the spread is facilitated by social
contacts, which are in turn influenced by the movement of
individuals. Researchers have leveraged this fact and have used
information on human mobility to predict the dynamics of dis-
ease spread. When constructing a model of disease dynamics,
even in the absence of high-quality mobility data, one may resort
to standard models such as gravity or radiation18; provides an

extensive review of such mobility models and their wide-ranging
applications, including in the field of epidemiology. Datasets that
capture movement of individuals at micro and macro scales are
increasingly available (Supplementary Table 1), some of them in
the public domain enabling their use in infectious disease mod-
eling19–28 (see Supplementary Notes 1 for a more detailed lit-
erature survey). A recent study that combined these different
facets and modeled sub-city influenza dynamics for New York
City (NYC) was reported in ref. 17. Similar to our work, they used
a metapopulation modeling approach to forecast influenza
activity at the borough level (and zip code level) within NYC.
Their main focus was to evaluate the presence and absence of
travel networks on the forecast performance. In contrast, in our
work we tested the effectiveness of different networks derived
from official surveys, aggregated location data, and mobility
models.

Existing high resolution mobility data are based on call data
records and therefore available only in limited jurisdictions,
where the telecom provider is operating. As a result, cross-border
movement is typically not captured, nor is long-distance inter-
national travel. By contrast, the aggregate flows of populations
around the world we compute here are based on ambient location
that is passively logged by the phones’ location sensors, when
users opt into this feature. With the aim to better understand
global patterns of population movements, we aggregate data from
Location History collected passively from smartphones that
opted-in to secure location history29. Anonymity is an important
consideration in our work to ensure that no individual user’s
journey can be identified, we only share representative models of
aggregate data employing differential privacy30, which inten-
tionally adds noise to the data in a way that maintains both users’
privacy, anonymity, and the data’s accuracy (see Fig. 1).

In this paper, we use a metapopulation framework to forecast
influenza activity in and around the counties (boroughs) of NYC,
and further extend the approach for state-level influenza fore-
casting in Australia. We choose these regions due to the avail-
ability of ground truth case data at high spatial and/or temporal
granularity. As a source of ground truth, we use data on emer-
gency department (ED) visits for NYC, lab-tested flu positive
counts for New Jersey and Australia. To guarantee anonymity
and match the resolution of health datasets, AMM data are
aggregated at the resolution of counties in the United States, and
at the resolution of states for Australia. These anonymized
aggregated data come from users who opted-in to share their
location data, which is already a vital source of information for

Fig. 1 Snapshot of AMM. a Northeastern United States and b Southeastern Australia. Color of each 5 km2 cell corresponds to the annual average of total

outflow volume in logarithmic scale (warmer colors imply higher connectivity). Note the variations in sparsity and total connectivity. Data are shown in the

spatial resolution of cells, although for our subsequent analyses we use AMM aggregated to counties/states to match the surveillance data. Further, for the

United States the study is performed at city (New York) and state (NY and NJ) scales, whereas for Australia the study is performed at a national scale,

highlighting the versatility of the dataset.
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estimates of live traffic and parking availability31. In addition to
AMM, we use commuter counts from the respective Census
agencies, unconstrained gravity model, radiation model with a
global parameter for commuter proportions, and a no-mobility
baseline for comparison purposes. We did not calibrate the
gravity model with commuter data (to estimate the exponent, for
example), to ensure that the compared networks are independent
of each other. The complete list of datasets used in this paper is
provided in Table 1, while Fig. 2 provides an overview schematic
of the disease simulation and calibration process. More details on
the data preparation, disease simulation, and calibration metho-
dology are described in the “Methods”.

Results
Exploratory analysis of mobility flows. In an epidemiological
model of influenza, the disease transmits via people-to-people
contacts, thus a more realistic mobility network might be able to
better characterize the epidemic dynamics, leading to better epi-
demic forecasting of influenza. Before reporting on influenza
forecasting performance, we compare the four mobility networks
structurally by using the normalized mobility flows for the
counties of New York and New Jersey. While comparing the
networks in terms of flow distributions and network structure, we
focused only on pairwise flows, excluding self-loops, since all four
networks had relatively large self-flows (self-loops are omitted
only for mobility analysis). We refer to these networks obtained
from the anonymized mobility map as AMM, commuter counts
from the American Community Survey (ACS) as COMMUTE,
gravity and radiation models computed using population sizes
and distances as GRAVITY and RADIATION, respectively.

By comparing flow distributions and node betweenness (shown
in Fig. 3), we observe that (1) AMM and COMMUTE network
are highly positively correlated (Pearson coefficient 0.9) in terms
of the flow distribution, while RADIATION model has a
reasonable match with AMM (PCC 0.71) and COMMUTE
(PCC 0.63); GRAVITY model on the other hand has low
similarity (PCC ~0.5) with the other three networks, (2) the
mobility networks of AMM and COMMUTE network are sparse
and exhibit a community structure usually seen in urban mobility
networks, while RADIATION and GRAVITY are dense by

definition, RADIATION network shows similar neighborhood
structure to AMM and COMMUTE, (3) AMM and RADIATION
networks have similar top betweenness counties, whereas
COMMUTE data pick different neighboring counties. Note that
while AMM is aggregated and anonymized data sourced from
high resolution mobility, COMMUTE is obtained from repre-
sentative surveys, which may be dated. Similar comparisons for
the Australian networks, along with additional details on the
mobility data description and network construction are provided
in Supplementary Methods and Supplementary Notes 2.

Forecast performance in NYC. We first report the networks’
ability in predicting ED visits during the 2016–2017 influenza
season in the five boroughs of NYC (Bronx, Brooklyn, Man-
hattan, Queens, and Staten Island). To give some context,
nationally the 2016–2017 season had an onset (crossing and
staying above baseline for three consecutive weeks) on week 50 of
2016, peaked on week 6 of 2017, and lasted until (stayed above
baseline) week 14 of 2017. HHS Region 2 (which includes New
York and New Jersey), while having the same peak and end week,
technically had an earlier onset (week 47 of 2016). We perform a
comparative study in forecasting influenza activity among the
mobility networks and the no-mobility baseline by incorporating
them in the metapopulation model framework, which we refer to
as PatchSim32. Each of the instances of the PatchSim with dif-
ferent mobility networks (or no network) is first calibrated using
the ground truth observations until a given week (also referred to
as data horizon) and the calibrated models are run forward to
produce short-term (1–4 weeks look ahead) and seasonal target
(onset time, peak time, and peak visit count) predictions for each
of the boroughs33.

This experiment is run retrospectively at different time points
of the influenza season serving as the data horizons and
comparison is made based on the overall performance of the
model throughout the season. We use a Bayesian approach to
calibrate the model’s disease parameters. The calibration
procedure yields a posterior probability distribution on the
unknown model parameters, and 90% prediction envelopes are
obtained where appropriate. For comparison among the perfor-
mance of four models, mean absolute percentage error (MAPE) is

Table 1 List of datasets.

Dataset Source Year, Temporal

resolution

Spatial resolution

ILI Emergency Department visits in

New York City (NYC)

EpiQuery: NYC Syndromic Surveillance 2016–2017 flu season

(daily)

County level

ILI Flu-A positive % CDC FluView 2016–2017 flu season

(weekly)

HHS Region 2, State of

New York

ILI Lab tested flu positive counts for

State of New Jersey (NJ)

The New Jersey Department of Health 2016–2017 flu season

(weekly)

County level

Influenza positive counts for

Australia (AUS)

National Notifiable Disease Surveillance System,

Australia Government, Department of Health

2016 flu season (daily) State level

Aggregate mobility flows (AMM) Google 2016–2017 (weekly) County level (NY, NJ),

State level (AUS)

NY, NJ Commuter counts

(COMMUTE)

American Community Survey 2009–2013 (typical day) County level

Interstate commuter flows in Australia Australian Labor Market Statistics 2006 census State level

NY, NJ population U.S. Census Bureau 2013 population

estimates

County level

Australia population Australian Bureau of Statistics 2016 population

estimates

State level

Each dataset is provided along with the source, temporal, and spatial resolution. The first four datasets pertain to influenza incidence rate monitoring, while the remaining are used to model movement

between counties/states. ILI stands for Influenza-Like Illness, which includes influenza and other illnesses that present similar symptoms. Clinical lab tests are used to confirm whether it is influenza, and

if so, to identify the particular strain. During a typical influenza season, multiple strains circulate in the population, and Flu-A positive% is the percentage of lab-tested influenza specimens that tested

positive for Influenza A. A full list of references are provided in the Data Availability Statement.
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computed for each data horizon based on 1-to-4-week-ahead
median predictions.

Figure 4a, b shows the 90% envelopes calibrated and forecasted
ED visits predictions by each of the models in five NYC counties
at data horizons of week 2 (pre-peak) and week 6 (post-peak) of
2017, respectively. From Fig. 4c, it can be seen that the
performances of AMM and commute are similar, and are better
than gravity and baseline models in terms of overall MAPE. We
choose to show the short-term prediction performance between
week 50 of 2016 and week 12 of 2017, since they roughly coincide
with the onset and end of the 2016–2017 influenza season. The
no-mobility baseline performs better during early weeks,
especially before onset, but as the season progresses, its
performance deteriorates in comparison to the other network
models. The MAPE performance for individual boroughs and two
other seasons (2015–2016 and 2017–2018) are provided in
Supplementary Notes 2. We note that while the ordering of
performance varies between seasons, AMM, COMMUTE, and
RADIATION consistently perform similar to each other.

Figure 5 shows the predictive distribution of the seasonal
forecasts (specifically peak time) provided by different models at

different data horizons for each of the boroughs (other seasonal
targets such as peak intensity and onset time are provided
in Supplementary Notes 2). We note again that as the data
horizon increases, the models produce tighter estimates of the
seasonal forecasts. At the beginning of the season, all mobility
models predict an early peak, but as the season evolves the
prediction intervals get narrower and cover the ground truth. We
also note that for the 2015–2016 and 2017–2018 season (see
Supplementary for figures), similar conclusions can be drawn,
where AMM, COMMUTE, and RADIATION perform similarly
in terms of predicting the seasonal targets.

Extending beyond the NYC boroughs. In addition to estimating
influenza activity into the future, the mechanistic model can
also be used to meaningfully impute potential gaps in case data
in neighboring regions, utilizing the available case data and
inter-regional mobility. To test the utility of the disease model
along with the higher resolution AMM for this purpose, we first
perform a leave-one-out cross validation study, where each time
the PatchSim is calibrated using partial ground truth data

Fig. 2 Overall methodology. a Stages in a single iteration of the metapopulation model: the large circles represent the patches in the simulation, and the

gray edges represent the travel network, with varying thickness denoting heterogeneity in flow volumes. The sample population shows four individuals in

patch A (squares), five in patch B (circles), and three in patch C (stars). The colors represent the disease state the individuals are in (susceptible, exposed,

infected, or recovered). The wavy dashed arrows show movement of individuals (randomly chosen according to outgoing edge probabilities). In the first

step, individuals are moved from their home patch to another patch (first panel), creating the effective population (second panel). The disease dynamics

may include exposure events (transition from S–E), onset of infectiousness (E–I), and recovery events (I–R). The nodes undergoing these transitions are

highlighted in the third panel, where we see an onset of infectiousness in patch A, two exposures and a recovery in patch C. Finally, the individuals return to

their home patch (fourth panel). Note that, although for descriptive purposes we use individual agents above, the system is actually simulated

deterministically using the mass-action principle. b Bayesian calibration framework: the calibration involves generating samples from the parameter space,

evaluating the corresponding simulated epidemic curves in comparison to the ground truth. The appropriate reweighted epidemic curves are combined to

provide the forecast. See Supplementary Methods for details on both the disease model and the calibration procedure.
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leaving one of the five counties unused, and the calibrated
model is used to predict the epicurve of the left-out county.
Figure 6 shows the 90% prediction intervals for the held out
counties along with peak time and peak intensity predictions.
The results suggest that such a setup can be used to forecast
even in regions where no past case data are available, provided
we have case data for well-connected regions and a good esti-
mate of inter-regional mobility.

As further proof of these idea, we extend the radius of the
PatchSim simulation model to cover the entire states of New York
and New Jersey. Based on past ILI data, while New York and New
Jersey have typically peaked within 2 weeks in the last three
seasons, in general, their peak timings could be off by about
8 weeks. Further, the county-level influenza dynamics also shows
sufficient variability, and hence it would be interesting if our
model could capture it. The disease model is again calibrated only

for the NYC counties using the ED visits data, and the calibrated
model is used to recreate the influenza season (ED visits to be
exact) for each county in NY and NJ state. We show in Fig. 7 the
simulated trajectories and the corresponding ground truth for the
five boroughs and the six neighboring counties in New Jersey.
Note that, since we did not have ED visits data for New Jersey, we
used the lab-tested positive counts made available by the state’s
health department. We also report summary statistics such as
onset time, peak time, and end of the season, to show that the
simulated trajectories are quite close to recreating the flu season
in these neighboring counties. We also tried to match the
aggregate curves to ILI% incidence from NY state and HHS
Region 2 (comprising New York and New Jersey) with limited
success. The simulated curves for all NY and NJ counties with
ground truth data, and the state/region level fits are shown in
Supplementary Notes 2.

Fig. 3 Structural comparison of the networks. a Correlation between networks. Pearson correlation coefficient between the different mobility networks

(FIPS-sorted by source and destination). AMM and COMMUTE have a high positive correlation value (0.90), followed by RADIATION model (0.71 with

AMM), while GRAVITY has relatively small positive correlation with the other networks. b–e Adjacency flow matrices of AMM, COMMUTE, GRAVITY,

and RADIATION. Nodes are arranged by spatial proximity. Heatmap color is indicative of normalized flow volume (darker color denotes larger flow). Note

that while AMM and COMMUTE are sparser and seem to be clustered, GRAVITY network, by virtue of its definition, is more homogeneous. More detailed

versions of AMM and COMMUTE flows are shown in Supplementary Figs. 3 and 4. f Betweenness measures at county level for all four networks. Among

the four networks, AMM, and RADIATION models have similar sets of top counties by betweenness, while COMMUTE chooses nearby but distinct

counties. These counties are reasonable choices, since they connect rural counties, e.g., Allegany or St. Lawrence or Cape May, to highly urbanized

counties like Manhattan or Brooklyn. However, in GRAVITY we failed to identify any such distinct pattern.
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Forecasting influenza in Australia. To demonstrate the gen-
erality and potential global scope of AMM, we chose to replicate
our approach for seasonal influenza forecasting in Australia. We
chose Australia for the following reasons: (1) sparser populations
spread across a wider spatial scale, where the effects of mobility
may be more pronounced34, (2) the presence of high-quality
surveillance data in the public domain, (3) “inverse” influenza
season in the Southern Hemisphere. As a test case, we evaluated
short-term forecasts for the 2016 influenza season. Similar to the
NYC study, we compared the performance of AMM to that of
COMMUTE, GRAVITY, RADIATION, and a NO-MOBILITY
baseline. Data sources for commuter flows, populations, and
influenza surveillance are listed in Table 1 (data preparation
details are in the Supplementary Methods). Figure 8 summarizes
the underlying datasets and the forecast performance comparison
among the mobility models. As earlier, we note that AMM per-
forms on-par with RADIATION, COMMUTE data. Compared to

the NYC results, we find little difference between NO-MOBILITY
and other mobility models, perhaps due to the sparsity of the
region. The calibrated and forecast curves along with MAPE per
region are provided in Supplementary Notes 2.

Discussion
Infectious disease forecasting has risen to prominence in the
recent decade, thanks to the increased availability of public health
surveillance system data and development of sophisticated
methodologies. Real-time disease forecasting is still plagued by
the lack of current estimates on mobility and interaction patterns,
which are known to be key drivers of disease spread. We
demonstrate the utility of high-quality mobility data for disease
modeling and forecasting in areas that have detailed and exten-
sive ground truth available, in order to be able to exactly quantify
the efficacy of our approach.

Fig. 4 Prediction envelopes and comparative forecast performance. The figure shows the comparative performance of the five models in predicting

emergency department visits in the five boroughs of New York City. a, b show the calibration envelope (light shaded) and 90% prediction envelope (dark

shaded) at weeks 2 and 6 of 2017, respectively. These weeks were chosen to be roughly two weeks pre-peak and two weeks post-peak across boroughs.

The solid lines show the ground truth, and colors throughout are representative of boroughs. The plots are arranged horizontally by boroughs and vertically

by the mobility network. c MAPE performance. One-to-four-week-ahead median predictions at different data horizons are used to evaluate the mean

absolute percentage error (MAPE), for every other week of the flu season. Note that the lower the MAPE, the better the network. The overall MAPE is

provided in the legend shows that AMM, COMMUTE, and RADIATION models perform similarly, and do better than the GRAVITY or NO-MOBILITY

baselines.
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However, the implications of our approach extend beyond
high-resource parts of the world. In fact, most regions, even in
high-resource countries, do not have disease case data at sub-state
resolutions. Another drawback of traditional case data streams is
the temporal lag in data availability, thus making even nowcasting
the current state of influenza a practical challenge. Models based
on population accounting, both static (census counts) and
dynamic (commuter and migration flows) are neither compre-
hensive nor current in most parts of the world, thus hindering the
performance of mobility models used as proxies. In contrast,
mobility statistics such as AMM are more timely and high-recall,
and therefore serve as an important complement augmenting and
filling gaps in influenza data. Given the coverage, the forecasting
framework can be expanded to make predictions at a global scale.
To this end, we apply our model to Australian flu epidemics, in

addition to the United States. The results show consistent per-
formance in a different region of the world with a more sparse
population, different flu dynamics, weather, and seasons. While
quite useful in the context of seasonal influenza, such a global
system becomes especially relevant and essential in the context of
emerging infectious diseases where mobility plays a stronger role
in quantifying case introduction risk.

Measures of flows of population at a fine granularity both in
space and time have been limited due to lack of timeliness,
availability, and accuracy of observational data. Here, we show
that anonymous and aggregated mobility data improve the
quality of models and can unlock interesting approaches. Cru-
cially, we demonstrate this method is applicable at scale and is not
limited to select jurisdictions and geographical areas that happen
to collect necessary survey-based data at considerable expense

Fig. 5 Multi-horizon comparison of seasonal forecasts across networks. For each of the networks (columns), and each borough (rows), the boxplots

(median, IQR, and whiskers at 1.5 IQR) show the posterior predictive distribution for peak time forecast at different time horizons (n= 1000). Similar plots

for other targets (peak value, onset time) and other seasons are available in Supplementary Notes 2.
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Fig. 6 Leave-one-out cross validation performance. a For each of the boroughs, the ground truth is shown in solid line along with the 90% calibrated

envelope when the borough’s data were left out of the calibration process. b Boxplots (median, IQR, and whiskers at 1.5 IQR) of the predicted peak time and

total ED visits (episize) for the left-out borough (n= 1000), with the ground truth shown by blue dots.

Fig. 7 Extrapolation for New Jersey counties adjacent to NYC. a Simulated trajectories (thin lines) along with ground truth (bold lines) shown for the five

boroughs of New York City, and the six neighboring counties in New Jersey. The plots are color-coded to match the respective county in the inset map. b

Comparison of summary statistics (onset time, peak time, and end of season) for each of these counties. Onset and end of season is defined with respect

to a threshold of 10% of peak value.
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and time delays. Our model captures global flows of populations
and is not limited to within-state movements or other geo-
graphical boundaries.

Methodologies based on aggregated samples of mobility do
have their limitations. For instance, based on the way the trips are
defined, it is difficult to distinguish between trips with varying
dwell times. In the context of infectious diseases, the duration an
individual spends at a location has a significant effect on the
likelihood of passing on or contracting the infection. Further, due
to anonymization, the datasets do not distinguish between indi-
viduals who reside in the patches, and those who are transients
(e.g., tourists). The mobility data need to be appropriately
aggregated to account for mobility patterns that have a significant
impact on disease spread. Identifying the right aggregation
mechanism for a given disease model is still an open challenge.
We also want to note that, comparing four different mobility
networks via epidemic modeling and prediction is not immune to
effect confounding, since it is hard, if not impossible to distin-
guish the effect of different networks on the predictions from the
effect of our choice of disease model and the calibration techni-
que. Further, it is possible that a combination of aggregated
mobility traces with sophisticated data-driven models might yield
superior performance compared to either one in isolation. Recent
collaborative efforts3 have revealed that ensemble approaches
tend to perform better in forecasting, thus motivating further
research on effectively combining these models. Finally, the
availability of good quality ground truth is necessary to test dif-
ferent approaches in incorporating such datasets.

The system being considered in the paper is not closed in
reality, due to flows from/to neighboring states or due to inter-
national air travel. To look at the impact on neighboring states,
we have modeled the NY–NJ states (HHS Region 2). Modeling
disease dynamics for any region poses this “open world” problem.
Finding correction terms, and to do so in a data-driven fashion
using incoming flows and influenza indicators in external regions
would be a broad open question worth pursuing.

The Google Aggregated Mobility Research Dataset (referred
here for brevity as anonymized mobility map, or simply mobility
map) contains anonymized mobility flows aggregated over users
who have turned on the Location History setting. Therefore, our
mobility map shows only a sampled view into the actual popu-
lation movements. However, our model makes the assumption
that this is fairly representative of the aggregate inter-regional
mobility patterns18,35–37. As recent third party surveys indicate38,
Android has a fairly uniform coverage ~60% across gender, age,
and other demographic factors. Further, we consider our work as
a complement to alternative techniques, since any mobility model
derived from real-world data (for instance commuter flows) will
suffer from some form of bias (participation bias in census).
Finally, noise is strategically added to the data to preserve privacy,
as described in the “Methods”. The amount of noise is designed to
protect individuals’ privacy while not significantly distorting the
aggregate statistics. The mobility flows our system computes
protect privacy and anonymity by leveraging differential privacy
algorithms combined with data aggregation over large geo-
graphical areas and time intervals.

Fig. 8 Summary of results for Australia. aMobility datasets for Australia: the heat maps show a comparison between the different mobility networks used

for Australia at the state level. The reported values are the natural logarithm of the normalized flows. Note that while there is a significant self-loop

component in all four networks, there is a higher similarity in magnitude and distribution between COMMUTE and AMM. b Influenza surveillance for

Australia, 2016: the dataset obtained from Australia’s National Notifiable Disease Surveillance System (NNDSS) shows flu positive counts at State level

aggregated to weekly resolution, with the baseline count removed (see Supplementary Methods for details). c Forecast performance comparison: similar to

Fig. 4c, this figure shows the average MAPE across weeks for the four mobility networks (including the no mobility baseline). We see that all networks

have similar performance with COMMUTE and AMM being the top two models. We also note that the NO MOBILITY baseline is not very different in

performance, highlighting the sparsity of the region.
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Beyond the scope of our current work, we believe the mobility
data and the framework can be extended to make predictions at
finer spatial (e.g., zip code) and temporal (daily) resolutions. The
scalable nature of AMM can help in areas that cannot invest as
much in surveys and infrastructure as NYC. The global nature of
the data source makes it an ideal candidate for potential pan-
demic preparedness studies and rapid risk estimation during an
unfolding outbreak. With sophisticated agent-based models39 and
on-device learning40,41, such techniques could also lead the way
towards individual-level forecasting without involving the same
privacy and anonymity constraints.

Methods
Anonymized mobility map (AMM). The Google Aggregated Mobility Research
Dataset contains anonymized mobility flows aggregated over users who have
turned on the Location History setting, which is off by default. This is similar to the
data used to show how busy certain types of places are in Google Maps—helping
identify when a local business tends to be the most crowded. The dataset aggregates
flows of people from region to region.

To produce this dataset, machine learning is applied to logs data to
automatically segment it into semantic trips42. To provide strong privacy
guarantees, all trips were anonymized and aggregated using a differentially private
mechanism43 to aggregate flows over time (see ref. 44). This research is done on the
resulting heavily aggregated and differentially private data. No individual user data
were ever manually inspected, only heavily aggregated flows of large populations
were handled.

The automated Laplace mechanism adds random noise drawn from a zero
mean Laplace distribution and yields (ϵ,δ)-differential privacy guarantee of ϵ= 0.66
and δ= 2.1 × 10−29 per metric. Specifically, for each week W and each location pair
(A, B), we compute the number of unique users who took a trip from location A to
location B during week W. To each of these metrics, we add Laplace noise from a
zero mean distribution of scale 1/0.66. We then remove all metrics for which the
noisy number of users is lower than 100, following the process described in ref. 43,
and publish the rest. This yields that each metric we publish satisfies
(ϵ,δ)-differential privacy with values defined above. The parameter ϵ controls the
noise intensity in terms of its variance, while δ represents the deviation from pure
ϵ-privacy. The closer they are to zero, the stronger the privacy guarantees. Each
user contributes at most one increment to each partition. If they go from a region A
to another region B multiple times in the same week, they only contribute once to
the aggregation count. No individual user data was ever manually inspected, only
heavily aggregated flows of large populations were handled.

We aggregate flows within the US spatially at county level and temporarily at
week level to obtain the mobility map. AMM contains normalized flows between
pairs of counties in each week from 2016 week 40 to 2017 week 39, where weeks are

indexed from week 00 to week 52 in a calendar year.
Ut;ij

C
, where Ut,ij is the number

of unique users making a trip from county i to county j in week t, and C is an
undisclosed constant larger than the maximum flow over the entire year C >maxt,i,
jUt,ij. This dataset covers most counties (3099) in the USA except those in Hawaii
and DC. For the purpose of the paper, we used data pertaining to counties in New
York and New Jersey, and at state level for Australia. In each study, flows
connecting the regions of interest to the outside were not included.

Mobility data preparation. We construct mobility networks (i.e., normalized
flows between counties/states) based on various mobility datasets, including AMM,
the Commute flow data obtained from the ACS, gravity, and radiation models of
mobility. For any region, e.g., NYC, we generate a directed weighted network where
a node represents a county and a directed edge represents a flow from a source
county to a destination county. The edge’s weight is defined as the normalized flow
(i.e., the outgoing flows of each node sum to 1) coming from the underlying
mobility dataset. (1) AMM: the weight is the normalized Google mobility flows
averaged across weeks from 2016 week 40 to 2017 week 39. (2) COMMUTE: the
weight is the normalized commuter counts from source to destination obtained
from ACS 2009–2013. In addition to the reported self-loop, we add the non-
commuter population which is calculated by subtracting all commuter counts from
population size of the source county. (3) GRAVITY: the weight is the normal-

ization of gravity flows calculated as
PiPj

ðdijþ1Þ2
where Pi,Pj represent the population

sizes (US Census, 2013 population estimates) of county i and j, and dij denotes the
distance between i and j computed as the great-circle distance between the county
centroids. (4) RADIATION: Using the definition in ref. 35, the flow for i ≠ j is

obtained as Ti

PiPj
ðPiþPjþSijÞðPiþSijÞ

where Sij ¼
P

k:dik<dij
Pk is the population living in the

circle centered around i with radius dij. Ti is the total commuter outflow from each
patch, and is modeled as Ti= γPi, with (1− γ)Pi set as the self-loop flow. For NYC
and NJ experiments, based on US commuter data analysis in ref. 35, we set γ= 0.11.
These flows are then normalized to be compatible with the simulation model. The
mobility networks are constructed for both NYC (consisting of five counties) and a
region of two states, New York plus New Jersey (consisting of 83 counties).

We adopted a similar approach to obtain the AMM, COMMUTE, GRAVITY,
and RADIATION flows for Australia. While in NYC we simulated at the level of
boroughs (counties), for Australia, we chose to simulate at the spatial scale of states,
based on surveillance data availability and also to showcase the generality of the
AMM dataset. Interstate commuter flows were obtained from the Australian Labor
Market Statistics based on the 2006 Census data. For the RADIATION model,
based on median commuter outflow ratio to population sizes, γ was set to be 0.004.

To compare the different networks, we used pairwise correlation and
betweenness centrality of the nodes in the network. The correlation was computed
as the Pearson correlation coefficient between the flattened flow matrices (i.e.,
vectors). It was used to show the similarity (or lack thereof) between two flow
matrices. We used the definition of betweenness for a weighted network (fraction
of pairwise weighted shortest paths passing through a node)45. The inverse of the
normalized flow between a pair of nodes is used as the edge weight. Betweenness
centrality is known to be one of the most effective heuristics in controlling
epidemics on networks46. Although the relationship to a metapopulation model is
not evident, betweenness is a useful measure to capture critical counties for the
mobility flow. Additionally we calibrated the gravity model separately to the AMM
and COMMUTE datasets of New York plus New Jersey, and tested the temporal
matrices obtained from AMM for stationarity (see Supplementary Note 2).

Case data preparation. The case data used in this work include: (1) NYC ILI ED
visits provided by the NYC Department of Health. It contains daily ED visits for
ILI per county within NYC for the past three seasons. The daily ED visits are
aggregated to weekly data and scaled by the influenza virus isolation rates (aka
percent positive, provided by WHO-NREVSS clinical labs) to obtain the ILI+
epidemic curves. We use the isolation rates corresponding to HHS Region 2, which
includes NYC. (2) NJ Flu positive counts provided by the NJ Department of
Health. It is a weekly cumulative total positive specimens per county for the past
three seasons (week 40 of a particular year to the following year’s week 20). We
calculate the weekly newly identified isolates by subtracting the cumulative count of
previous week from that of the current week. (3) ILI% for NY state and HHS2
region provided by the Centers for Disease Control and Prevention (CDC). It is the
total number of visits for ILI over total patient visits for the past three influenza
seasons. (4) Laboratory confirmed influenza for Australia Influenza surveillance
data was obtained from the National Notifiable Disease Surveillance System
(NNDSS) maintained by the Australian Government Department of Health, and
aggregated to weekly resolution for May–December 2016. The public dataset
contains notification data collected on laboratory confirmed influenza via NNDSS
at weekly resolution, for the states (excluding Australian Capital Territory), clas-
sified by type/subtype, age, sex, etc. We computed the total influenza positive
counts per week and removed the baseline (the minimum count for each state in
the year) to obtain the ground truth for the metapopulation model.

Metapopulation model. PatchSim is a metapopulation SEIR model simulated
using difference equations. From metapopulation modeling terminology, patches
are habitable units (e.g., spatial regions) within which homogeneous mixing of
individuals is assumed. For instance, in the NYC study, the individual boroughs
(five of them) are the patches, whereas in the Australia study, the eight states
(including Northern Territory and Australian Capital Territory) are modeled as
separate patches.

Given a set of patches N to denote spatial regions (for example, counties in NYC
or states in Australia), associated with each patch i, we have population Pi, and state
tuple Zi(t) denoting the number of individuals in each of the disease states at time t.
For a typical SEIR (Susceptible→ Exposed→ Infected→Recovered) model, the set
of states is given by Z ¼ fS; E; I;Rg, with

P
z2Zzi tð Þ ¼ Pi. Between a pair of patches

i and j, we have the flow Fij, denoting the fraction of individuals belonging to home
patch i spending their day in away patch j. In order to conserve patch populations
(i.e., commuting model), we assume

P
j2N Fij ¼ 1. The mobility is assumed to be

homogeneous and memory-less, i.e., the commuting individuals according to Fij are
assumed to be picked at random from the population Pi independent of their disease
state, and independently for each day of the simulation. Due to the movement of
individuals, the effective population of patches may differ from their home population
Pi. This in turn also affects the state tuple Zi.

PatchSim steps through the disease simulation in daily epochs. In order to
compute the change in state tuple ΔZ tð Þ ¼ Z t þ 1ð Þ � ZðtÞ, it incorporates (1)
movement of individuals from their respective home patches to away patches
according to Fij, (2) exposures, infections, and recoveries happening in the away
patches, and (3) integration of state updates at the home patches. Let β represent
the probability of exposure per day per SI contact, α the infection rate and γ
recovery rate. α can be thought of as the reciprocal of mean incubation period, and
γ the reciprocal of mean infectious period. Thus, given the disease parameters (β,α,
γ) and a seeding profile X, PatchSim uses the population vector P and flow matrix F
to produce the spatio-temporal evolution of disease states Z. The exact equations
are provided in the Supplementary Methods section with the code, software
documentation, and model description available at ref. 32.

Bayesian calibration. Model calibration is the process of estimating the unknown
parameters of the model with the help of observed data. In the context of our
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disease simulation PatchSim, we will be estimating the disease parameters and
seeding profile by calibrating it against observed ground truth of influenza inci-
dence. We adopt a Bayesian approach to calibrate the PatchSim model, where we
begin with a prior distribution on the unknown parameters, which are then
combined with the likelihood of observing the data to produce the posterior dis-
tribution on the parameter space.

We begin by defining a statistical model for the observed data as a noisy version
of model output, usually Gaussian, independent and identically distributed across
the data points. The likelihood of observing the ground truth, given the model is
run with parameter θ can then be written as a multivariate Gaussian across time
points and patches. Given the prior distribution π(θ) and the data likelihood L(y|θ),
the posterior distribution can be written by Bayes’ theorem.

The analytic solution of the posterior distribution is often not feasible because
of the complex simulation model, and hence Monte Carlo approaches to explore
the posterior space are often used in such situations. Especially, in our context, we
use importance sampling to generate realizations from the posterior distribution.
Our choice of importance distribution is the prior π(θ) itself. This reduces the
calculation of importance weights ω to just computing the data likelihood L at each

sample from the prior. Thus a re-sample θ̂ from the original set of parameters θ
with probabilities proportional to ω, with replacement, constitute a sample from
the posterior distribution. The calibrated forecast can then be produced by running

the PatchSim model at the parameter values θ̂, which are then used to compute
several summary statistics on the forecast. More details on the calibration
framework, and its adaptation for PatchSim and influenza forecasting is described
in the Supplementary Methods.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Emergency department visits in New York City (NYC) related to Influenza-like Illness
were obtained from NYC EpiQuery Syndromic Surveillance portal (https://a816-
healthpsi.nyc.gov/epiquery/). Influenza-A positive percentages were obtained from US
CDC FluView (https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html). Lab tested flu
positive counts for New Jersey were obtained from NJ State Department of Health
webpage (https://www.nj.gov/health/cd/statistics/flu-stats). Influenza positive counts for
Australia were obtained from Australian Government Department of Health’s website for
National Notifiable Diseases Surveillance System (http://www9.health.gov.au/cda/source/
pub_influ.cfm). Commuter flows for New York and New Jersey were obtained from
American Community Survey (https://www.census.gov/data/tables/time-series/demo/
commuting/commuting-flows.html). Interstate commuters for Australia were obtained
from the Australian Labour Market Statistics (https://www.abs.gov.au/AUSSTATS/abs@.
nsf/Previousproducts/6105.0Feature%20Article1Oct%202008). County population sizes
for NY and NJ were obtained from US Census Bureau (https://www.census.gov/topics/
population.html). State and territory population sizes for Australia were obtained from
Australian Bureau of Statistics (https://www.abs.gov.au/statistics/people/population).
Preprocessed versions of the above datasets used in the simulation are provided in the
code repository (https://github.com/NSSAC/AMMFluForecasting). The Google
Aggregated Mobility Research Dataset used for this study is available with permission
from Google LLC.

Code availability
The simulation engine (PatchSim) for the metapopulation model is available at ref. 32,
with appropriate documentation and example datasets. The custom codes used for
calibration, forecasting, and evaluation are available at ref. 33.
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