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Abstract. When forecasting with neural network models one faces several problems, all of which

influence the accuracy of the forecasts. First, neural networks are often hard to estimate due to

their highly nonlinear structure. To alleviate the problem, White (2006) presented a solution

(QuickNet) that converts the specification and nonlinear estimation problem into a linear model

selection and estimation problem. We shall compare its performance to that of two other proce-

dures building on the linearisation idea: the Marginal Bridge Estimator and Autometrics. Second,

one must decide whether forecasting should be carried out recursively or directly. This choice is

investigated in this work. The economic time series used in this study are the consumer price in-

dices for the G7 and the Scandinavian countries. In addition, a number of simulations are carried

out and results reported in the paper.
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1. Introduction

Artificial Neural Networks (ANN) have been quite popular in many areas of science for describ-

ing various phenomena and forecasting them. They have also been used in forecasting macroe-

conomic time series and financial series, see Kuan and Liu (1995) for a successful example on

exchange rate forecasting, and Zhang et al. (1998) and Rech (2002) for more mixed results. Maa-

soumi et al. (1994) already modelled macroeconomic time series using ANN models, although they

did not use their models for forecasting. The main argument in favour of these models is that

ANNs are universal approximators, which means that they are capable of arbitrarily accurately

approximating functions that satisfy only mild regularity conditions. The ANN models thus have

a strong nonparametric flavour. One may therefore expect them to be a versatile tool in economic

forecasting and quickly adapt to rapidly changing forecasting situations. Ahmed et al. (2010) con-

ducted an extensive forecasting study comprising more than 1000 economic time series from the

M3 competition Makridakis and Hibon (2000), and a large number of what they called machine

learning tools. They concluded that the ANN model that we are going to consider, the single

hidden-layer feedforward ANN model or multi-layer perceptron with one hidden layer, was one of

the best or even the best performer in their study. A single hidden-layer ANN model is already a

universal approximator; see Cybenko (1989) and Hornik et al. (1989).

A major problem in the application of ANN models is the specification and estimation of these

models. A large number of modelling strategies have been developed for this purpose. It is possible

to begin with a small model and increase its size (“specific-to-general”, “bottom up”, or “growing

the network”). Conversely, one can specify a network with a large number of variables and hidden

units or “neurons” and then reduce its size (“general-to-specific”, “top down” or “pruning the

network”). Since the ANN model is nonlinear in parameters, its parameters have to be estimated

numerically, which may be a demanding task if the number of parameters in the model is large.

White (2006) devised a clever strategy for modelling ANNs that converts the specification and

ensuing nonlinear estimation problem into a linear model selection problem. This greatly simplifies

the estimation stage and alleviates the computational effort. It is therefore of interest to investigate
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how well this strategy, called QuickNet, performs in univariate macroeconomic forecasting. A

natural benchmark in that case is a linear autoregressive model.

Quite often, application of QuickNet leads to a situation in which the number of variables in

the set of candidate variables exceeds the number of observations. QuickNet handles these cases

without problems, because it essentially works from specific to general and then back again. We

shall also consider a one-way variant from specific to general in this study. One may want to set

a maximum limit for variables to be included in the model to control its size.

There exist other modelling strategies that can also be applied to selecting the variables. In fact,

White (2006) encouraged comparisons between his method and other alternatives, and here we

shall follow his suggestion. In this work, we consider two additional specification techniques. One

is Autometrics by Doornik (2009), see also Krolzig and Hendry (2001) and Hendry and Krolzig

(2005), and the other one is the Marginal Bridge Estimator (MBE), see Huang et al. (2008). The

former is designed for econometric modelling, whereas the latter one has its origins in statistics.

Autometrics works from general to specific, and the same may be said about MBE. We shall

compare the performance of these three methods when applying White’s idea of converting the

specification and estimation problem into a linear model selection problem and selecting hidden

units for our ANN models. That is one of the main objectives of this paper.

The focus in this study is on multiperiod forecasting. There are two ways of generating mul-

tiperiod forecasts. One consists of building a single model and generating the forecasts for more

than one period ahead recursively. The other one, called direct forecasting, implies that a separate

model is built for each forecasting horizon, and no recursions are involved. For discussions, see for

example Teräsvirta (2006), Teräsvirta et al. (2010, Chapter 14), or Kock and Teräsvirta (2011a).

In nonlinear forecasting, the latter method appears to be more common, see for example Stock

and Watson (1999) and Marcellino (2002), whereas Teräsvirta et al. (2005) constitutes an example

of the former alternative. A systematic comparison of the performance of the two methods exists,

see Marcellino et al. (2006), but it is restricted to linear autoregressive models. Our aim is to

extend these comparisons to nonlinear ANN models.
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Nonlinear models can sometimes generate obviously insane forecasts. One way of alleviating

this problem is to use insanity filters as in Swanson and White (1995, 1997a,b) who discuss this

issue. We will compare two filters to the unfiltered forecasts and see how they impact on the

forecasting performance of the neural networks.

In this work the ANN models are augmented by including lags of the variable to be forecast

linearly in them. As a result, the augmented models nest a linear autoregressive model. It is

well known that if the data-generating process is linear, the augmented ANN model is not even

locally identified; see for example Lee et al. (1993), Teräsvirta et al. (1993) or Teräsvirta et al.

(2010, Chapter 5) for discussion. A general discussion of identification problems in ANN models

can be found in Hwang and Ding (1997). It may then be advisable to first test linearity of each

series under consideration before applying any ANN modelling strategy to it. But then, it may

also be argued that linearity tests are unnecessary, because the set of candidate variables can be

(and in our case is) defined to include both linear lags and hidden units. Our empirical results

(not reported in detail in this paper) suggest that testing linearity before building ANN models

is of little help in forecasting with these models.

The main criterion of comparing forecasts is the Root Mean Square Forecast Error (RMSFE),

which implies a quadratic loss function. Other alternatives are possible, but RMSFE is commonly

used and thus applied here. We rank the methods, which makes some comparisons possible.

It might be desirable to compare White’s method with modelling strategies which are not

based on linearising the problem but in which statistical methods such as hypothesis testing and

nonlinear maximum likelihood estimation are applied. Examples of these include Swanson and

White (1995, 1997a,b), Anders and Korn (1999) and Medeiros et al. (2006). These approaches do,

however, require plenty of human resources, unless the number of time series under consideration

and forecasts generated from them are small. This is because nonlinear iterative estimation is

hard to automate. Each estimation needs a nonnegligible amount of attention from the user, and

when the number of time series to be considered is large, ANN model building and forecasting

tend to require a substantial amount of resources.
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In this paper we investigate the forecasting performance of the aforementioned techniques. We

first conduct a set of small simulations to see how well these techniques perform when the data

are generated by a known nonlinear model or by a stationary linear autoregressive model. The

economic data sets consist of the monthly consumer price index series from the 1960’s until the

end of 2009 for the G7 as well as the four Scandinavian countries. We have also implemented the

techniques on unemployment series for the same countries. The results show very little variation

and are omitted1.

The plan of the paper is as follows. The neural network model is presented in Section 2 and

estimation techniques in Section 3. The recursive and direct forecasting methods are discussed in

Section 4 and the results are summarized in Section 5. Section 6 concludes.

2. The model

We begin by briefly introducing the Artificial Neural Network (ANN) model and reviewing

some of its properties. The techniques for specifying the structure of the model and estimating

the parameters will be considered in the next section. Our model is the so-called single-hidden-

layer feedforward autoregressive neural network model or single-hidden-layer perceptron

(1) yt = β′0zt +

q∑
j=1

βj(1 + exp{γ′jzt})−1 + εt

where zt = (1, yt−1, ..., yt−p)
′, β0 = (β00, β01, ..., β0p)

′, γj = (γj0, γj1, ..., γjp)
′ and εt ∼ iidN (0, σ2).

The weak stationarity condition of (1) is the same as that of the corresponding linear AR(p)

model, namely, all roots of 1−
∑p

i=1 β0iz
i should lie outside the unit circle.

The ANN model is a so-called universal approximator in the following sense. Suppose there is a

functional relationship between y and z: y = H(z). Then under appropriate regularity conditions

for any δ > 0 there exists a positive integer q <∞ such that
∥∥H(z)−

∑q
j=1 βj(1 + exp{γ′jz})−1

∥∥ <
δ where ‖·‖ is an appropriate norm on the function space H is an element of. This indicates that

(1) is a very flexible functional form and thus in principle capable of satisfactorily approximating

various nonlinear processes.

1The results for the unemployment series can be found at sites.google.com/site/andersbkock
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Before forecasting with the model (1), the number of logistic functions or hidden units, q, has

to be specified and its parameters estimated. Various specification techniques have been proposed

in the literature. One possibility is to begin with a large model (large q) and reduce the size of

the model. One can also begin with a small model and add hidden units. Either way, one has to

estimate the parameters of the model which, given that the model is heavily nonlinear, may be

numerically demanding, in particular when q is large. For discussions, see for example Fine (1999,

Chapter 6), Goffe et al. (1994), or Simon (1999).

Nevertheless, if the parameter vectors γj , j = 1, ..., q, are known, the model is linear in pa-

rameters. This opens up the possibility of combining specification and estimation into a single

linear model selection problem. As already mentioned, White (2006) suggested this technique for

specifying and estimating artificial neural network models. The linear model selection problem

encountered is the one of choosing a subset of variables from the set

(2) S = {yt−i, i = 1, ..., p; (1 + exp{γ′jzt})−1, j = 1, ...,M}

of M + p elements where M is large. How well the data-generating process can be approximated

by an ANN model depends on the size of S. Furthermore, in a typical macroeconomic application

the size of S is likely to exceed the number of observations. Model selection techniques that can

handle such a situation are discussed in the next section.

The neural network model (1) is not the only possible universal approximator for this appli-

cation. White (2006) mentioned ridgelets, Candès (1998, 2003), as an alternative. Polynomials

would probably in this context not be the best possible class of universal approximators. The fit

of the estimated polynomials often deteriorates at both ends of the series they describe, which is

not a desirable feature in forecasting economic variables such as growth rates. Another universal

approximator, the Fourier Flexible Form (FFF), was discussed in Gallant (1984). In applying

the FFF, the problem of constructing the variables would have two aspects. One would have to

choose the linear combinations γ′jzt, but also determine the number of frequencies in the sum of

trigonometric components. We settle for the ANN model, because it is, alongside the polynomials,



FORECASTING BY AUTOMATED MODELLING TOOLS 7

probably the most commonly used universal approximator, and because QuickNet was originally

designed to solve the specification and estimation problem for this model.

3. Modelling with three automated model selection algorithms

We consider three model selection algorithms that apply to our modelling problem, in which

the number of variables exceeds the number of observations. They are Autometrics, see Doornik

(2009), Marginal Bridge Estimator (MBE), see Huang et al. (2008), and QuickNet. Autometrics

is built on the principle of moving from general to specific, which means beginning with a large

model and gradually reducing its size. QuickNet may be characterised as a specific-to-general-to

specific procedure, although we shall also report results on a simplified specific-to-general version.

The starting-point of MBE also involves all variables, but the process of selecting the final model

is very different from Autometrics. We shall now describe these three techniques in more detail,

beginning with Autometrics.

3.1. Autometrics. Modelling begins with a linear model called the General Unrestricted Model

(GUM). When the number of variables is less than the number of observations the GUM contains

all candidate variables. The model is subjected to significance tests. If all variables have statisti-

cally significant coefficient estimates, the GUM is the final model. Otherwise, because there is no

unique way of going from general to specific, the algorithm searches simpler models using different

search paths. It does this by removing variables with insignificant coefficients. When the model

cannot be reduced any more, it is subjected to diagnostic tests. If it passes the tests, it is called

a terminal model. If not, the algorithm backtracks. Since there are many search paths, there will

in general be several terminal models as well2,3.

After reaching this stage, Autometrics forms the union of the terminal models and tests the

terminal models against it. The union of the models that pass the tests forms a new GUM. The

general-to-specific testing procedure is then repeated and a new set of terminal models obtained.

If all models in this set are rejected against the new union model, the union will be the final

2Following the advice of Jurgen Doornik (personal communication) we also ran Autometrics without diagnostic
tests, but this had little effect on the results.
3The version of Autometrics used in this paper is the one to be found in PcGive 13.0.
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model. Otherwise, modelling restarts with yet another GUM and continues until a final model

has been reached.

When the number of variables exceeds the number of observations. Hendry and Krolzig (2005)

suggested dividing the variables into subsets, each of which contains fewer variables than observa-

tions. Autometrics does this automatically. This implies that at the outset there exists more than

one GUM. Each of these GUMs now forms a starting-point for Autometrics and the algorithm

yields a set of terminal models for each GUM. The terminal models derived from all subsets of

variables or all GUMs are merged to form a single union model. If the number of variables in this

model is less than the number of observations model selection proceeds from this union model as

described above.

Autometrics is partly a black box. The user can, however, affect the outcomes by selecting a

number of settings, such as the significance level of the tests the algorithm relies on.

3.2. Marginal Bridge Estimator. MBE is designed for situations often occurring in statistical

and genomic applications in which there is a large number of candidate variables but only a small

subset of these may belong to the model. Following Huang et al. (2008), consider first the Bridge

Estimator (BE). This is a shrinkage estimator for a linear regression model

(3) yi = α+ β′xi + εi, i = 1, ..., n

where xi = (xi1, ..., xipn)′ is a pn × 1 observation vector (pn may increase in n but pn < n) and

α = 0 without loss of generality. Furthermore, εi ∼ iid(0, σ2). BE is a result of minimizing

(4) L(β) =
n∑
i=1

(
yi − β′xi

)2
+ λn

pn∑
k=1

|βk|γ

where γ > 0, and λn > 0 determines the size of the penalty. Let the true parameter vector

be β0= (β′10, β
′
20)′ with β10 having nonzero entries, β20 = 0, and let β̂n = (β̂′1n, β̂

′
2n)′ be the

corresponding estimator from (4). BE minimizes the OLS objective function plus a penalty for

parameters different from zero. Hence, it shrinks estimates towards zero. Huang et al. (2008)
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showed that under regularity conditions parameters are i) estimated consistently (β̂n → βn in

probability), ii) the truly zero parameters are set to zero
(
P (β̂2n = 0)→ 1

)
and iii) the asymp-

totic distribution of the estimators of nonzero parameters is the same as if only these had been

included in the model. This means that the parameters of the nonzero coefficients are estimated

(asymptotically) as efficiently as if only the relevant variables had been included in the original

model.

For BE to possess this property one needs pn < n. When this condition no longer holds, MBE

can be applied. The idea is to run a series of ’mini’ or ’marginal’ regressions, with a penalty on

parameters that differ from zero. The function to be minimized equals

(5) Qn(β) =

pn∑
k=1

n∑
i=1

(yi − βkxik)2 + λn

pn∑
k=1

|βk|γ

Let β̃n= (β̃′1n, β̃
′
2n)′ be the estimator of β0 from (5). Under regularity conditions and 0 < γ < 1, (a)

the estimator β̃2n = 0 with probability converging to one, and (b) P (β̃1nk 6= 0, β̃1nk ∈ β̃1n) → 1,

as n → ∞. Property (a) is similar to ii) for BE. In view of (b), the elements of β̃1n converge

to nonzero values. Thus, (a) and (b) jointly can be expected to efficiently separate the relevant

variables from the rest.

Of the conditions underlying the aforementioned result the so-called partial orthogonality condi-

tion is problematic in a time series context. It states that the correlation between the relevant and

irrelevant variables is not allowed to be too high. This condition can be violated if the explanatory

variables are lags and functions of lags of the dependent variable as in our case. However, as we

shall see in Section 5, MBE works quite well even in our context.

At this stage it is also worth mentioning that MBE is by no means the only procedure which

can be used to separate relevant from irrelevant regressors. In fact, there has been a flurry of

research resulting in estimators such as Lasso of Tibshirani (1996), SCAD of Fan and Li (2001),

adaptive Lasso of Zou (2006) or the Dantzig selector of Candès and Tao (2007). In particular,

properties of Lasso type estimators have been investigated in a time series context by, e.g., Kock

and Callot (2012) and Medeiros and Mendes (2012). We choose MBE because the marginal

regressions are computationally extremely efficient. On the other hand, very efficient algorithms
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for the implementation of Lasso type estimators do exist and it would thus be interesting to

investigate their properties in future work.

3.3. QuickNet. QuickNet (QN) resembles an earlier modelling device called RETINA, see Perez-

Amaral et al. (2003). The idea of RETINA is to find the explanatory variables that in absolute

terms are most strongly correlated with yt. The most correlated variable is selected first, and

the following ones one by one thereafter. QN differs from RETINA in that the set of candidate

variables is different, as is the model selection criterion used for final selection. QN works as

follows. First, the set of candidate variables S, see (2), is constructed. The variables have to be

such that they show sufficient variation in the sample and are not perfectly linearly correlated;

see White (2006) for details. This set of candidate variables is also used when Autometrics and

MBE are applied. Once this has been done, a predetermined number of variables, q, are added

to the model from the set S, according to the rule that selects the variable with the strongest

(positive or negative) correlation with the residuals of the previously estimated model. Then a

model selection criterion is applied to choose a subset of the q variables. For this, we use 10-fold

cross validation as suggested by Hastie et al. (2009).

We also experiment with a simplified unidirectional version of this method. The variables are

selected one at a time as before, but the significance of the the added variable is tested at each

step. Parsimony is appreciated, so the significance level of the tests is decreased as the number

of variables the model increases. Adding variables is terminated at the first non-rejection of the

null hypothesis, so this is a pure specific-to-general strategy. We apply this method such that

the significance level of the first test in the sequence equals 0.2. Beginning with this value, the

significance level is then halved at each step. In reporting results in Section 5, this method is

called QN-SG.

4. Forecasting

4.1. Two ways of generating multiperiod forecasts. There are two main ways of creating

multiperiod forecasts. One can either generate the forecasts recursively, or one may apply direct

forecasting. In the former case, one and the same model is used for all forecast horizons. Direct
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forecasting implies that a separate model is built for each forecast horizon. A brief discussion of

these two techniques follows next.

4.1.1. Recursive forecasts. In order to illuminate recursive forecasting, consider the model (1) with

p = q = 1. These restrictions are for notational simplicity only. Assuming the information set

FT−1 = {yT−j , j ≥ 1} is independent of future error terms, the one-period-ahead forecast made

at time T equals

yT+1|T = E
(
yT+1|FT

)
= β00 + β01yT + β1(1 + exp{γ10 + γ11yT })−1.

The corresponding conditional mean yT+2|T , that is, the two-period forecast, becomes

yT+2|T = E
(
β00 + β01yT+1 + β1(1 + exp(γ10 + γ11yT+1))−1 + εT+2|FT

)
= β00 + β01yT+1|T + β1E

(
1 + exp(γ10 + γ11(yT+1|T + εT+1))−1|FT

)
= β00 + β01yT+1|T + β1

∫ ∞
−∞

(1 + exp(γ10 + γ11(yT+1|T + z)))−1φ(z)dz(6)

where φ(z) is the density of the N (0, σ2) random variable. The integral in (6) can be computed

by numerical integration. Note that it becomes a multiple integral when the forecast horizon

h > 2. It is therefore better to calculate its value by simulation or by bootstrapping the residuals

of the model, because this is computationally feasible even when h > 2. Some authors bypass this

complication altogether by setting εT+1 = 0 in the logistic function, and as a result their forecasts

are biased estimates of the conditional mean.

In this work we apply the bootstrap. It has the advantage over simulation that unconditional

heteroskedasticity of unknown form is allowed in the error process. More discussion about recursive

forecasting can be found in Teräsvirta (2006), Kock and Teräsvirta (2011a) or Teräsvirta et al.

(2010, Chapter 14) among others.

4.1.2. Direct forecasts. In direct forecasting, given the information set FT , the forecast for T + h

made at T equals

yD
T+h|T = gh(yT , yT−1, ..., yT−p+1)
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where gh is a function of yT and its lags. In our case, the models are selected using the three

aforementioned techniques, but there is a gap in the model in that the variables from yT+1 to

yT+h−1 do not enter the equation. The advantage of the direct method lies in its computational

simplicity: no recursions are needed. But then, a separate model has to be specified for each

forecast horizon.

Direct forecasts are obtained from the linear autoregressive model as well as the neural network

model. In addition, to compare the forecasts from the neural network models to genuinely non-

parametric ones, direct Nadaraya-Watson kernel regression forecasts (NP) are generated. Finally,

‘no change’ forecasts (NC), in which the variable of interest takes the same value at any future

point in time as it does at the time of forecasting, are computed and compared with the rest.

4.1.3. Forecasts based on differences and forecast errors. The forecasts based on differences are

obtained in the following way. When forecasting recursively first differences ∆yt = yt − yt−1 are

being modelled and forecast. The p lags of the left hand side variable are thus ∆yt−1, ...,∆yt−p

To obtain an h-periods-ahead forecast, the first-difference forecasts have to be cumulated4:

(7) E
(
yT+h|FT

)
=

h∑
j=1

E
(
∆yT+j |FT

)
+ yT .

The corresponding forecast error is eT+h|T = yT+h − E
(
yT+h|FT

)
.

In direct h-periods-ahead forecasting, the variable to be modelled is ∆hyt = yt − yt−h. The p

lags of the left-hand side variable are thus ∆hyt−h, ...,∆hyt−h−p+1 and the corresponding forecast

of yT+h is E
(
∆hyT+h|FT

)
+ yT . The estimated model yields direct estimates of the conditional

mean.

The measure of performance in this work is the root mean square forecast error (RMSFE). It

is calculated for each time series from out-of-sample forecasts for the forecasting period beginning

at T0 and ending at T −hmax, where T is the last available observation and hmax is the maximum

4The unknown E
(
∆yT+j |FT

)
are of course replaced by their bootstrapped counterparts.
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forecast horizon. Thus,

RMSFEh = {(T − hmax − T0 + 1)−1
T−hmax∑
t=T0

e2
t+h|t}

1/2.

4.2. Insanity Filters. Nonlinear models may sometimes generate forecasts that are deemed unre-

alistic in the light of the hitherto observed values of the time series. This has prompted forecasters

to introduce precautions in order to avoid excessive forecast errors. The idea is to replace an un-

realistic forecast with a more conventional and believable one. It has been applied, among others,

by Swanson and White (1995, 1997a,b) who called the procedure the insanity filter, Stock and

Watson (1999) and Teräsvirta et al. (2005). We shall make use of two insanity filters. The first

one works as follows: If the h-step ahead predicted change exceeds the maximum h-step change

observed during the estimation period, the most recently observed value of the variable to be

predicted is the forecast. Hence, in the words of Swanson and White (1995), we “replace craziness

by ignorance”. We shall call this filter the Swanson and White (SW) filter. In the second filter,

the extreme predicted change is replaced by a forecast from our benchmark linear autoregressive

model: craziness is replaced by linearity.

5. Results

The aforementioned techniques are applied to the monthly Consumer Price Index (CPI) series

for the G7 countries as well as the four Scandinavian countries. Before considering these macroe-

conomic series we conduct a small Monte Carlo experiment. As mentioned in the introduction,

the purpose of this exercise is to see how the three modelling procedures perform under controlled

circumstances when the data generating process is known in two out of three designs even possible

to select using these techniques.

5.1. General methodology and data. The technique for generating the potential hidden units

for the ANN model (1) is described in the appendix of Kock and Teräsvirta (2011b). We have

modified the original White (2006) technique somewhat to make it more suitable to our modelling

problem. For QuickNet and MBE we use 10-fold cross validation as in Hastie et al. (2009) to

determine the number of hidden units to be included. We also used the hv-Cross Validation
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procedure of Racine (2000), but this did not improve the results and was omitted. Following the

suggestion of White (2006), the maximum number of variables in the ANN models is equal to ten.

The macroeconomic series are obtained from the OECD Main Economic Indicators. Most series

begin in the 1960s and end in December 2009 or January 2010. The CPI series were transformed

to logarithms before modelling them, and the forecast errors discussed in the paper are errors

in forecasting the transformed series. We also considered excluding the crisis period from July

2007 onwards. This did not change the relative accuracy of the procedures considered. For an

in-depth analysis of the forecast precision during the crisis of the procedures studied in this paper

the reader is referred to Kock and Teräsvirta (2014). It should also be mentioned that detailed

results on forecasting the Finnish CPI can be found in Kock and Teräsvirta (2013).

5.2. Monte Carlo. Our simulations try to answer three questions. First, how well do the auto-

mated procedures perform in terms of variable selection and forecasting when the data is generated

by a highly non-linear mechanism? Second, the same issues are investigated when the underlying

model is linear. Do the automated procedures realize this or do they include redundant nonlinear

hidden units? Finally, we investigate the properties of the automated procedures when the data

is generated by a specific Logistic Smooth Transition Autoregressive model (LSTAR2) which is

neither linear nor nested in the class of ANN models.

5.3. A neural network DGP. We consider a strongly nonlinear model from Medeiros et al.

(2006). These authors took the well-known annual Wolf’s sunspot number series because it is a

distinctly nonlinear one and, after transforming the observations using the Box-Cox transformation

as in Ghaddar and Tong (1981), fitted an ANN model (1) with two hidden units to the transformed

series. The model has the form:

yt =− 0.17 + 0.85yt−1 + 0.14yt−2 − 0.31yt−3 + 0.08yt−7

+ 12.8G1(yt−1) + 2.44G2(yt−1) + εt(8)
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where the two hidden units are

G1(yt−1) =
(

1 + exp
(
−0.46 (0.29yt−1 − 0.87yt−2 + .40yt−7 − 6.68)

))−1

and

G2(yt−1) =

(
1 + exp

(
−1.17× 103 (0.83yt−1 − 0.53yt−2 − 0.18yt−7 + 0.38)

))−1

and, furthermore εt ∼i.i.d. N (0, 1). We generate 500 time series of 600 observations from this

model. The set of potential variables consists of G1, G2, 1000 other hidden units, and ten lags of

yt, which greatly exceeds the number of observations. The forecast horizons are one, two, and five

periods, and the maximum number of variables per each selected model equals ten. We report

RMSFE ratios such that the denominator is the RMSFE of forecasts from (8), computed from

the 500 replications.

Recursive Hor. DGP AR QN MBE Autom. QN-SG

1 1.82 1.456 1.343 1.730 1.105 1.805
NF 2 2.739 1.536 3.282 1.659 1.073 1.568

5 4.172 1.337 9 · 104 1.394 4023 1.283

1 1 1.456 1.513 1.730 1.105 1.855
SW 2 1.001 1.536 1.532 1.658 1.074 1.552

5 1.001 1.392 1.218 1.395 1.028 1.269

1 1 1.456 1.322 1.730 1.105 1.776
AR 2 1.001 1.536 1.366 1.658 1.074 1.552

5 1.001 1.337 1.214 1.395 1.028 1.269

Table 1. Average root mean square forecast error ratios for the recursive forecasts of the simulated

sunspot series. DGP: Data generating process, AR: Autoregression, QN: QuickNet, MBE: Marginal Bridge

Estimator, Autom.: Autometrics, QN-SG: QuickNet specific to general. NF: No Filter (for the DGP the

NF subcolumn contains the actual root mean square forecast error from forecasting with the DGP), SW:

Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive ones.

Table 1 contains these ratios for the recursive forecasts. The first three entries in the column

named DGP contain the RMSFE for the forecasts from the true model (8). As expected, all

RMSFE ratios exceed unity. Autometrics-selected models generate by far the most accurate

forecasts of the alternatives to the DGP, indicating that the method works well when there is a

true model that can be selected from the set of variables available for the purpose. The other

methods lead to models whose forecasts are of more or less the same quality. The forecasts from
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Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1.456 1.343 1.730 1.105 1.805 1.546 3.560
NF 2 1.518 9.575 1.549 1.652 1.436 1.332 4.226

5 1.306 1.353 1.241 1.359 1.293 1.124 3.984

1 1.456 1.513 1.730 1.105 1.855 1.658
SW 2 1.518 1.52 1.549 1.532 1.733 1.424

5 1.363 1.326 1.241 1.322 1.293 1.124

1 1.456 1.322 1.730 1.105 1.776 1.555
AR 2 1.518 1.35 1.549 1.355 1.444 1.335

5 1.306 1.219 1.241 1.246 1.293 1.124

Table 2. Average root mean square forecast error ratios for the direct forecasts of the simulated

sunspot series. NP: Non-parametric, NC: ‘no change’ forecasts. NF: No Filter, SW: Swanson-White filter,

AR: Insane forecasts replaced by linear autoregressive ones.

MBE-selected models do not need filtering but are nevertheless slightly more inaccurate than the

other (filtered) ones.

The performance of direct models is reported in Table 2. Models selected by Autometrics no

longer generate more accurate forecasts than the other nonlinear models. Every possible direct

model is misspecified by definition because the shortest lag (two-year model) or lags (five-year

model) of yt cannot be used, and Autometrics clearly suffers from this. Note the good performance

of the nonparametric model in forecasting five years ahead. The kernel autoregression seems to

make most of the available information, and the forecasts hardly need filtering. In fact, the SW

filter has a negative effect on the accuracy of the forecasts from this model. As may be expected,

the ‘no change’ forecast does not perform well in predicting these strongly cyclical realisations.

The results from different models and methods are also compared by two other devices. We cal-

culate the average ranks of the absolute forecast errors over the forecasts for the three forecast hori-

zon. We also use Wilcoxon’s signed-rank test for comparing the forecasts from the DGP with the

others. This yields a set of pairwise comparisons. For space reasons, the results from these two ap-

proaches are not reported here but are available at https://sites.google.com/site/andersbkock/.

Table 3 offers some background to the results in Tables 1 and 2. It contains information about

the size and variable types in the nonlinear models for recursive forecasting. The average number

of variables in every type of model is greater than the size of (8) which is six variables when the

intercept is not counted. It is worth noting that Autometrics, while selecting the largest models,
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Recursive Total Linear Nonlinear DGP units

QN 9.55 0.348 9.21 1.64
MBE 9.22 0.756 8.47 0.77
Autom 11 1.5 9.51 3.47
QN-GS 5.3 0.324 4.98 1.12

Table 3. Average number of variables selected for the recursive forecasts of the sunspot series. “To-

tal” indicates total number of variables included, “Linear” indicates the number of linear units included,

“Nonlinear” gives the number of hidden units included, and DGP units gives the number of units included

from the data generating process.

picks up elements of the true model more frequently than the other model selection techniques.

This is probably the most important factor in explaining its success. Moreover, Autometrics on

average chooses more linear lags than the other models, although fewer than their number in the

true model. The average number of linear lags in the other models is rather small. The specific-

to-general QN-SG is clearly more parsimonious than QuickNet, but this result is not invariant

to the choice of significance levels in the test sequence. QuickNet-based recursive forecasts are

somewhat more accurate than QN-SG ones at one-and five-year horizons.

5.4. A linear DGP. The linear model is a simple first-order AR model

yt = 0.9yt−1 + εt

where the εt are i.i.d. and follow the standard Gaussian distribution. As in the nonlinear example

we generate 500 data sets with 600 observations and the pool of hidden units consists of 1000

elements. The number of linear lags in the pool of variables is 10. The forecast horizons are the

same as before as is the maximum number of variables (linear as well as non-linear) included in

the models (ten). The forecasts from the linear AR model form the benchmark.

Forecasting performance of the different techniques is reported in Tables 4 and 5 of which

the former contains the results for recursive forecasting. It is seen that measured by forecasting

accuracy, Autometrics is now the worst performing automated procedure. At the top end, MBE-

based forecasts are as precise as the ones from the linear AR model, and they are not filtered. The

results on direct forecasting in Table 5 are similar to the recursive ones in the sense that MBE

is still the most reliable method, whereas Autometrics generates the most inaccurate forecasts.
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Recursive Hor. AR QN MBE Autom. QN-SG

1 0.9687 2.255 0.9983 1.114 1.024
NF 2 1.328 1.627 0.9989 1.133 1.035

5 1.885 1.37 0.9975 1.084 1.036

1 1 1.021 0.9983 1.114 1.024
SW 2 1 1.046 0.9989 1.133 1.035

5 1 1.06 0.9976 1.074 1.035

1 1 1.022 0.9983 1.114 1.024
AR 2 1 1.046 0.9989 1.133 1.035

5 1 1.059 0.9976 1.074 1.035

Table 4. Average root mean square forecast error ratios for the recursive forecasts of the simulated

AR(1) series. DGP: Data generating process, AR: Autoregression, QN: QuickNet, MBE: Marginal Bridge

Estimator, Autom.: Autometrics, QN-SG: QuickNet specific to general. NF: No Filter (for the AR(1)

the NF subcolumn contains the actual root mean square forecast error from forecasting with the AR(1)),

SW: Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive ones. The entries of the

column AR, rows NF section are the average root mean square forecast errors of the AR(1) model without

any insanity filter.

Nonparametric forecasts are quite accurate, which is not surprising as the data are generated from

a linear AR(1) model. Since the linear model is quite persistent, it is no wonder that the one- and

two steps-ahead forecasts are rather accurate.

Table 6 sheds light to the switch in the behaviour of Autometrics when one moves from the

nonlinear to the linear AR model. Autometrics only manages to find the correct variable (the

first lag of yt) in 13% of the replications, whereas the other procedures find it every time. Besides,

the average number of variables in Autometrics-based models is very large. In fact, Autometrics

selects ten times as many variables as MBE that generates the smallest models.

It is also seen that QuickNet generates less accurate forecasts than the pure specific-to-general

version QN-SG. It seems that in this simulation one has better control on what is selected when

the selection is carried out by sequential testing than when it is done by a pure QuickNet pro-

cedure. The number of variables selected by QN-SG is not much smaller than what is achieved

by QuickNet, but forecasts are clearly more accurate at shortest horizons. Besides, filtering them

is not necessary. As already pointed out, the number of variables selected by QN-SG can be

controlled by the significant levels of the tests. In this study, the procedure is rather ’generous’,

in that the significance level of the first test as high as 0.2. In this particular example, a lower

significance levels would no doubt have given better forecasts.
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Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 2.255 0.9983 1.114 1.024 1.009 1.013
NF 2 1.002 1.108 0.9976 4.912 1.076 1.008 1.041

5 1.004 1.078 0.9957 1.105 1.074 1.008 1.11

1 1 1.021 0.9983 1.114 1.024 1.009
SW 2 1.002 1.07 0.9976 1.155 1.076 1.008

5 1.004 1.078 0.9957 1.09 1.074 1.008

1 1 1.022 0.9983 1.114 1.024 1.009
AR 2 1.002 1.07 0.9976 1.155 1.076 1.008

5 1.004 1.078 0.9957 1.092 1.074 1.008

Table 5. Average root mean square forecast error ratios for the direct forecasts of the simulated

AR(1) series. DGP: Data generating process, AR: Autoregression, QN: QuickNet, MBE: Marginal Bridge

Estimator, Autom.: Autometrics, QN-SG: QuickNet specific to general, NP: Non-parametric, NC: ‘no

change’. NF: No Filter (for the AR(1) the NF subcolumn contains the actual root mean square forecast

error from forecasting with the AR(1)), SW: Swanson-White filter, AR: Insane forecasts replaced by linear

autoregressive ones.

Recursive Total Linear Nonlinear DGP units

QN 8.07 1 7.07 1
MBE 1.84 1.13 0.708 1
Autom 19.8 0.236 19.5 0.132
QN-GS 7.65 1 6.65 1

Table 6. Average number of variables selected for the recursive forecasts from the simulated AR(1)

model. “Total” indicates total number of variables included, “Linear” indicates the number of linear units

included, “Nonlinear” gives the number of hidden units included, and DGP units gives the number of units

included from the data generating process.

The most important reason for the inferior performance of Autometrics and QuickNet in this

example appears to be that they often select highly correlated variables. This leads to imprecise

coefficient estimates and, consequently, inferior forecasts. It would seem a good idea to furnish

these procedures with checks that would prevent this from happening. As things are now, MBE,

being inherently parsimonious, dominates those two in this simulation.

It is obvious that in this artificial experiment it would have been very useful to test linearity

before the actual variable selection. With 600 observations, linearity would have been rejected

with a very high probability, and the model building problem would have been reduced to selecting

the relevant linear lags for the AR model. As mentioned in the introduction, in the forecasting

exercise with real economic variables performing a linearity test before selecting the variables did

not, however, seem to increase the accuracy of the forecasts.
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Recursive Hor. DGP AR QN MBE Autom. QN-SG

1 0.975 1.041 2 · 103 1.022 1.112 1.063
NF 2 1.221 1.044 7 · 104 1.020 1.179 1.055

5 1.439 1.006 2 · 105 0.9897 1 · 107 1.057

1 1 1.041 1.055 1.022 1.034 1.063
SW 2 1 1.044 1.045 1.020 1.048 1.054

5 0.9991 1.006 1.037 0.9897 1.044 1.044

1 1 1.041 1.051 1.022 1.032 1.063
AR 2 1 1.044 1.041 1.020 1.047 1.054

5 0.9991 1.006 1.033 0.9897 1.044 1.044

Table 7. Average root mean square forecast error ratios for the recursive forecasts of the simulated

LSTAR2 series. DGP: Data generating process, AR: Autoregression, QN: QuickNet, MBE: Marginal

Bridge Estimator, Autom.: Autometrics, QN-SG: QuickNet specific to general. NF: No Filter (for the

AR(1) the NF subcolumn contains the actual root mean square forecast error from forecasting with the

AR(1)), SW: Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive ones. The entries

of the column AR, rows NF section are the average root mean square forecast errors of the AR(1) model

without any insanity filter.

5.5. An intermediate case. As a third example we generate data from a special case of an

LSTAR2 model which is not nested in the neural network structure. The data were generated

from

yt = 0.9yt−1 + 2
(

1 + exp
{
−[yt−1 − 0.5][yt−1 + 0.5]

})−1
+ εt(9)

where εt ∼ N(0, 1). In the model the intercept fluctuates symmetrically around zero as a function

yt−1 and varies between zero and two. The logistic function takes its minimum at zero and tends

to one as yt−1 → ±∞.

We again generate 500 data sets with 600 observations. The number of linear lags in the pool

of variables is 10 while 1000 hidden units are included. The benchmark forecasts are the ones

from (9) assuming that the parameters are known.

Table 7 reports the forecasting performance of the recursive forecasts. As expected, no pro-

cedure systematically outperforms the forecasts from the data generating process. Most of the

root mean square forecast error ratios are above one. An exception is provided by MBE at the

longest forecasts horizon. This procedure is also very stable as none of its forecasts is deemed

insane. QuickNet and Autometrics are less stable than MBE. The forecasts from the plain linear

autoregressions do also seem to work quite well when the forecasting horizon is long. It seems that
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Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1.041 2 · 103 1.022 1.112 1.063 1.012 1.114
NF 2 1.048 1.062 1.042 1.459 1.054 1.013 1.196

5 1.006 4 · 103 1.018 352.2 1.024 1.003 1.245

1 1.041 1.055 1.022 1.034 1.063 1.012
SW 2 1.048 1.062 1.042 1.059 1.054 1.013

5 1.006 1.030 1.012 1.050 1.024 1.003

1 1.041 1.051 1.022 1.032 1.063 1.012
AR 2 1.048 1.062 1.042 1.057 1.054 1.013

5 1.006 1.044 1.026 1.062 1.024 1.003

Table 8. Average root mean square forecast error ratios for the direct forecasts of the simulated

LSTAR2 series. DGP: Data generating process, AR: Autoregression, QN: QuickNet, MBE: Marginal

Bridge Estimator, Autom.: Autometrics, QN-SG: QuickNet specific to general, NP: Non-parametric, NC:

‘no change’. NF: No Filter (for the AR(1) the NF subcolumn contains the actual root mean square forecast

error from forecasting with the AR(1)), SW: Swanson-White filter, AR: Insane forecasts replaced by linear

autoregressive ones.

for other procedures than Autometrics, the LSTAR2 model is easier to forecast than the neural

network model in Section 5.3.

The results for the direct forecasts are contained in Table 8. These forecasts are less precise

than their recursive counterparts and not even MBE has any root mean square forecast error ratio

below one. Autometrics and QuickNet forecasts need filtering even in this case. The nonparametric

forecasts perform similarly to the neural network based ones while the ”no change” forecasts are

clearly inferior to all the others once the latter are filtered.

Table 9 reports the structure of the models chosen for the recursive forecasts. All procedures

include one linear lag. This is in accordance with the structure of the data generating process.

On the other hand, models selected by QuickNet and Autometrics contain more hidden units

than QN-SG and, in particular, MBE. Note, however, that as opposed to the previous experiment

Autometrics does not choose models which are much larger than the ones selected by the other

procedures.

Computational speed. It is appropriate to briefly comment on the computational speed of the

procedures considered. The most important observation is that Autometrics is in general at least

100 times slower than the other automated procedures. To be more precise, Autometrics typi-

cally takes a few minutes to perform one estimation while QuickNet, MBE and QN-SG generally
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Recursive Total Linear Nonlinear

QN 6.88 1 5.88
MBE 2.05 1.04 1.01
Autom 6.75 0.966 5.78
QN-GS 4.2 1 3.2

Table 9. Average number of variables selected for the recursive forecasts from the simulated LSTAR2

model. “Total” indicates total number of variables included, “Linear” indicates the number of linear units

included.

take less than a second. The nonparametric estimation lies between these two extremes. These

computations were carried out on a desktop DualCore with 1.83GHz and 1.49GB RAM.

5.6. Forecasting the Consumer Price Index. We now turn to forecasting the Consumer

Price Index of our 11 countries. We have also done the same for unemployment rates, but to

conserve space the complete results from that exercise are not reported here. See instead Kock

and Teräsvirta (2011b). The CPI series are forecast 1, 3, 6, and 12 months ahead. The series are

transformed into logarithms, and 240 forecasts based on an expanding window are generated for

each horizon5. Forecasts from models of differenced series are formed as described in Section 4.1.3.

The pool of variables contains 600 hidden units with p = 6 in (1) and the first six linear lags of the

dependent variable. The models are respecified every six months. This is because Autometrics is

quite slow: otherwise respecification could easily be done every month.

The RMSFE ratios for recursive CPI forecasts from models of differenced series can be found

in Table 10. The denominator in the RMSFE ratio is now the RMSFE of the recursive linear

AR forecasts. It is seen from the table that filtering the forecasts is necessary. All four model

selection techniques lead to ANN models that generate some very inaccurate forecasts. This is the

case already for one-month forecasts and is, as in the AR(1) simulation, due to the fact that some

models contain very strongly correlated variables. A pair of them typically has large (in absolute

value) coefficients with opposite signs. Forecasting with such a model yields inaccurate forecasts

and cumulating them in forecasting more than one month ahead makes the situation even worse.

Furthermore, all RMSFE ratios exceed one, which means that on average no ANN model, not

5For some of the shorter data sets the number of forecasts is less than 240, because the first window was set to
include at least 200 observations.
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Recursive Hor. AR QN MBE Autom. QN-SG

1 0.0037 16.82 1.02 257.9 1.043
NF 3 0.0080 5 · 104 2 · 106 2 · 109 1.052

6 0.0132 4 · 105 1 · 106 6 · 109 2.411
12 0.0245 1 · 106 1 · 106 1 · 1010 3 · 105

1 1 1.040 1.020 1.074 1.047
SW 3 1.004 1.033 1.020 1.075 1.061

6 1.003 1.055 1.020 1.085 1.076
12 1.011 1.107 1.034 1.172 1.091

1 1 1.042 1.019 1.072 1.044
AR 3 1 1.025 1.014 1.058 1.052

6 1 1.036 1.017 1.047 1.071
12 1 1.066 1.032 1.105 1.088

Table 10. Average root mean square forecast error ratios for the recursive forecasts of the CPI series

based on differences. NF: No Filter, SW: Swanson-White filter, AR: Insane forecasts replaced by linear

autoregressive ones. The first four figures in the column AR are RMSFEs from the autoregressive model.

Direct Hor. AR QN MBE Autom. QN-SG NP NC

1 1 16.82 1.02 257.9 1.043 1.148 1.133
NF 3 0.976 2.699 0.9893 2464 1.02 1.074 1.169

6 0.8123 20.77 0.8239 1869 0.8362 0.9335 1.159
12 0.7336 3.286 0.7284 20.08 0.7436 0.8203 1.134

1 1 1.040 1.020 1.074 1.047 1.150
SW 3 0.976 1.039 0.9893 1.059 1.030 1.081

6 0.8123 0.8452 0.8239 0.8987 0.836 0.9335
12 0.7336 0.7584 0.7284 0.8355 0.7397 0.8203

1 1 1.042 1.019 1.072 1.044 1.147
AR 3 0.976 1.020 0.9893 1.042 1.019 1.075

6 0.8123 0.840 0.8239 0.8819 0.835 0.9335
12 0.7336 0.7591 0.7284 0.8371 0.7395 0.8203

Table 11. Average root mean square forecast error ratios for the direct forecasts of the CPI series

based on differences. NF: No Filter, SW: Swanson-White filter, AR: Insane forecasts replaced by linear

autoregressive ones.

even after filtering, generates more accurate recursive forecasts than the linear AR model. Models

selected by MBE perform slightly better than the other nonlinear models.

These results may be compared with the ones in Table 11. This table contains the RMSFE

ratios for direct forecasts from models based on differenced series. Models built using QuickNet

and Autometrics still generate a few forecasts that require filtering, whereas MBE-based forecasts

no longer do. After filtering, the six- and 12-month forecasts from the ANN models are more

accurate than the benchmark ones. This is also the case for forecasts from direct linear AR

models. Their RMSFE ratios are comparable to those obtained from models constructed by
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Recursive Hor. AR QN MBE Autom. QN-SG

1 1.011 1.013 0.977 1.062 1.139
NF 3 1.001 20.39 0.9315 6311 1.195

6 0.9728 3 · 105 0.8535 1 · 107 1.223
12 0.9372 3 · 106 0.787 3 · 108 1.309

1 1.011 1.013 0.977 1.062 1.139
SW 3 1.001 0.9685 0.9314 1.003 1.184

6 0.9728 0.896 0.8532 0.9299 1.187
12 0.9372 0.823 0.7871 0.8489 1.185

1 1.011 1.013 0.977 1.062 1.139
AR 3 1.001 0.9661 0.9314 1.003 1.181

6 0.9728 0.8923 0.8532 0.9299 1.187
12 0.9372 0.8143 0.7871 0.8489 1.167

Table 12. Average root mean square forecast error ratios for the recursive forecasts of the CPI se-

ries based on levels. NF: No Filter, SW: Swanson-White filter, AR: Insane forecasts replaced by linear

autoregressive ones.

MBE which is the best-performing model selection technique. The forecasting performance of the

nonparametric model is below average, and the ’no change’ forecasts are less accurate than even

the corresponding recursive ones.

The RMSFE ratios in Table 12 refer to recursive forecasts from models built on CPI levels.

Filtered forecasts are more accurate on average than the corresponding forecasts in Table 10.

MBE-based forecasts are the most accurate ones and models built by QN-SG generate the least

accurate recursive forecasts: all ratios remain above one. Recursive linear AR models built on

levels are somewhat superior to the ones built on differences. The RMSFE ratios lie below one for

the two longest horizons but are greater than the corresponding ratios for forecasts from models

obtained by MBE, QuickNet and Autometrics.

Table 13 contains the RMSFE ratios for direct forecasts from models specified and estimated

from the level series. It appears that MBE is the best model-building method when RMSFE is

used as the criterion. The ratios are even smaller than the ones found in Tables 10–12. Direct

models selected by QuickNet also perform better than the recursive ones, whereas the same cannot

be said of models based on Autometrics or QN-SG. In the light of these results, going from specific

to general and back again (QuickNet) is a better idea than going from specific to general only

(QN-SG), but this finding cannot be generalized. The simulations with an AR(1) model yielded

the opposite result. It may be noted that the nonparametric model built on levels generates much
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Direct Hor. AR QN MBE Autom. QN-SG NP NC
1 1.011 1.013 0.977 1.062 1.139 16.77 1.133

NF 3 0.9661 0.9418 0.9057 0.9761 1.198 8.037 1.169
6 0.9053 3.401 0.8114 0.9982 1.204 5.072 1.159
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119 1.134
1 1.011 1.013 0.977 1.062 1.139 3.783

SW 3 0.9661 0.9418 0.9057 0.9761 1.198 5.172
6 0.9053 0.8305 0.8114 0.954 1.204 4.907
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119
1 1.011 1.013 0.977 1.062 1.139 3.675

AR 3 0.9661 0.9418 0.9057 0.9761 1.198 5.136
6 0.9053 0.8303 0.8114 0.9564 1.204 4.904
12 0.7771 0.7205 0.6928 0.9416 1.173 3.119

Table 13. Average root mean square forecast error ratios for the direct forecasts of the CPI series based

on levels. NF: No Filter, SW: Swanson-White filter, AR: Insane forecasts replaced by linear autoregressive

ones.

less accurate forecasts than the same model estimated from differenced series. Its RMSFE ratios

are remarkably larger than any other ratio. Summing up, it seems that direct forecasts are on

average more accurate than the recursive ones. Exceptions do exist: compare Autometrics-based

six- and 12-month RMSFE ratios in Tables 12 and 13. It should be pointed out that these results

are aggregate ones and do not necessarily hold for all 11 countries.

We also compare the forecast performance of the different methods by using the ranks and

Wilcoxon tests as documented in the online appendix at https://sites.google.com/site/andersbkock/.

This is done for all countries and forecast horizons. Forecasts from models built on differences as

well as the ones based on levels are included in the same comparison. The results and comments

can be found in the online appendix at the above address.

As in the simulated example, it is interesting to see whether the size of the model and the

accuracy of the forecasts from it are related. Table 14 contains information about the size and

composition of models based on differenced series. When forecasting recursively, it is seen from

the left panel that QN-SG selects the most parsimonious models which do not, however, yield

the most accurate forecasts. MBE selects somewhat less parsimonious models that on average

do yield the most accurate recursive forecasts. It also chooses the largest fraction of linear lags,

although their average number remains below one. As in the AR(1) simulations, models selected
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Recursive Total Linear Nonlinear

QN 6.35 0.298 6.05
MBE 5.51 0.818 4.69
AM 15.5 0.393 15.1
QN-SG 4.03 0.195 3.83

Direct MBE Total Linear Nonlinear

1 mth 5.51 0.818 4.69
3 mths 5.48 2.45 3.03
6 mths 5.29 3.55 1.74
12 mths 2.69 1.72 0.964

Table 14. Left panel: Average number of variables selected for the models generating recursive fore-

casts of the CPI based on differences. “Total” indicates total number of variables included, “Linear”

indicates the number of linear units included, and “Nonlinear” gives the number of hidden units included.

Right panel: Average number of variables selected for the direct forecasts of the CPI based on differences

by MBE.

Recursive Total Linear Nonlinear

QN 5.35 1.09 4.27
MBE 7.19 5.64 1.55
AM 19.1 1.34 17.7
QN-SG 1.39 1 0.386

Direct MBE Total Linear Nonlinear

1 mth 7.19 5.64 1.55
3 mths 7.24 5.74 1.49
6 mths 7.42 6 1.42
12 mths 7.21 6 1.21

Table 15. Left panel: Average number of variables selected for the models generating recursive fore-

casts of the CPI based on levels. “Total” indicates total number of variables included, “Linear” indicates

the number of linear units included, and “Nonlinear” gives the number of hidden units included. Right

panel: Average number of variables selected for the direct forecasts of the CPI based on levels by MBE.

by Autometrics are by far the largest ones. There does not seem to be a clear connection between

the model size and forecast accuracy.

The right-hand panel of Table 14 contains the average size and composition of models based

on differenced series and selected by MBE for direct forecasting. The average number of variables

is halved when one moves from six- to 12-month models, whereas the share of linear lags of the

total increases up to six-month models and remains about the same for 12-month ones.

Table 15 contains the same information for models built on levels. All methods now select more

linear variables than in the previous case. QN-SG is still the most parsimonious technique, and

even QuickNet selects fewer variables than MBE. As Tables 13 and A.7 (to be found in the online

appendix) indicate, forecasts from MBE are still the most accurate ones on average. The use of

Autometrics leads to largest models. They perform better than QN-SG-selected models but less

well than ones specified using MBE. The right panel of Table 15 shows that MBE selects a large

number of linear lags for all direct models. In fact, every MBE-model built for the two longest

horizons contains all six lags and only a small number of hidden units. A comparison of the

RMSFE ratios in Tables 10 and 12 on the one hand and Tables 11 and 13 on the other (indirectly)
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suggests that direct models based on data in levels and selected by MBE may be slightly superior to

the same type of model, selected by the same technique, but based on differenced series. Whether

or not this is due to the larger amount of linear lags in the former models is not clear, however.

Individual countries. This section gives a brief review of some results for the individual countries

since the aggregate results may sometimes hide differences between the individual countries. A

detailed description of the results for the individual countries can be found in Kock and Teräsvirta

(2011b). Examining the RMSFE ratios for the individual countries reveals that direct forecasts

tend to be more accurate than their recursive counterparts. This is true for forecasts based on

differences as well as levels. Furthermore, MBE is rather stable. MBE is the only procedure which

has RMSFE ratios below one at all horizons for Italy, Japan, and the US. However, a different

selection technique is dominant for each country. The nonparametric forecasts are very inaccurate

for all three countries.

Summing up, results on forecasting the CPI series suggest that forecasts based on levels are

superior to their counterparts based on differences. Furthermore, direct forecasting is preferable

to recursive forecasts and MBE is the most stable forecasting procedure. This last observation

may be attributed to the high number of linear units supplemented by a few relevant nonlinear

units in the MBE-built models.

5.7. Forecasting unemployment rates. To save space, we shall not give the full details of the

results for the unemployment series since no dominant method was found for those series. However,

a couple of findings deserve to be mentioned. First, except for MBE the nonlinear procedures

produce many insane forecasts such that filtering is needed. Second, the direct forecasts no longer

outperform their recursive counterparts. Finally, MBE in general chooses much smaller models

than Autometrics. For detailed results, see Kock and Teräsvirta (2011b).

6. Conclusions

In this paper we consider macroeconomic forecasting with a flexible nonlinear model, the single-

hidden layer feedforward neural network model that is a universal approximator. We apply the idea

of White (2006) of transforming the specification and estimation problem of this model to a linear
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model specification problem. This leads to a situation in which the number of candidate variables

to choose among vastly exceeds the number of observations. Three modelling techniques, White’s

QuickNet among them, that can handle this difficulty are compared and the models selected are

used for forecasting.

The benchmark in our forecast comparisons is, with two exceptions, the linear AR model with

recursive forecasts. It turns out to be difficult to improve upon its forecasting precision using

recursive forecasting, while the direct method seems to be a more successful approach. It appears

that the Marginal Bridge Estimator of Huang et al. (2008) yields the best performing ANN models

overall, but the results do vary from one country to the other. Autometrics of Doornik (2009)

selects models with excellent forecasting performance when there is a well-fitting nonlinear model

to be discovered but does poorly when no potential model fits the data sufficiently well or when

the DGP is a simple first-order AR model. QuickNet selects models whose average forecasting

performance lies between that of the two others. Parsimony plays a role since MBE often selects

models with the fewest variables of the available alternatives. The purely nonparametric model

generates relatively accurate forecasts for inflation series in differences but is much less successful

in forecasting CPI series in levels or unemployment rates (for the latter the results are not shown).

The performance of the models may also vary as a function of the forecasting horizon.

All three techniques often produce models that yield some very erroneous or ’insane’ forecasts,

which makes filtering them necessary. The two insanity filters considered in this paper perform

almost equally well, although the AR filter may have a slight edge over the filter that Swanson and

White (1995) introduced. Multicollinearity is the main reason for insane forecasts, and it might

be a good idea to develop all three modelling strategies further in order to reduce the probability

of the outcomes in which the final model contains very strongly linearly correlated variables.

Another finding is that that testing linearity before variable selection (results not reported

here) does not help in choosing useful models. It may do so for certain countries and variables

but may lead to weakened forecasting performance in some others. For this reason it cannot be

recommended as a part of any of the three modelling strategies under consideration.
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Forecasts are generated using both the recursive and the direct method. Overall, direct fore-

casting is somewhat superior to the recursive technique, but it does not dominate the latter. The

results vary from one country and variable to the other. This is also true in comparing the accu-

racy of recursive and direct forecasts just from linear AR models: on average direct forecasts are

more accurate than the recursive ones.

When it comes to choosing between models based on first differences of the series and ones

specified and estimated using levels it turns out that in forecasting the CPI, models built on levels

tend to generate more accurate forecasts on average than the corresponding models constructed

using first differences. It is not clear why that is the case. In forecasting unemployment rates

(results not shown) the outcome is less clear: the models based on levels cannot be viewed as

superior to models built on first differences.

A general conclusion is that the ANN model can be useful in macroeconomic forecasting but

that the linear AR model is a serious competitor. In practice, the forecaster may experiment with

several models and methods before settling for one, if the final goal is to find a model with the

best performance for a given country and variable. Another possibility left for further work would

be to combine recursive and direct forecasts obtained with various linear AR and ANN models.

Finally, the purpose of this work has not been to compare the forecasting performance of

different nonlinear models. Doing so in a satisfactory fashion would require a vast amount of

computational and human resources. It would also shift the focus away from our main aim:

comparing different modelling techniques for the single-hidden layer ANN model made possible

by the work of White (2006), and has therefore not been attempted here.
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