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Abstract

In the aftermath of the global financial crisis and on-going COVID-19, investors face challenges in
understanding price dynamics across assets. In this paper, we explore the applicability of a large
scale comparison of machine learning algorithms (MLA) to predict mid-price movement for bitcoin
futures prices. We use high-frequency intra-day data to evaluate the relative forecasting perfor-
mances across various time-frequencies, ranging between 5-minutes and 60-minutes. The empirical
analysis is based on six different specifications of MLA methods during periods of pandemic. The
empirical results show that MLA outperforms the random walk and ARIMA forecasts in Bitcoin
futures markets, which may have important implications in the decision-making process of pre-
dictability.

Keywords: Cryptocurrency; Bitcoin Futures, Machine Learning; Covid-19; k-Nearest Neighbors;
Logistic Regression; Naive Bayes; Random Forest; Support Vector Machine; Extreme Gradient
Boosting

1. Introduction

In this research, we use high frequency Bitcoin pricing data, and by using machine learning
algorithms, we attempt to predict mid price movement for bitcoin futures price series across a
variety of time-frequencies, ranging between 5-minutes and 60-minutes. The novelty of our research
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surrounds the use of all available Bitcoin futures series from the Chicago Mercantile Exchange
(CME). The CME had offered the product as a mechanism to ‘hedge Bitcoin exposure or harness
its performance with futures and options on futures’, both of which have been markets presenting
tremendous growth since their introduction [Akyildirim et al., 2020, Corbet et al., 2018a,b]. While
liquidity proved to be a substantial issue for some long-ranged futures such as those 6-months and
7-months into the future, after a number of specification tests, we present results based on the first
5-month futures products1. The contract is found to be quite substantial in size, representing the
ownership of 5 bitcoin, as defined by the CME CF Bitcoin Reference Rate (BRR), quoted in U.S.
dollars and cents per bitcoin. This exposure to Bitcoin is based on a leverage rate of 43%, therefore
the investment outlay is below that of the face-value of 5 BTC. The minimum price fluctuation
is $5.00 per bitcoin, where calendar spreads are $1.00 per bitcoin. Monthly contracts are listed
for six consecutive months and two additional December contract months2. The decision for the
CME to provide Bitcoin futures on 10 December 2017 was viewed as a significant milestone in the
development of such a relatively young financial product, where to this point, few major exchanges,
underpinning with such reputation and historic experience had considered similar responses. The
launch of CME Bitcoin futures was viewed as the first step in the new cryptocurrency’s path
toward legitimacy, hoping to entice institutional investors who had been, until late 2017, had been
unwilling to enter the market for a variety of issues. In late 2020, CME futures possessed over $1
billion in open interest, representing the significant growth of the market over a very short amount
of time. The use of settlement pricing from multiple sources was initially identified as a strong
beneficial characteristic, particularly with the many problems pertaining to cyber-criminality and
illicit behaviour across exchanges and directly through product development and creation, whether
designed explicitly [Corbet and Cumming, 2020], or implicitly [Akyildirim et al., 2020] that have
been present in recent years. Each of these steps had provided additional evidence of a developing
and maturing product, to which we must examine as to whether predictability, as identified across a
number of other spot currency markets can also be identified through similar futures market prices
[Akyildirim et al., 2020].

Evidence supporting the predictability of Bitcoin futures prices through the use of machine
learning would not explicitly be a unique characteristic to cryptocurrency markets, as it has been
previous identified across several assets such as foreign exchange markets [Plakandaras et al., 2015]
and a number of other asset markets [Akyildirim et al., 2020], it is essential to note that it is contrary
to the efficient markets hypotheses, where prices should follow a martingale process. However,
such a result could present another evidence supporting the developing growth of operational and
technical efficiency that has been observed in such markets in recent years. Such markets have grown

1Such a decision was made for the brevity of presentation, although further estimates and variations of time-
frequency of analysis are available on request

2As per the CME, Trading terminates at 4:00 p.m. London time on the last Friday of the contract month. If this
is not both a London and U.S. business day, trading terminates on the prior London and the U.S. business day.
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to such an international status, that substantial amounts of research have identified the usage of
cryptocurrency markets as a hedging mechanism against the significant financial market pressures
and contagion effects that were associated with the development and broad confusion associated
with the COVID-19 pandemic, with emphasis on contagion effects [Akhtaruzzaman et al., 2020,
Corbet et al., 2020, 2021, Mensi et al., 2020], asset price discovery [Corbet et al., 2020], safe haven
effects [Conlon et al., 2020], hedge fund performance [Yarovaya et al., 2020], sentiment [Corbet
et al., 2020], political risk [Sharif et al., 2020], and the basis of future research focus [Goodell,
2020]. As Bitcoin futures market development was observed to be a significant milestone in the
transition of not only Bitcoin in isolation, but cryptocurrency as a broad financial product, it is
important to specifically understand whether there exist differentials of behaviour in comparison to
traditional financial market assets.

We contribute to the literature by evaluating the application of high frequency bitcoin future
prices using six machine learning algorithms during to the outbreak of COVID-19. We attempt to
forecast the mid-point movement of CME Bitcoin futures pricing across multiple futures products
during COVID-19 where we use the sign prediction rate or accuracy rate which is calculated as
the proportion of times the related methodology correctly predicts the next time mid-price return
direction. If the underlying process were fully random then the correct sign prediction ratio would
be 50%, where any accuracy rate greater than 50% would indicates the ability of the algorithm to
beat the market, further supported with the use of optimal profit ratios to measure the performance
of the related classification algorithm. Furthermore, we report most of the methods provide close
results to each other, the best performing model which is the support vector machine yields on
average out-sample success rates of around 56%. Another important point to note is that while the
maximum value of accuracy one can obtain with the ARIMA model is only 56% among all cases
considered, this number even increases up to 71% for the support vector machine algorithm. This
indicates that COVID-19 may become a new source of suitability of machine learning algorithms.
Further evidence suggests that such predictability increases in magnitude as we focus on futures
with larger maturities, particularly those of 4- and 5-month duration. Such evidence indicates that
Bitcoin futures products present evidence of sign predictability using machine learning.

The paper is structured as follows: previous research that guides our selected theoretical and
methodological approaches are summarised in Section 2. Section 3 presents a thorough explanation
of the wide variety of data used in our analyses, while Section 4 presents a concise overview of the
methodologies utilised. Section 5 presents a concise overview of the results and their relevance for
policy-makers and regulatory authorities, while Section 6 concludes.

2. Previous Literature

This research develops upon three key areas of research. The first is built on the development
of machine learning and the inherent processes contained therein. The second is based on the
development of cryptocurrencies with an emphasis on futures pricing behaviour, while finally, the
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third area through which we develop our work is based on a number of pieces that have examined
the predictability of cryptocurrency spot prices. Primarily, machine learning has been used across
a variety of areas such as that of stock markets [Wittkemper and Steiner, 1996, Ntakaris et al.,
2018, Sirignano, 2019, Huck, 2019, Sirignano and Cont, 2019, Huang and Liu, 2020, Philip, 2020];
currency markets during crises [El Shazly and El Shazly, 1999, Zimmermann et al., 2001, Auld
and Linton, 2019]; energy markets such as West Texas Intermediate [Chai et al., 2018], crude oil
markets [Fan et al., 2016], Cushing oil and gasoline markets [Wang et al., 2018], gold markets [Chen
et al., 2020]; gas markets [Ftiti et al., 2020], agricultural futures [Fang et al., 2020]; copper markets
[Sánchez Lasheras et al., 2015]; and coal markets [Matyjaszek et al., 2019, Alameer et al., 2020];
cryptocurrency spot markets [Akyildirim et al., 2020, Chowdhury et al., 2020, Chen et al., 2021]
options markets [Lajbcygier, 2004, De Spiegeleer et al., 2018]; and futures markets [Kim et al.,
2020].

Our work further develops on that based on the use of neural networks for forecasting purposes,
through which a concise synthesis of the earlier literature is provided by Zhang et al. [1998]. Ghod-
dusi et al. [2019] presented a critical review of the literature based on the application of machine
learning, suggesting that Support Vector Machine (SVM), Artificial Neural Network (ANN), and
Genetic Algorithms (GAs) are among the most popular techniques used to focus on energy markets.
Nakano et al. [2018] previously investigated Bitcoin intraday technical trading based on artificial
neural networks for the return prediction, through which Akyildirim et al. [2020] further developed
by examining the predictability of the most liquid twelve cryptocurrencies are analyzed at the daily
and minute level frequencies. The authors found that machine learning classification algorithms
reach about 55–65% predictive accuracy on average at the daily or minute level frequencies, while
the support vector machines demonstrate the best and consistent results in terms of predictive accu-
racy compared to the logistic regression, artificial neural networks and random forest classification
algorithms. Saad et al. [2020] provided evidence of prediction accuracy of up to 99% for Bitcoin
and Ethereum prices. Whereas Hubáček et al. [2019] introduced a forecasting system designed
to profit from sports-betting market specifically developing their work through the application of
convolutional neural networks for match outcome prediction.

Previous research on cryptocurrency futures has been quite extensive to date. An extensive
overview of the key areas of research was presented by Corbet et al. [2019], through which ar-
eas surrounding market efficiency, the development of futures exchanges and illicit behaviour are
outlined. Akyildirim et al. [2020] utilised a high-frequency analysis to show significant pricing ef-
fects sourced from both fraudulent and regulatory unease within the industry, verifying that CME
Bitcoin futures dominate price discovery relative to spot markets. Alexander et al. [2020] found
similar evidence when considering the role that BitMEX derivatives played when similarly infor-
mationally leading spot markets. Corbet et al. [2020] found further evidence of Bitcoin market
maturity through significant response to macroeconomic news, while, Koutmos [2020] found that
interest rates and implied stock market and foreign exchange market volatilities are important de-
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terminants of Bitcoin returns. de la Horra et al. [2019] analysed the demand for Bitcoin in order to
determine whether it stems from Bitcoin’s utility as a medium of exchange, a speculative asset, or
as a safe-haven commodity, finding that the asset is highly speculative in the short-run. Giudici and
Polinesi [2019] primarily identified that Bitcoin exchange prices are positively related to each other
and large exchanges Bitstamp, drive the prices. Such destabilising effects of fraud and regulatory
events had also been identified by Akyildirim et al. [2020], Corbet et al. [2020], Katsiampa et al.
[2019a,b] and Hu et al. [2020].

While specifically forecasting Bitcoin spot prices, using neuro-fuzzy techniques, Atsalakis et al.
[2019] estimated that their selected PATSOS methodological structure performed 71% than buy-
and-hold strategies. Similarly, Faghih Mohammadi Jalali and Heidari [2020] found that through the
use of a first order grey model (GM (1,1)), Bitcoin’s price could be predicted accurately, to the extent
of a confidence level of approximately 98% through the selection of specific time periods. Alonso-
Monsalve et al. [2020] found that Convolutional LSTM neural networks outperformed all the rest
significantly, while CNN neural networks were also able to provide satisfactory results. specially in
the Bitcoin, Ether and Litecoin cryptocurrencies. Further, Ma et al. [2020] found that the proposed
novel MRS-MIDAS model exhibits statistically significant improvement for forecasting the RV of
Bitcoin Between 2011 and 2018, Adcock and Gradojevic [2019] found that backpropagation neural
networks dominate various competing models in terms of their forecast accuracy. Further, when
attempting to predict Bitcoin bubble crashes, Shu and Zhu [2020] showed that an LPPLS confidence
indicator presented superior detection capability to bubbles and accurately forecast the bubble
crashes, even if a bubble existed for only a short period time. Such work built on that of the same
structure of Samitas et al. [2020], who found that the effectiveness of machine learning reached
98.8% as an early warning system to predict the financial crisis. Zoumpekas et al. [2020] found that
Convolutional Neural Network and four types of Recurrent Neural Network including the Long Short
Term Memory network, the Stacked Long Short Term Memory network, the Bidirectional Long
Short Term Memory network, and the Gated Recurrent Unit network could be utilised to predict the
Ethereum closing price in real time with promising accuracy and experimentally proven profitability.
Such results present evidence that prediction of cryptocurrency markets was statistically possible in
direct opposition to that of the efficient markets hypothesis (previously examined in cryptocurrency
markets by Sensoy [2019] and Akyildirim et al. [2020]), but this is not the first market to have
presented such evidence as Plakandaras et al. [2015] had previously identified similar atheoretical
outcomes had been identified on spot foreign exchange markets3.

3The authors present evidence against the efficient markets hypotheses based on the spot markets for EUR/USD,
USD/JPY, AUD/NOK, NZD/BRL and ZAR/PHP.
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3. Data

In this study, we use dollar-denominated Bitcoin futures data from Chicago Mercantile Ex-
change. We obtain the data for 1-month futures up to 9-month futures at minutely level which
have the earliest starting points at different dates. In order to have enough number of observations
to draw meaningful and robust conclusions we use only 1-month to 5-month futures data with
initial date of 2 January 2020 and end date of 10 September 2020. Bitcoin futures can be traded
at any time during the day at CME after 23:00 PM on Sunday till 22:00 PM on Friday (because
of daylight saving time change on March 8, 2020, the trading hours shifted as after 22:00 PM on
Sunday till 21:00 PM on Friday). The time interval that we studied corresponds to 217 trading
days which we sample at 5-, 10-, 15-, 30-, 60-min frequencies. For each time frequency we compute
the mid price from the best ask and bid prices using the last observation in that time interval.
Then we compute the log-returns for each time scale from these mid-prices. Table 1 shows the
total number of observations for the mid-price returns of bitcoin futures at different time scales,
while Figure 1 presents a plot of the 1-month futures price at 5-minute frequency during 2020. For
instance, while there are 4345 observations at the 60-min frequency, this number increases to 51733
at 5-min frequency. Table 2 provides descriptive statistics for mid-price future returns for different
maturities and time scales. As it is clear from the table, mean and median values are always around
zero independent of time to maturity and time frequency. As an expected min, max and standard
deviation values get larger in absolute value as the time to maturity increases.

4. Classification Algorithms

4.1. Machine learning models

We apply six different machine learning algorithms (k-Nearest Neighbors, Logistic Regression,
Naive Bayes, Random Forest, Support Vector Machine, Extreme Gradient Boosting) to classify the
target variable (it refers to the return of mid-price of the bitcoin futures in our study) as “up" or
“down" at varying time frequencies. These methods are selected due to their popularity and fast
implementation, and they are performed with Python’s well-known scikit-learn package. In what
follows, we briefly describe how each of these classification algorithms helps to forecast the sign of
the target variable.

4.1.1. k-Nearest Neighbors Classifier
The k-nearest neighbors algorithm (kNN) is a commonly used, simple yet successful classification

method which has been applied in a large number of classification and regression problems such
as handwritten digits and satellite image scenes. The kNN is a supervised machine learning model
where the model learns from the labeled data how to map the inputs to the desired output so that
it can make predictions on test data. It is a non-parametric algorithm as it does not make any
assumptions about the data, such as normality. The kNN model picks an entry in the database and
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then looks at the ‘k’ entries in the database which are closest to the chosen point. Then, the data
point is assigned the label of the majority of the ‘k’ closest points. For instance, if k = 6 with 4 of
points being as ‘up’ and 2 as ‘down’, the data point in question would be labeled ‘up’ since ‘up’ is
the majority class.

More generally, the kNN algorithm works as follows: For a given value of k, it computes the
distance between the test data and each row of the training data by using a distance metric like
Euclidean metric (some of the other metrics that can also be used are cityblock, Chebychev, cor-
relation, and cosine). The distance values are sorted in ascending order and then top k elements
are extracted from the sorted array. It finds the most frequent class among these k elements and
returns as the predicted class. In our application of kNN, we optimize the algorithm over the k
values from 1 to 20.

4.1.2. Naive Bayes Classifier
The Naive Bayes is another widely used classification algorithm as it is easy to build and

particularly useful for very large data sets. This method is a supervised learning algorithm based
on the application of the Bayes’ theorem, and also called a probabilistic machine learning algorithm.
It makes the “naive" assumption that the input features are conditionally independent of each other
given the classification. If this assumption holds then naive Bayes classifier may perform even better
than more complicated models. However, in real life, most of the time it is not possible to get a set
of predictors which are completely independent.

The naive Bayes classifier assigns observations to the most probable class by first estimating the
densities of the predictors within each class. As a second step, it computes the posterior probabilities
according to Bayes’ rule:

PP̂ (Y = k | X1, ..., XP ) =

π(Y = k)

P∏
j=1

P (Xj | Y = k)

K∑
k=1

π(Y = k)

P∏
j=1

P (Xj | Y = k)

(1)

where Y is the random variable corresponding to the class index of an observation, X1, ..., XP are
the random predictors of an observation, and π(Y = k) is the prior probability that a class index
is k. Finally, it classifies an observation by estimating the posterior probability for each class, and
then assigns the observation to the class yielding the maximum posterior probability.

4.1.3. Logistic Regression Classifier
The Logistic Regression is a machine learning classification algorithm that is used to forecast

the probability of a categorical dependent variable. In logistic regression, the outcome of target
variable is dichotomous (i.e., there are only two possible classes). The classification algorithm
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forecasts the probability of occurrence of a binary event utilizing a logit function. More explicitly,
logistic regression outputs a probability value by using the logistic sigmoid function and then this
probability value is mapped to two discrete classes.

In our case, we have a binary classification problem of identifying the next time excess return as
up or down. Logistic regression assigns probabilities to each row of the features matrix X. Let us
denote the sample size of the dataset with N and thus we have N rows of the input vector. Given
the set of d features, i.e. x = (x1, ..., xd), and parameter vector w, the logistic regression with the
penalty term minimizes the following optimization problem:

min
w,c

wTw

2
+ C

N∑
i=1

log(exp(−yi(xTi w + c)) + 1) (2)

where we find the optimal value of C by making a grid search over a set of reasonable values for C.

4.1.4. Random Forest Classifier
The Random Forest Classifier is an ensemble algorithm such that it combines more than one

algorithm of the same or different kind for classifying objects. Decision trees are the building
blocks of the random forest model. In other words, the random forest consists of a large number
of individual decision trees that function as an ensemble. Random forest classifier creates a set of
decision trees from a randomly selected subset of the training set, and each individual tree makes a
class prediction. It then sums the votes from different decision trees to decide the final class of the
test object. For instance, assume that there are 5 points in our training set that is (x1, x2, ..., x5)

with corresponding labels (y1, y2, ..., y5) then random forest may create four decision trees taking the
input of subset such as (x1, x2, x3, x4), (x1, x2, x3, x5), (x1, x2, x4, x5), (x2, x3, x4, x5). If three of the
decision trees vote for “up" against “down" then random forest predicts “up". This works efficiently
because a single decision tree may produce noise but a large number of relatively uncorrelated trees
operating as a choir will reduce the effect of noise, resulting in more accurate results.

More generally, in the random forest method as proposed by Breiman [2001], a random vector
θk is generated, independent of the past random vectors θ1, ..., θk−1 but with the same distribution;
and a tree is grown using the training set and θk resulting in a classifier h(x, θk) where x is an input
vector. In random selection, θ consists of a number of independent random integers between 1 and
K. The nature and dimension of θ depend on its use in tree construction. After a large number of
trees are generated, they vote for the most popular class. This procedure is called random forest. A
random forest is a classifier consisting of a collection of tree structured classifiers h(x, θk), k = 1, ...

where the θk’s are independent identically distributed random vectors and each tree casts a unit
vote for the most popular class at input x.
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4.1.5. Support Vector Machine Classifier
The Support Vector Machine (SVM) is a supervised machine learning algorithm used for both

regression and classification tasks. The support vector machine algorithm’s objective is to find a
hyperplane in an N -dimensional space where N is the number of features that distinctly classify the
data points. Hyperplanes can be thought of as decision boundaries that classify the data points.
Data points falling on different sides of the hyperplane can be assigned to different classes. Support
vectors are described as the data points that are closer to the hyperplane and influence the position
and orientation of the hyperplane. The margin of the classifier is maximized using these support
vectors. In more technical terms, the above process can be summarized as follows. Given the
training vectors xi for i = 1, 2, ..., N with a sample size of N observations, the support vector
machine classification algorithm solves the following problem given by

min
w,h,ξ

wTw

2
+ C

N∑
i=1

ξi (3)

subject to yi(wTφ(xi)) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N . The dual of the above problem is given
by

min
α

αTQα

2
− eTα (4)

subject to yTα = 0 and 0 ≤ αi ≤ C for i = 1, 2, ..., N , where e is the vector of all ones, C > 0 is the
upper bound. Q is an n by n positive semi-definite matrix. Qij = yiyjK(xi, xj), where K(xi, xj) =

φ(xi)
Tφ(x) is the kernel. Here training vectors are implicitly mapped into higher dimensional space

by the function φ. The decision function in the support vector machines classification is given by

sign

(
N∑
i=1

yiαiK(xi, x) + ρ

)
. (5)

The optimization problem in Equation 3 can be solved globally using the Karush-Kuhn-Tucker
(KKT) conditions. Clearly, this optimization problem depends on the choice of the Kernel functions.
Our study employs the Gaussian (rbf) kernel, which is denoted by exp(−γ‖x− x′‖2) where γ must
be greater than 0. When SVM is implemented, we try to find an optimal value of C and γ for each
stock by using a grid search for each of these parameters.

4.1.6. Extreme Gradient Boosting Classifier
The Extreme Gradient Boosting (XGBoost) is a decision-tree-based ensemble machine learning

algorithm that uses a gradient boosting framework. As we said before, an ensemble method is a
machine learning technique that combines several base models in order to produce one optimal
predictive model. An algorithm is called boosting if it works by adding models on top of each other
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iteratively, the errors of the previous model are corrected by the next predictor until the training
data is accurately predicted or reproduced by the model. A method is called gradient boosting if,
instead of assigning different weights to the classifiers after every iteration, it fits the new model
to new residuals of the previous prediction and then minimizes the loss when adding the latest
prediction. Namely, if a model is updated using gradient descent, then it is called gradient boosting.
XGBoost improves upon the base gradient boosting framework through systems optimization and
algorithmic enhancements. Some of these enhancements can be listed as parallelised tree building,
tree pruning using depth-first approach, cache awareness and out-of-core computing, regularisation
for avoiding over-fitting, efficient handling of missing data, and in-built cross validation capability.

4.2. Calculating the prediction success and potential profitability

Assume that the real label of the target variable is denoted by Y and predicted label is denoted
by Y

′
, we employ the following two measures to assess the usefulness of our selected forecasting

techniques:

• The Sign Prediction Ratio (SPR): Correctly predicted excess return direction is assigned 1

and 0 otherwise, then sign prediction ratio is calculated by

SPR =

∑M
j=1matches(Yj , Y

′
j )

M
, (6)

where

matches(Yj , Y
′
j ) =

{
1 if Yj = Y ′j
0 otherwise

(7)

and M denotes the size of the set for which the sign prediction ratio is measured.

• The Maximum Return is obtained by adding absolute value of all the excess returns (denoted
by h)

MaxReturn =

M∑
j=1

abs(hj) (8)

and represents the maximum achievable return assuming perfect forecast.

• The Total Return is computed in the following way

TotalReturn =

M∑
j=1

sign(Y ′j ) ∗ hj (9)

10



where sign is the standard sign function and ∗ denotes the usual multiplication. Notice that
the better the prediction method, the larger the total return is.

• Ideal Profit Ratio is the ratio of the total return in Eq.(9) and the maximum return in Eq.(8).

IPR =
TotalReturn

MaxReturn
(10)

5. Empirical Results

As explained in Section 3, we sample our data at five different time scales including 5-, 10-, 15-,
30-, 60-min time scales and then implement six different machine learning algorithms that is kNN,
logistic regression, naive Bayes, random forest, SVM, XGBoost which are described in the previous
section. The target variable for all these classification methods is the sign of the mid-price return
of bitcoin futures with different maturities at different frequencies. We consider three different
divisions of the dataset as train and test sets, which are also called the hold-outs. For the first
hold-out, we take 70% of the total sample size rounded to the closest integer value as the training
sample size and the remaining 30% as the test sample size. Similarly, we also look at the 0.8/0.2
and 0.9/0.1 divisions as train/test set partitions.

Table 1 shows the number of observations for the mid-price returns of Bitcoin futures at different
time frequencies for different train/test set divisions. For instance, while there are 51,733 mid-price
returns in total at the 5-minute scale, there are only 4,345 mid-price returns at the 60-minute
scale. 0.7/0.3 hold-out at 5-minute frequency corresponds to 36,213 time intervals in the train set
and 15,520 time intervals in the test set. Similarly, 0.8/0.2 and 0.9/0.1 train vs test set partitions
correspond to 41,386/10,347 and 46,559/5,174 five-minute time intervals, respectively. Table 2
presents the descriptive statistics for mid-price returns of Bitcoin futures at different time scales
with different maturities. As it is clear from the Table 2, both mean and median values are almost
zero across different maturities and time frequencies. Minimum (maximum) values of the returns
are getting smaller (larger) as the time to maturity increases across all the time scales. However,
minimum and maximum values do not change significantly from one time scale to another within
the same Bitcoin future (except the 1-month futures). As expected, standard deviations increase
both with time to maturity and time-frequency within the same futures.

As we described in the previous section, we employ two key metrics to measure the performance
of the different machine learning algorithms. First of all, we use the sign prediction rate or accuracy
rate calculated as the proportion of times the related methodology correctly predicts the next
time mid-price return direction. If the underlying process were fully random then the correct
sign prediction ratio would be 50%. However, in our case, it is important to note that we use
the information contained only in the Bitcoin futures. In other words, we do not use any other
information source which can also be challenging to determine as they are many different parameters
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affecting Bitcoin prices. Hence any accuracy rate greater than 50% already indicates the success of
the algorithm to beat the market. In addition to the sign prediction ratio, we also apply the ideal
profit ratio to measure the performance of the related classification algorithm. As it is formalized
in Section 4, the ideal profit ratio is the ratio of the return generated by a given algorithm to the
perfect sign forecast.

Table 3-8 present the accuracy rates for the train (in-sample) and test (out-sample) periods in
the first two columns for Bitcoin futures with maturities from 1-month to 5-month at different time
scales. Similarly, ideal profit ratios are given in the following column for out of the sample period.
Mean value ( together with t-stat) , standard deviation, maximum, and minimum of each column
across different maturities and time frequencies are given below the tables. Table 3 provides results
for the kNN algorithm which are computed by optimizing over neighborhood numbers from 1 to 20.
The kNN methodology yields an average out-of-sample (in-sample) success ratio of 55% (77%) for
the first hold-out, 55% (75%) for the second hold-out, and 56% (75%) for the third hold-out. The
maximum average ideal profit ratio is computed around 6% for the 0.9/0.1 division of the data set.
The kNN methodology yields the highest in-sample accuracy results after a random forest algorithm
with a maximum value reaching as high as %94 for 5-month futures at 5-min frequency. Similarly,
the maximum value for the out-of-sample success rate (66%) is attained by month futures at 15-min
frequency. It is also possible to observe that it is almost always the case that as the time-frequency
decreases, the accuracy rate increases for the same maturity futures under the kNN method. It is
also evident from Table 3 that for most of the cases, it is possible to obtain a positive ideal profit
ratio with a maximum value of 23 % in the first hold-out (27% for the second hold-out, 31% for
the third hold-out) with 3-months futures at 60 minutes frequency.

Table 4 provides the results for the logistic regression algorithm, which is based on a linear
classification. We observe that this method yields relatively stable results across different maturities
and time scales. For instance, the average success rate for both in the sample and out-sample periods
is almost always 54% for three different hold-outs. The same is also true for the min (51%) and
max (57%) values for different cases. Again one can observe that for most of the cases it is possible
to attain a positive ideal profit ratio with this prediction method. Although the average values of
the ideal profit ratios are not quite high, the maximum value of them (29% for 0.7/0.3 division,
32% for 0.8/0.2 division, 35% for 0.9/0.1 division) can be considered satisfactory. Table 5 shows
the results for Naïve Bayes classification which is the worst performing one among the six different
methodologies. The in-sample success ratios are almost always indistinguishable from 50% which is
nothing but the result coming from a random walk. Although the max accuracy rate can reach even
up to 60% for 1-month futures at 5 minutes frequency for the first hold-out, the average accuracy
rate is only 45% across the different cases. This result also holds true for 0.8/0.2 and 0.9/0.1
divisions. We also have similar results for the ideal profit ratios. We receive average negative ideal
profit ratio only for the Naïve Bayes algorithm.

As can be noted in Table 6, the in-sample fits of the random forest algorithm are the highest
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among all the machine learning algorithms considered. The highest average in-sample success rate
can even reach up to 87% for the first hold-out, 83% for the second hold-out, and 87% for the third
hold-out. However, the out-of-sample average performance is significantly lower than the in-sample
fits. This designates the high variance in the random forest classification with high in sample fit to
the noisy data but lower out-of-sample performance. For all of the divisions of data, the average
success rate is around 56% with a maximum value of 67%, which is attained for 5-months futures
at 5- minutes frequency. It is also observed that except in a few cases, one can gain positive ideal
profit ratios with a maximum value of 36% for 3-month futures at a 60-min time scale.

When we apply a nonlinear classification method by choosing radial kernel in the support vector
machine, Table 7 shows the best out-of-sample forecasting results across different maturities and
frequencies. A maximum value of 61% is obtained for the first division, 64% for the second division,
and 71% for the third division. The average out-sample success rate is stable, around 56% for
different hold-outs. The results are also similar for the ideal profit ratios. It is evident from the
results given in Table 8 that XGBoost method provides very close results to the kNN algorithm
but with a lower level of average in-sample fits. The average out-sample fit accuracy is around 55%
for different hold-outs.

As a benchmark for our models, we also utilize the classical ARIMA model to predict the next
time return direction of the mid-price. At first sight, one can argue that most of the methods
provide close results to each other and the ARIMA model. For instance, while the average of the
out-sample success rates is around 56% for the support vector machine, it is also around 52% for the
ARIMA model, where results are presented in Table 9. For a small sized sample, 1% of difference
may not mean significant difference in terms of the robustness of the method. However, in our case
of a large sample, on average only 1% of increase in the success rate of 5-minute frequency (0.7/0.1
hold-out) means 1,552 more correct prediction of the target variable. In our case, 4% of difference
corresponds to 6,208 more accurate predictions of the target variable at 5 minutes level, which is
not a negligible number. We also have similar results for the other frequencies. Another critical
point to note is that the maximum value of accuracy one can obtain with the ARIMA model is only
56% among all cases considered. However, this number even increases up to 71% for the support
vector machine algorithm.

6. Conclusion

We examine the forecast performance of the midpoint movement of CME Bitcoin futures prices
ranging from 2nd January 2020 to 10th September 2020 across a variety of time-frequencies, varying
between 5-minutes and 60-minutes, by utilizing various machine learning algorithms (MLA). The
core objective of this work is to evaluate whether the more advanced MLAs are able to outperform a
simple parsimonious framework during periods of turmoil. To compare the forecast accuracy of the
employed MLA frameworks, we utilize ARIMA model as a benchmark for our models. Furthermore,
we utilize the sign prediction rate or accuracy rate and ideal profit ratio to evaluate the forecasting
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accuracy of the employed frameworks. In addition, we evaluate the robustness of our obtained
estimates by varying the train and test (hold-out) sample.

Our empirical analysis is as follows. Firstly, our findings indicate that the k-nearest neighbor
(kNN) approach and the random forest algorithm yields the highest in- and out-of-sample accuracy
rate at varying frequencies. Among these MLAs, the random forest algorithm provides the highest
in-sample success rate that can reach up to 87% for the 0.3 hold-out sample, 83% for the 0.s hold-
out sample, and 87% for the 0.1 hold-out sample. However, the out-of-sample average performance
is significantly lower than the in-sample fits, designated to the high variance in the random forest
classification with high in-sample fit to the noisy data but lower out-of-sample performance. The
average out-of-sample performance of the random forest algorithm provides an accuracy rate of
around 56%. Secondly, the logistic regression algorithm, the Naïve Bayes classification approach,
the nonlinear classification approach, and the XGBoost algorithm yields a relatively stable results
across different maturities with an average out-of-sample accuracy rate of 54%, 45%, 56%, and
55%, respectively. Thirdly, the benchmark model (ARIMA) provides an average out-of-sample
accuracy rate of around 52%. In general, our findings indicate that most of the MLA significantly
outperforms a simple parsimonious model, both in- and out-of-sample forecasting accuracy. This
highlights the importance and relevancy of MLAs to forecast bitcoin futures prices during periods
of turmoil.
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Figure 1: 1-month futures mid-price at 5-minute frequency

Note: The above figure presents a plot of the 1-month futures price at 5-minute frequency during 2020

Table 1: Number of observations for the mid price returns of bitcoin futures at different time scales for different
train/test set divisions

5-min 10-min 15-min 30-min 60-min
total 51,733 25,885 17,269 8,653 4,345

0.7/0.3 train 36,213 18,119 12,088 6,057 3,041
test 15,520 7,766 5,181 2,596 1,304

0.8/0.2 train 41,386 20,708 13,815 6,922 3,476
test 10,347 5,177 3,454 1,731 869

0.9/0.1 train 46,559 23,296 15,542 7,787 3,910
test 5,174 2,589 1,727 866 435

Note: We use 1-month through 5-month CME Bitcoin futures data with initial date of 2 January 2020 and end date of 10
September 2020. Bitcoin futures can be traded at any time during day at CME after 23:00 PM on Sunday till 22:00 PM on
Friday (due to daylight saving time change on March 8, 2020, the trading hours shifted as after 22:00 PM on Sunday till
21:00 PM on Friday). Results based on a variety of other time frequencies and other Bitcoin futures markets are available
from the authors upon request and have been omitted from the above table due to brevity of presentation.
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Table 2: Descriptive Statistics for mid price future returns for different maturities and time scales

1-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000084
Median 0.00 0.00 0.00 0.00 0.00
Min -0.13 -0.13 -0.15 -0.19 -0.22
Max 0.12 0.14 0.13 0.15 0.12
Std.Dev. 0.003 0.005 0.006 0.008 0.011
2-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000043 0.000085
Median 0.00 0.00 0.00 0.00 0.00
Min -0.41 -0.41 -0.41 -0.41 -0.41
Max 0.40 0.41 0.41 0.42 0.42
Std.Dev. 0.005 0.007 0.008 0.012 0.016
3-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000084
Median 0.00 0.00 0.00 0.00 0.00
Min -0.40 -0.40 -0.40 -0.40 -0.40
Max 0.41 0.41 0.41 0.41 0.41
Std.Dev. 0.007 0.010 0.012 0.017 0.024
4-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000006 0.000013 0.000019 0.000038 0.000076
Median 0.00 0.00 0.00 0.00 0.00
Min -0.61 -0.61 -0.60 -0.61 -0.61
Max 0.60 0.60 0.60 0.60 0.60
Std.Dev. 0.010 0.014 0.017 0.023 0.033
5-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000083
Median 0.00 0.00 0.00 0.00 0.00
Min -0.69 -0.69 -0.69 -0.70 -0.72
Max 0.79 0.79 0.74 0.74 0.77
Std.Dev. 0.018 0.024 0.028 0.038 0.054

Note: We use 1-month through 5-month CME Bitcoin futures data with initial date of 2 January 2020 and end date of 10
September 2020. Bitcoin futures can be traded at any time during day at CME after 23:00 PM on Sunday till 22:00 PM on
Friday (due to daylight saving time change on March 8, 2020, the trading hours shifted as after 22:00 PM on Sunday till
21:00 PM on Friday). Results based on a variety of other time frequencies and other Bitcoin futures markets are available
from the authors upon request and have been omitted from the above table due to brevity of presentation.
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Table 3: KNN classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the static
analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.86 0.56 -0.002 0.86 0.55 0.009 0.86 0.54 0.033
10-min 0.83 0.54 0.004 0.83 0.55 0.024 0.69 0.56 0.091
15-min 0.81 0.54 -0.004 0.82 0.53 0.016 0.66 0.54 0.100
30-min 0.66 0.54 0.074 0.66 0.54 0.022 0.62 0.57 0.090
60-min 0.62 0.53 0.065 0.62 0.53 0.083 0.64 0.52 0.032

2-month future

5-min 0.84 0.55 0.000 0.85 0.54 -0.002 0.85 0.54 0.020
10-min 0.81 0.55 0.028 0.82 0.55 0.034 0.72 0.56 0.084
15-min 0.79 0.54 -0.006 0.68 0.53 0.041 0.71 0.54 0.038
30-min 0.64 0.55 0.107 0.69 0.54 0.040 0.61 0.55 0.147
60-min 0.61 0.53 0.051 0.60 0.55 0.115 1.00 0.52 0.083

3-month future

5-min 0.84 0.55 -0.030 0.85 0.54 -0.016 0.84 0.54 -0.080
10-min 0.81 0.54 0.043 0.81 0.54 0.063 0.72 0.55 0.101
15-min 0.80 0.54 0.021 0.62 0.54 0.101 0.66 0.55 0.222
30-min 0.63 0.55 0.168 0.63 0.55 0.177 0.63 0.55 0.295
60-min 0.61 0.53 0.231 0.60 0.54 0.279 0.62 0.53 0.311

4-month future

5-min 0.84 0.56 -0.109 0.85 0.56 -0.114 0.85 0.55 0.017
10-min 0.82 0.54 0.003 0.83 0.54 0.018 0.82 0.55 -0.264
15-min 0.80 0.54 -0.181 0.66 0.54 -0.256 0.66 0.56 -0.251
30-min 0.60 0.54 -0.252 0.66 0.54 -0.318 0.71 0.53 0.030
60-min 0.60 0.55 -0.056 0.61 0.53 -0.070 0.61 0.52 0.072

5-month future

5-min 0.94 0.61 0.026 0.94 0.61 0.038 0.93 0.64 0.032
10-min 0.93 0.61 -0.008 0.93 0.61 -0.002 0.92 0.65 -0.056
15-min 0.91 0.60 0.012 0.79 0.61 0.001 0.91 0.66 0.146
30-min 0.79 0.60 0.116 0.78 0.60 -0.013 0.69 0.65 0.177
60-min 0.90 0.57 0.029 0.66 0.57 -0.053 0.89 0.65 0.045

mean 0.77*** 0.55*** 0.01 0.75*** 0.55*** 0.01 0.75*** 0.56*** 0.06
t-stat 11.96 11.36 11.28 10.44 10.56 7.28
std 0.11 0.02 0.10 0.11 0.03 0.12 0.12 0.05 0.13
max 0.94 0.61 0.23 0.94 0.61 0.28 1.00 0.66 0.31
min 0.60 0.53 -0.25 0.60 0.53 -0.32 0.61 0.52 -0.26

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 4: Logistic Regression: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the static
analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.54 0.54 0.038 0.54 0.54 0.065 0.54 0.55 0.087
10-min 0.53 0.52 -0.013 0.53 0.53 0.018 0.53 0.53 0.017
15-min 0.54 0.53 0.019 0.54 0.53 0.040 0.54 0.53 0.018
30-min 0.56 0.55 0.056 0.56 0.55 0.092 0.55 0.55 0.064
60-min 0.54 0.56 0.061 0.53 0.56 0.066 0.54 0.55 0.050

2-month future

5-min 0.54 0.54 0.064 0.54 0.55 0.069 0.54 0.55 0.093
10-min 0.54 0.52 0.012 0.53 0.53 0.017 0.54 0.53 0.027
15-min 0.54 0.53 0.035 0.52 0.52 0.061 0.52 0.51 0.027
30-min 0.55 0.55 0.048 0.55 0.54 0.082 0.55 0.54 0.035
60-min 0.55 0.55 0.109 0.55 0.55 0.088 0.55 0.54 0.088

3-month future

5-min 0.54 0.54 0.081 0.54 0.55 0.092 0.54 0.56 0.093
10-min 0.54 0.52 0.068 0.53 0.53 0.087 0.51 0.51 0.030
15-min 0.55 0.54 0.151 0.54 0.54 0.176 0.52 0.51 0.004
30-min 0.56 0.56 0.163 0.56 0.55 0.173 0.55 0.54 -0.240
60-min 0.54 0.56 0.291 0.54 0.57 0.319 0.55 0.56 0.349

4-month future

5-min 0.54 0.52 0.011 0.54 0.53 0.020 0.53 0.53 -0.105
10-min 0.54 0.51 -0.067 0.53 0.52 -0.059 0.53 0.53 0.004
15-min 0.54 0.52 -0.055 0.51 0.51 0.049 0.51 0.50 0.000
30-min 0.56 0.55 0.045 0.55 0.54 0.151 0.55 0.53 0.188
60-min 0.55 0.56 0.181 0.55 0.57 0.194 0.54 0.55 0.065

5-month future

5-min 0.53 0.53 -0.070 0.53 0.53 -0.068 0.53 0.53 0.023
10-min 0.52 0.51 -0.167 0.52 0.52 -0.160 0.53 0.51 0.090
15-min 0.54 0.53 -0.066 0.54 0.53 -0.072 0.54 0.50 0.145
30-min 0.55 0.56 0.028 0.56 0.54 0.020 0.56 0.54 -0.119
60-min 0.51 0.57 -0.011 0.53 0.55 -0.008 0.53 0.53 0.035

mean 0.54*** 0.54*** 0.04 0.54*** 0.54*** 0.06 0.54*** 0.53*** 0.04
t-stat 19.52 11.07 15.62 12.21 13.66 9.46
std 0.01 0.02 0.09 0.01 0.02 0.10 0.01 0.02 0.11
max 0.56 0.57 0.29 0.56 0.57 0.32 0.56 0.56 0.35
min 0.51 0.51 -0.17 0.51 0.51 -0.16 0.51 0.50 -0.24

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 5: Naive Bayes Classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the
static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.51 0.60 0.015 0.51 0.57 0.024 0.51 0.58 0.045
10-min 0.50 0.43 0.001 0.50 0.45 -0.007 0.50 0.44 -0.031
15-min 0.50 0.45 0.008 0.50 0.46 0.005 0.50 0.45 -0.031
30-min 0.51 0.47 0.020 0.51 0.47 0.022 0.51 0.46 -0.040
60-min 0.51 0.54 -0.011 0.51 0.52 -0.010 0.52 0.53 0.069

2-month future

5-min 0.50 0.41 0.014 0.50 0.44 0.009 0.50 0.43 -0.006
10-min 0.50 0.44 0.009 0.50 0.46 0.002 0.50 0.45 -0.038
15-min 0.50 0.46 0.014 0.50 0.47 0.007 0.50 0.46 -0.042
30-min 0.51 0.47 0.015 0.51 0.48 0.016 0.51 0.47 -0.050
60-min 0.51 0.48 0.051 0.51 0.49 0.014 0.50 0.48 -0.081

3-month future

5-min 0.50 0.42 0.022 0.53 0.56 0.070 0.52 0.57 0.005
10-min 0.50 0.45 0.026 0.50 0.46 0.017 0.50 0.45 -0.044
15-min 0.51 0.46 0.032 0.50 0.47 0.022 0.50 0.46 -0.041
30-min 0.51 0.48 0.037 0.51 0.48 0.038 0.51 0.47 -0.042
60-min 0.52 0.50 0.359 0.52 0.53 0.402 0.51 0.47 0.262

4-month future

5-min 0.50 0.41 0.002 0.50 0.44 0.014 0.50 0.42 -0.005
10-min 0.50 0.44 -0.001 0.50 0.45 -0.006 0.50 0.44 -0.029
15-min 0.51 0.46 -0.076 0.51 0.47 -0.095 0.51 0.45 -0.032
30-min 0.51 0.47 -0.096 0.51 0.47 -0.123 0.51 0.46 -0.027
60-min 0.53 0.54 0.257 0.53 0.54 0.289 0.51 0.49 -0.187

5-month future

5-min 0.51 0.33 -0.045 0.51 0.36 -0.049 0.50 0.30 -0.057
10-min 0.51 0.37 -0.042 0.51 0.38 -0.046 0.51 0.31 0.004
15-min 0.51 0.38 -0.042 0.51 0.39 -0.047 0.51 0.32 -0.032
30-min 0.52 0.41 -0.058 0.52 0.41 -0.067 0.52 0.34 -0.088
60-min 0.52 0.43 -0.094 0.52 0.43 -0.116 0.52 0.34 -0.061

mean 0.51*** 0.45*** 0.02 0.51*** 0.47*** 0.02 0.51*** 0.44*** -0.02
t-stat 5.67 -4.43 5.06 -3.34 5.94 -4.03
std 0.01 0.06 0.10 0.01 0.05 0.11 0.01 0.07 0.08
max 0.53 0.60 0.36 0.53 0.57 0.40 0.52 0.58 0.26
min 0.50 0.33 -0.10 0.50 0.36 -0.12 0.50 0.30 -0.19

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 6: Random Forest (RF) classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations
for the static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-frequency in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month futures

5-min 0.98 0.55 -0.002 0.98 0.54 0.004 0.99 0.53 0.030
10-min 0.99 0.54 0.031 0.99 0.54 0.060 0.99 0.53 0.065
15-min 0.98 0.54 0.026 0.71 0.55 0.052 0.70 0.54 0.049
30-min 0.74 0.55 0.053 0.73 0.56 0.066 0.73 0.56 0.062
60-min 0.84 0.54 0.062 0.80 0.55 0.042 0.79 0.54 0.034

2-month futures

5-min 0.69 0.55 0.091 0.69 0.55 0.069 0.68 0.54 0.087
10-min 0.98 0.54 0.025 0.99 0.54 0.024 0.98 0.53 0.018
15-min 0.68 0.53 0.037 0.72 0.53 0.053 0.71 0.53 0.054
30-min 0.73 0.56 0.089 0.69 0.55 0.078 0.69 0.56 0.109
60-min 0.82 0.53 0.069 0.80 0.54 0.096 0.79 0.52 0.056

3-month futures

5-min 0.68 0.55 0.141 0.68 0.54 0.165 0.99 0.54 -0.066
10-min 0.98 0.54 0.120 0.71 0.53 0.215 0.68 0.53 0.208
15-min 0.72 0.54 0.166 0.70 0.55 0.214 0.69 0.55 0.101
30-min 0.73 0.55 0.137 0.71 0.56 0.142 0.71 0.55 0.049
60-min 0.77 0.55 0.291 0.82 0.58 0.299 0.79 0.56 0.362

4-month futures

5-min 0.98 0.55 -0.157 0.98 0.54 -0.138 0.99 0.53 -0.128
10-min 0.98 0.53 -0.006 0.98 0.53 0.013 1.00 0.53 -0.090
15-min 1.00 0.54 -0.201 0.73 0.54 -0.126 0.71 0.54 -0.268
30-min 0.74 0.54 -0.057 0.70 0.55 -0.062 0.69 0.55 0.054
60-min 0.80 0.56 0.135 0.79 0.56 -0.071 0.78 0.54 0.055

5-month futures

5-min 0.99 0.62 0.042 0.98 0.62 0.061 0.98 0.67 0.100
10-min 0.99 0.60 0.051 1.00 0.61 0.130 0.99 0.66 0.051
15-min 0.99 0.60 0.130 0.99 0.61 0.013 0.99 0.67 0.174
30-min 0.99 0.60 -0.022 1.00 0.61 0.009 1.00 0.66 0.144
60-min 1.00 0.56 0.017 0.99 0.58 0.017 1.00 0.63 -0.006

mean 0.87*** 0.55*** 0.05 0.83*** 0.56*** 0.06 0.84*** 0.56*** 0.05
t-test 14.38 11.25 12.57 10.42 12.27 6.59
std 0.13 0.02 0.10 0.13 0.03 0.10 0.14 0.05 0.12
max 1.00 0.62 0.29 1.00 0.62 0.30 1.00 0.67 0.36
min 0.68 0.53 -0.20 0.68 0.53 -0.14 0.68 0.52 -0.27

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 7: Support Vector Machine (SVM) classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test
combinations for the static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.53 0.59 0.020 0.52 0.57 0.026 0.52 0.58 0.049
10-min 0.52 0.57 -0.023 0.53 0.56 -0.004 0.53 0.55 0.019
15-min 0.55 0.57 0.023 0.54 0.57 0.028 0.54 0.57 0.136
30-min 0.57 0.57 0.065 0.57 0.56 0.072 0.57 0.56 0.100
60-min 0.56 0.56 0.021 0.56 0.55 0.004 0.52 0.54 0.122

2-month future

5-min 0.53 0.59 0.043 0.52 0.57 0.026 0.52 0.57 0.052
10-min 0.53 0.56 0.005 0.54 0.55 0.002 0.52 0.55 -0.009
15-min 0.54 0.56 0.032 0.54 0.55 0.045 0.55 0.55 0.114
30-min 0.57 0.55 0.064 0.57 0.54 0.059 0.57 0.55 0.056
60-min 0.56 0.55 0.119 0.56 0.55 0.074 0.56 0.54 0.108

3-month future

5-min 0.53 0.58 0.041 0.54 0.56 0.043 0.53 0.57 0.051
10-min 0.53 0.55 0.057 0.53 0.55 0.075 0.54 0.56 0.054
15-min 0.55 0.56 0.095 0.55 0.56 0.126 0.55 0.56 0.101
30-min 0.56 0.54 -0.036 0.57 0.53 -0.049 0.56 0.54 -0.226
60-min 0.56 0.57 0.296 0.55 0.58 0.312 0.56 0.55 0.322

4-month future

5-min 0.55 0.59 0.019 0.52 0.57 0.006 0.52 0.58 0.031
10-min 0.54 0.56 -0.076 0.52 0.55 -0.015 0.52 0.56 0.013
15-min 0.54 0.56 -0.136 0.54 0.55 -0.069 0.53 0.56 -0.093
30-min 0.57 0.56 -0.064 0.57 0.54 -0.086 0.57 0.55 0.038
60-min 0.55 0.56 0.055 0.55 0.56 -0.054 0.54 0.56 -0.325

5-month future

5-min 0.58 0.59 0.094 0.57 0.64 0.072 0.57 0.71 0.122
10-min 0.58 0.61 -0.092 0.58 0.63 0.015 0.57 0.69 0.148
15-min 0.57 0.60 -0.084 0.58 0.61 -0.093 0.57 0.62 0.122
30-min 0.57 0.54 0.098 0.57 0.52 0.061 0.57 0.52 -0.177
60-min 0.54 0.44 -0.064 0.55 0.45 -0.152 0.55 0.40 0.056

mean 0.55*** 0.56*** 0.02 0.55*** 0.56*** 0.02 0.55*** 0.56*** 0.04
t-test 13.97 9.99 12.73 8.43 11.78 5.91
std 0.02 0.03 0.09 0.02 0.04 0.09 0.02 0.06 0.13
max 0.58 0.61 0.30 0.58 0.64 0.31 0.57 0.71 0.32
min 0.52 0.44 -0.14 0.52 0.45 -0.15 0.52 0.40 -0.33

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 8: XGBOOST classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the
static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.57 0.56 0.049 0.57 0.55 0.052 0.57 0.52 0.029
10-min 0.58 0.50 -0.011 0.58 0.51 -0.008 0.58 0.49 -0.063
15-min 0.59 0.53 0.007 0.58 0.54 0.043 0.59 0.54 0.046
30-min 0.62 0.56 0.063 0.61 0.56 0.094 0.61 0.55 0.055
60-min 0.64 0.54 0.006 0.64 0.55 0.014 0.63 0.53 0.005

2-month future

5-min 0.58 0.56 0.076 0.58 0.54 0.065 0.58 0.54 0.059
10-min 0.58 0.52 0.014 0.58 0.51 -0.017 0.57 0.52 -0.010
15-min 0.59 0.53 0.049 0.59 0.54 0.064 0.58 0.53 0.028
30-min 0.61 0.55 0.105 0.60 0.55 0.126 0.60 0.55 0.085
60-min 0.65 0.55 0.087 0.63 0.55 0.092 0.63 0.54 0.065

3-month future

5-min 0.57 0.54 0.150 0.58 0.54 0.167 0.57 0.54 0.083
10-min 0.58 0.53 0.128 0.59 0.53 0.207 0.58 0.53 0.198
15-min 0.59 0.54 0.156 0.59 0.56 0.220 0.58 0.55 0.104
30-min 0.61 0.56 0.170 0.61 0.55 0.166 0.60 0.55 0.053
60-min 0.66 0.55 0.246 0.64 0.57 0.298 0.65 0.55 0.359

4-month future

5-min 0.58 0.54 -0.026 0.58 0.53 0.029 0.58 0.52 0.115
10-min 0.59 0.52 -0.216 0.59 0.52 -0.318 0.58 0.51 -0.422
15-min 0.59 0.53 -0.122 0.59 0.54 -0.139 0.59 0.53 -0.129
30-min 0.62 0.55 -0.052 0.61 0.55 -0.071 0.60 0.55 0.052
60-min 0.63 0.55 0.054 0.64 0.54 -0.105 0.63 0.53 -0.124

5-month future

5-min 0.66 0.58 0.087 0.66 0.59 0.113 0.65 0.63 0.067
10-min 0.67 0.56 0.063 0.66 0.58 -0.034 0.65 0.63 0.137
15-min 0.67 0.55 0.097 0.66 0.58 0.115 0.65 0.63 0.228
30-min 0.69 0.57 0.107 0.67 0.59 0.028 0.67 0.64 0.120
60-min 0.69 0.53 -0.109 0.67 0.55 -0.275 0.67 0.61 -0.004

mean 0.62*** 0.54*** 0.05 0.61*** 0.55*** 0.04 0.61*** 0.55*** 0.05
t-stat 14.75 13.25 16.46 11.63 16.51 6.22
std 0.04 0.02 0.10 0.03 0.02 0.14 0.03 0.04 0.14
max 0.69 0.58 0.25 0.67 0.59 0.30 0.67 0.64 0.36
min 0.57 0.50 -0.22 0.57 0.51 -0.32 0.57 0.49 -0.42

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 9: ARIMA method: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the static
analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1
success ratio success ratio success ratio

target variable time-scale in-sample out-sample in-sample out-sample in-sample out-sample

1-month future

5-min 0.53 0.52 0.52 0.54 0.53 0.54
10-min 0.51 0.50 0.51 0.50 0.51 0.50
15-min 0.51 0.50 0.51 0.51 0.51 0.51
30-min 0.52 0.52 0.52 0.52 0.52 0.53
60-min 0.53 0.55 0.53 0.54 0.54 0.54

2-month future

5-min 0.53 0.52 0.53 0.53 0.53 0.54
10-min 0.53 0.52 0.53 0.52 0.53 0.52
15-min 0.52 0.50 0.51 0.50 0.51 0.50
30-min 0.54 0.50 0.53 0.50 0.52 0.53
60-min 0.56 0.56 0.56 0.55 0.56 0.54

3-month future

5-min 0.53 0.53 0.53 0.53 0.53 0.55
10-min 0.52 0.50 0.52 0.51 0.51 0.51
15-min 0.52 0.51 0.52 0.51 0.52 0.51
30-min 0.54 0.53 0.54 0.52 0.53 0.53
60-min 0.56 0.54 0.55 0.55 0.55 0.55

4-month future

5-min 0.54 0.51 0.54 0.52 0.53 0.51
10-min 0.53 0.51 0.52 0.51 0.53 0.50
15-min 0.52 0.52 0.52 0.51 0.52 0.51
30-min 0.54 0.54 0.54 0.52 0.54 0.53
60-min 0.55 0.56 0.56 0.53 0.55 0.51

5-month future

5-min 0.50 0.52 0.50 0.54 0.51 0.55
10-min 0.50 0.53 0.50 0.54 0.51 0.54
15-min 0.51 0.54 0.51 0.54 0.51 0.51
30-min 0.51 0.54 0.51 0.52 0.52 0.52
60-min 0.51 0.55 0.51 0.55 0.52 0.55

mean 0.53*** 0.52*** 0.53*** 0.52*** 0.53*** 0.52***
t-stat 8.30 6.20 8.28 7.33 9.05 7.30
std 0.02 0.02 0.02 0.02 0.01 0.02
max 0.56 0.56 0.56 0.55 0.56 0.55
min 0.50 0.50 0.50 0.50 0.51 0.50

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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