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Abstract

Central to the development of many new consumer packaged goods is the use of an in-
market test (e.g., a controlled test market) prior to launch. A number of market researchers
have proposed forecasting models that generate a number of useful diagnostics about the
product’s likely performance and also enable managers to shorten the length of these test
markets. Most of these models have ignored the effects of marketing covariates. In this
paper we examine what impact these covariates have on a model’s forecasting performance
and explore whether their presence enables us to reduce the length of the model calibration
period (i.e., shorten the test market).

Rather than “tack-on” covariate effects to existing models of new product trial, we
develop from first principles a set of models that enable us to systematically explore
the impact of three model “components” on forecasting performance: i) whether or not
the existence of a group of “never triers” is explicitly acknowledged, ii) whether or not
heterogeneity in consumer buying rates is explicitly modeled, and iii) whether or not the
effects of marketing decision variables are incorporated. Furthermore, we systematically
explore the impact of the length of the test market on forecasting performance.

Having identified that the distribution of time-to-trial for an individual is best charac-
terized by the exponential distribution, we find that it is critically important to capture
heterogeneity (via a gamma distribution across households), and that the inclusion of co-
variate effects is often a useful addition, especially for models calibrated on fewer than 20
weeks of data. The “never triers” parameter proves to be largely ineffective, mostly be-
cause of its apparent redundancy with the heterogeneity distribution. We provide detailed
evidence for these conclusions, and link them to further research issues.



1 Introduction

Central to the development of many new grocery products, often called “consumer pack-

aged goods” (CPG), is the use of an in-market test prior to a national launch. A manu-

facturer undertakes such a test to gain a final read on the new product’s potential before

deciding whether or not to “go national” with the new product, as well as to evaluate

alternative marketing plans.

Since the pioneering work of Fourt and Woodlock (1960) and Baum and Dennis (1961),

a number of market researchers have developed forecasting models that generate a one-

to two-year forecast of the new product’s performance after, say, six months in the test

market. The ability to reduce the duration of a market test reduces the cost of the test

itself as well as the opportunity costs of not going national earlier (assuming the test would

result in a “go national” decision).

The vast majority of these forecasting models were developed in the 1960s and 1970s,

during which time the gathering of weekly data on in-store merchandising activity (e.g.,

feature and/or display promotions) was non-existent, unless collected on a custom-audit

basis. Consequently most of the models developed in this era did not include the effects of

marketing decision variables; two rare exceptions are Eskin (1974) and Nakanishi (1973).

With the widespread adoption of the Universal Product Code (UPC) and associated laser

scanner technology, information on in-store marketing activity is now readily available.

A key model specification question we answer in this study is whether or not the incor-

poration of covariates such as marketing decision variables improves a model’s forecasting

performance. Within the diffusion modeling literature, it has been observed that the omis-

sion of covariates rarely has an impact of the accuracy of the forecasts generated by the

model (e.g., Bottomley and Fildes 1998). However, consumer durables— the typical class

of product to which such models are applied—are quite different from CPG products and

we cannot automatically assume that this result will hold in a different context.1

When examining the performance of new CPG products, it is standard practice to
1This caution is reinforced by the observation that the “Bass model,” a common diffusion model in

the marketing literature, performs poorly in both describing and forecasting the trial sales of new CPG
products (Hardie, Fader, and Wisniewski 1998).
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separate total sales into trial (i.e., first purchase) and repeat (i.e., subsequent purchases)

components; repeat sales are then decomposed into first repeat, second repeat, third repeat

(and so on) components. Within the literature on test-market forecasting models, there

is a long tradition of building separate models for trial, first repeat, second repeat, etc.,

and then combining the output from each sub-model to arrive at an overall sales forecast

for the new product—see, for example, Eskin (1973), Fader and Hardie (1999). Although

the model parameters may vary from one level of depth-of-repeat to another, the general

structure of the model is usually assumed to be the same across each purchasing level.2 For

this reason, our examination of the role of covariates in a model’s forecasting performance

will focus exclusively on models for the trial component of new product sales, so as to

simplify the process of gaining tangible insights. (Such an approach was also used by

Hardie et al. (1998).)

As we develop models of trial purchasing that incorporate the effects of marketing

covariates, we could follow the approach taken in the diffusion modeling literature for

a number of years in which covariate effects were “tacked-on” to existing models of the

diffusion process. The problem with this is that it has resulted in some rather ad-hoc

model specifications (Bass, Jain, and Krishnan 2000). The approach we will take is to

start with a clean slate, building new models in which the effects of covariates are explicitly

accounted for at the level of the individual customer. The models developed in this way

nest most of the established (no-covariate) models of trial purchasing that were examined

by Hardie et al. (1998).

When we consider the implementation of these models, a question arises concerning

the length of the model calibration period. As time pressures continually intensify in

many organizations, management no longer has the luxury to wait for the completion of

the test market before making further decisions about product rollout— they need to be

able to project consumer demand using as little data as possible. However, we would

expect there to be a trade-off between the length of the model calibration period and the
2A problem with such this depth-of-repeat approach is that it can result in misleading inferences

about buyer behavior, as the model formulations fail to recognize any dependence across purchases at
the individual-level (e.g., Gupta and Morrison 1991). While academic researchers have developed models
that address this issue, market research companies continue to use this established modeling framework
for a number of practical reasons, principally the quality of its forecasts (Fader and Hardie 1999).

2



model’s forecasting performance. This was briefly explored by Hardie, et al. (1998), who

compared the forecasting performance of trial purchase models calibrated using the first

13 weeks versus the first 26 weeks of test market data. In this paper we wish to explore

systematically the effects of the length of the test market on forecasting performance.

The paper proceeds as follows. We start by exploring the general structure of a model of

trial purchasing, which leads to the identification of eight candidate models. These models

are then calibrated on a set of datasets and their forecasting performance computed. We

then examine the impact of model structure, along with the length of the model calibration

period, on forecasting performance. Finally, we conclude with a discussion of a number of

issues that arise from our study, and identify several areas for follow-on research.

2 Model Development

When conducting a test market, it is standard practice to monitor the performance of the

new product using panel data. For each household i (in a panel of N households), we

observe ti, the time at which it made a trial purchase. (The zero point of the time scale

corresponds to the time of the introduction of the new product.) The empirical market

penetration curve for the new product is

F̂ (t) = N−1 (# of ti ≤ t) ,

which can be interpreted as the aggregate-level empirical cumulative distribution function

of trial purchase times.

In building a trial purchase model, we specify a parametric form for F (t). Once the

model parameters have been estimated using data on trial purchases for a given calibra-

tion period, the new product’s penetration can be forecast out into the future by simply

computing the value of F (t) for subsequent values of t. Trial sales estimates for the panel

are calculated by multiplying the penetration numbers by the panel size and average trial

purchase volume. Market-level trial sales estimates can then be computed by multiplying

the panel-level numbers by panel projection factors that account for differences in the mix
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of households in the panel versus the market as a whole.

Some early attempts at specifying F (t) took a “curve fitting” approach in which the

researchers proposed a flexible functional form designed to “best fit” the observed data.

An example of this is the well-known Fourt and Woodlock (1960) model. In examining

numerous cumulative trial curves, they noted that i) successive increments in cumulative

trial declined, and ii) the cumulative curve approached a penetration limit of less than

100% of the households in the panel. They proposed that incremental trial (i.e., F (i) −
F (i − 1)) be modeled as rx(1 − r)i−1, where x = the ceiling of cumulative trial (i.e., the

penetration limit), r = the rate of penetration of the untapped potential, and i is the

number of (equally-spaced) time periods since the launch of the new product.

Since then, most developers of new product trial forecasting models have developed

models using a stochastic modeling approach in which they make a set of assumptions

about consumer behavior, translate these into probabilistic terms and then derive the

complete model. Following Hardie et al.’s (1998) classification of the published trial mod-

els, the general form of a trial purchase model follows the mixture model specification

F (t) = p

∫
F (t|θ)g(θ)dθ (1)

The three “components” of this general model form, F (t|θ), g(θ), and p, are defined

as follows:

i. At the heart of any trial model is the specification of F (t|θ), the cumulative dis-
tribution function (cdf) of an individual panelist’s time-to-trial. (This is called the

structural model.)

ii. When specifying the structural model, we take the perspective of a single panelist.

As we move from one panelist to all panelists in the market, we could make the as-

sumption that they are all perfectly homogeneous. However, heterogeneity is central

to marketing thinking—some consumers may be inherently fast buyers while others

may be inherently slow buyers. Such household differences can be accommodated

by specifying a mixing distribution g(θ) for the structural model’s parameters.
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iii. In examining data from numerous new product launches, Fourt and Woodlock (1960)

observed that the cumulative trial curve almost always approached a penetration

limit of less than 100% of the households in the panel. Consequently, they proposed

that a trial model should incorporate a ceiling on cumulative trial via a penetration

limit term. The inclusion of a such a term is quite plausible as, in most situations,

some people will never be in the market for the new product no matter how long they

wait. For example, one would typically expect that diapers will not be purchased by

panelists who do not have children (or grandchildren) under 3 years old. This implies

that the assumed cdf for a panelist’s time-to-trial only applies to those panelists

that will eventually trial the new product, and that the associated probabilities are

therefore conditional. The probability of a randomly chosen individual eventually

trying the new product is p, which can also be interpreted as the proportion of the

market that will try the new product. Although 1− p represents the proportion of

the market that will never try the new product, the penetration limit p is sometimes

called the “never triers” term.

Specific models follow by defining the various model components. For example, the

trial model at the heart of Massy’s STEAM model assumes F (t|θ) is Weibull, g(θ) is

gamma for the rate parameter of Weibull distribution, and p ≤ 1. A model proposed by

Anscombe assumes F (t|θ) is exponential, p = 1 (i.e., no “never triers” term), and g(θ) is

gamma. The continuous time equivalent of the Fourt and Woodlock model assumes F (t|θ)
is exponential, g(θ) puts unit mass on θ = λ, and p ≤ 1 (Anscombe 1961). Herniter (1971)

assumed an Erlang-k structural model with an exponential mixing distribution. It must

be noted that no model developer has provided direct evidence for his choice of structural

model; the particular distributions employed have simply been assumed to be correct.

The logical point at which to incorporate the effects of marketing mix variables is at the

level of the individual, i.e., via F (t|θ). (This is in contrast to the approach initially taken in
the diffusion modeling literature in which the covariate effects were incorporated directly

into the aggregate-level function, F (t).) Today, the standard approach for incorporating

the effects of covariates in event-time models is the proportional hazard approach. (See
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Appendix A for a brief review.) This leads to F (t|θ,X(t),β), an individual-level with-

covariate cdf for the distribution of time-to-trial, where X(t) represents the covariate

path up to time t and β denotes the effects of these covariates. Drawing on the general

mixture model specification given in (1), we can therefore write the general form of a

with-covariates trial purchase model as

F (t|X(t),β) = p

∫
F (t|θ,X(t),β)g(θ)dθ (2)

In order to move from generalities to a specific model of trial purchasing, we must make

decisions about the nature of F (t|θ) and F (t|θ,X(t),β), g(θ), and p. As previously noted,

model developers have assumed a particular specification for F (t|θ) without providing di-
rect evidence for their choice of structural model. In Appendix B, we report on an analysis

in which we conclude that the exponential distribution is the “correct” structural model for

trial purchasing. This implies that F (t|θ) = 1− exp(−θt) and therefore F (t|θ,X(t),β) =

1− exp
(−θA(t)) where A(t) = ∑Int(t)

i=1 exp[β′x(i)] + [t− Int(t)] exp[β′x(Int(t+ 1))], with

x(i) denoting the vector of covariates for time period i. (See Appendix A for derivations.)

Having specified the underlying structural model, equations (1) and (2) suggest that a

trial forecasting model can be characterized in terms of three “components”: i) whether or

not the existence of a group of “never triers” is explicitly acknowledged, ii) whether or not

heterogeneity in consumer buying rates is explicitly modeled, and iii) whether or not the

effects of marketing decisions variables are incorporated. The exclusion of a “never triers”

component corresponds to constraining p to 1.0. Not including the effects of unobserved

heterogeneity corresponds to specifying g(θ) such that we have a point mass on θ = λ. To

accommodate the effects of unobserved heterogeneity, we will assume that the latent trial

rate θ is distributed according to a gamma mixing distribution; i.e.,

g(θ|r, α) = αrθr−1e−αθ

Γ(r)

where r and α are, respectively, the shape and scale parameters.

Looking at all possible combinations of these components (i.e., presence/absence of
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penetration limit, heterogeneity, and covariates) gives us eight candidate models. The

equations for the eight models corresponding to the inclusion/exclusion of each of these

three model components can be obtained by evaluating equations (1) and (2), and are

presented in Table 1. This table also presents the naming convention we will use to label

these eight models for the remainder of the paper. All eight models feature an exponential

structural model, and thus begin with the letter “E”. The four models that have gamma

heterogeneity are called “EG”. Several of the models are suffixed with a “N” and/or “C” to

describe the presence of a “never triers”/penetration limit term and/or covariates. Thus

the simplest model, the one parameter pure exponential, is simply known as E while the

most complex model, EG NC encompasses all three components.

——————————————
[ Table 1 about here ]

——————————————

These models will be calibrated on a set of datasets and their forecasting performance

computed. We then determine whether any systematic patterns in each model’s forecasting

performance can be linked to its components. Additionally, we will examine the impact

of the length of the model calibration period on forecasting performance, along with any

interactions between model formulation and calibration period length.

3 Empirical Analysis

The data used in this study come from market tests conducted using Information Re-

sources, Inc.’s (IRI) BehaviorScan service. BehaviorScan is a controlled test-marketing

system with consumer panels operating in eight markets, geographically dispersed across

the U.S.; six of these are targetable TV markets (Pittsfield, MA, Marion, IN, Eau Claire,

WI, Midland, TX, Grand Junction, CO, and Cedar Rapids, IA), the other two are non-

targetable TV markets (Visalia, CA and Rome, GA). (See Curry (1993) for further details

of the BehaviorScan service.) We have five datasets (labeled A–E), each associated with

a new product test (lasting one year) conducted in one of the targetable TV markets be-

tween 1989 and 1996. The tested products are from the following categories: shelf-stable

(ready-to-drink) juices, cookies, salty snacks, and salad dressings.
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The recorded individual panelist trial times are interval-censored; that is, the week of

trial purchase is reported. We therefore create a dataset containing 52 weekly observations,

each observation being the number of panelists who tried the new product during the

week in question. Additionally we have information on the marketing activity for the

new product over the 52 weeks the new product was in the test market. For four of the

datasets (A–D), this comprises a standard scanner data measure of promotional activity

(i.e., any feature and/or display), along with measures of advertising and coupon activity.

To account for carryover effects, the advertising and coupon measures are expressed as

standard exponentially-smoothed “stock” variables (e.g., Broadbent 1984). No advertising

data were available for the fifth dataset (E); however, an additional promotional tool, an

instantly redeemable coupon, was used and this was captured via a dummy variable.

The model parameters are estimated using the method of maximum likelihood. Given

the interval-censored nature of the data, the general log-likelihood function is given by

LL =
tc∑

i=1

ni ln
[
F (i)− F (i− 1)

]
+

(
N −

tc∑
i=1

ni

)
ln

[
1− F (tc)

]

where ni is the number of triers in week i, N is the number of households in the panel, and

tc is the number of weeks of data used for model calibration. (The exact equation is derived

by substituting in the specific expression for F (t) from Table 1.) Using standard numerical

optimization software, we find the values of the model parameters that maximize this log-

likelihood function; these are the maximum likelihood estimates of the model parameters.

For each model × dataset combination, we calibrate the model parameters using the

first tc weeks of data. In order to examine the impact of calibration period length on

forecast performance, we vary tc from 8–51 weeks in one-week increments. Using the pa-

rameters estimated on the first tc weeks of data, each model is used to forecast cumulative

trial for each of the remaining (52−tc) weeks. In summarizing a model’s ability to forecast

cumulative trial, we are interested in both the week-by-week accuracy and year-end (i.e.,

week 52) cumulative trial. The appropriate error measures will be computed for each of

the 1760 model specification × calibration period × dataset (8 × 44 × 5) combinations.

These will then be analyzed to identify the impact of the various model components and
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calibration period lengths on forecasting performance.

The issue of what error measure(s) a researcher should use to identify the most ac-

curate forecasting method has received much attention in the forecasting literature. One

class of measures focuses directly on forecast error; for example, mean absolute error

(MAE) and mean-squared error (MSE). However, such measures are scale dependent and

therefore cannot be used in comparing models across data series which differ in magni-

tude. (Our data series differ considerably in magnitude, with 52-week penetration varying

from just over 6% to almost 40%.) We therefore consider relative error measures, which

remove such scale effects. One measure that is widely used is Mean Absolute Percentage

Error (MAPE). While there are subtle theoretical advantages associated with the use of

alternative measures— see Armstrong and Collopy (1992), Fildes (1992), and related com-

mentary—MAPE has the advantages of not only being very interpretable but also very

appropriate in planning and budgeting situations (Makridakis 1993). We will therefore

focus primarily on the MAPEs calculated over the forecast period for each of the model ×
calibration period × dataset combinations. (Alternative measures of model performance

were computed. For example, we also examined point estimates of forecasting accuracy

by computing the percentage error for week 52 alone. However, the results of this anal-

ysis parallel the MAPE results to a very high degree; as such we only report the MAPE

findings.)

4 Results

From an applied perspective, our primary interest is in the forecasting performance of each

model. However, in order to understand the impact of the length of the calibration period,

we will also consider the issue of parameter stability— the extent to which a model has

calibration period length-invariant parameters. In our search for the best model(s), we

therefore examine both dimensions of model performance— forecasting ability and param-

eter variation. We discuss each performance dimension separately (forecasting ability in

section 4.1 and parameter variation in section 4.2), but we show that their results interact

significantly. Together these criteria will jointly help us to identify the most appropriate
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and important characteristics for a model of trial purchase behavior.

4.1 Analysis of Forecasting Results

We begin with an examination of the MAPE results, which are summarized in Figure 1.

Each point in the graph represents the average MAPE across all five datasets for each

model type and calibration period. For instance, the pure exponential model, represented

as an un-adorned dashed line, has an average MAPE just over 180% when eight weeks

of calibration data are used to forecast sales for the remaining 44 weeks in each dataset.

When 28 weeks of calibration data are used, its average MAPE is much improved (but

still very poor) at roughly 55%.

——————————————
[ Figure 1 about here ]

——————————————

Several noteworthy patterns are immediately evident. First is the observation that the

pure exponential model with no covariates forecasts far worse than the other seven models,

regardless of the amount of calibration data available to it. Even when this model uses

data from the first 51 weeks to make a forecast for week 52 alone, its resulting absolute

percentage error across the five datasets (16%) is still worse than that of several models

with utilizing only 12 weeks of calibration data. Thus while simplicity may be a virtue,

the pure exponential model is clearly far too oversimplified to be of any value. Because

of the very poor forecasts produced by this model, we omit it from all further analyses in

this section.

Second, we see that, by week 20, all seven of the remaining models have achieved

reasonable levels of MAPE, although there are substantial differences among the models.

There appears to be less of an improvement in the model forecasts beyond this point.

This observation has important implications for the crucial managerial decision about

whether to wait for additional market data before making a final forecast versus making

a “definitive” trial forecast now and sticking with it.

As we examine Figure 1 more carefully, it is evident that three of the models appear

to reach their “elbow” points far earlier than the other models, roughly around week 12.
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Upon closer inspection, one may notice that all three of these models include covariates

as well as any combination of heterogeneity and/or “never triers” (i.e., E NC, EG C, and

EG NC, using the notation from Table 1). Not only do each of these three models reach

an elbow point faster, but they maintain a slight forecasting advantage over the other

models all the way past 30 weeks of calibration data.

Therefore the two principal conclusions we can draw from Figure 1 are that: (a) the

inclusion of covariates, if at all possible, is the first critical step in building a “good”

forecasting model, especially when one wishes to use a relatively short calibration period;

and (b) the best forecasting models add in at least one other component (heterogeneity

and/or “never triers”) with the covariates.

While these are believable and useful findings, they can be refined even further. So

as to take a closer look at the interplay among the various components and calibration

periods, we present in Figure 2 the forecasting performance results for the four models

that include covariates. To make the graph as clear as possible, we only show the forecasts

from models calibrated with at least 10 weeks of data.

——————————————
[ Figure 2 about here ]

——————————————

The E C model (solid line) is clearly inadequate, as suggested by the preceding discus-

sion. At first, the other three models may appear to be essentially indistinguishable from

each other, but upon closer inspection it can be seen that the covariate model with “never

triers” only (i.e., E NC) is consistently less accurate than either or both of the other two

models all the way through 40 calibration weeks. The inference to be made here is that

while the “never triers” component appears to help somewhat, it is more important to

directly capture heterogeneity in trial rates.

We are left with two strong models in Figure 2, EG NC and EG C, with virtually

identical forecasting capabilities. While this may appear to be a difficult choice, we favor

the EG C model for several reasons. We can now appeal to its simpler structure, with

one less parameter but essentially no loss in forecasting power. The gamma distribution

is highly flexible and can accommodate “never triers” by treating them as “very slow but
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eventual” buyers who will enter the market at a late stage (perhaps on the order of years)

which, for the standard forecasting horizon, is equivalent to never trying. Furthermore,

as we will see later, the parameter estimates associated with the EG NC specification are

often highly unstable, especially when relatively few calibration weeks are available to

estimate the model.

This reasoning allows us to declare EG C as the overall “winner,” and its performance

is quite strong indeed, with forecasts generally within 10% of actual even with as few as

12 weeks of calibration data. But an important question remains to be addressed: which

model(s) are most suitable when covariates are not available to the analyst? Despite the

advances made possible by today’s scanning technology, it is easy to conceive of situations

in which covariate information (e.g., coupons, advertising, or in-store promotions) may

be missing or subject to a variety of measurement errors. It is therefore imperative that

we identify a robust model that can produce accurate forecasts without using any such

covariates.

In Figure 3 we examine the performance of the three candidate models that ignore

covariates (again, we omit the pure exponential model). To enhance interpretability of

this graph, we only consider models with at least 12 weeks of calibration data. The results

are quite interesting. When relatively few (<18) weeks of calibration data are used, the

plain exponential-gamma (EG) model is very poor. (Even in Figure 1 it is clear that this

is the second-worst model overall through 18 calibration weeks.) The explanation here

is that the EG model is mistaking the unexplained covariate effects strictly as evidence

of consumer heterogeneity, and is inferring a very distorted distribution of purchase rates

across households. While we observe a slight improvement when “never triers” are allowed

to enter the picture (i.e., the EG N model), the MAPE numbers are probably still too

high for the forecasts to be of use from a managerial perspective.

——————————————
[ Figure 3 about here ]

——————————————

In contrast, however, as the length of the calibration period moves beyond 20 weeks,

the simple EG model dramatically improves and becomes the best forecasting model, all
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the way through 35 weeks of calibration data. Apparently, as the set of consumers entering

the market becomes sufficiently diverse, true heterogeneity effects dominate any apparent

differences due to early marketing activity, and the underlying gamma distribution is

specified more properly.

The conclusions from Figure 3 are as twofold: first, in the absence of covariate effects,

extreme caution should be used in making any forecasts with fewer than 20 weeks of cal-

ibration data; beyond this point, the EG model appears to be the best choice. While

the EG N model eventually catches up and even surpasses EG (with 40 or more weeks of

calibration data) the same arguments as before still apply: the “never triers” term can be

redundant when heterogeneity is explicitly modeled, and the forthcoming parameter sta-

bility analysis (section 4.2) will clearly show why we favor the model with one component

over both.

To complete our picture of the best models, we compare the forecasting performance

of the two EG specifications (with and without covariates) in Figure 4. After the plain

EG model catches up with EG C (with 26 or more weeks of calibration data), the two

models are very hard to distinguish from one another. The inclusion of covariate effects

has surprisingly little impact in these later weeks (even though several of the datasets

have significant promotional activities taking place during this period). At the same

time, however, the added complexity from including the covariate parameters appears

to cause no harm either. One might have guessed, a priori, that the sales impact of

promotional activities would be less in later weeks compared to the early weeks of a new

product introduction. Under this hypothesis, the static (non-time-varying) nature of the

β coefficients would lead to systematic overpredictions towards week 52. Apparently, there

is no evidence to support such a view. The EG C model is successfully able to sort out

heterogeneity and covariate influences equally well for all calibration periods with 12 or

more weeks of data.

——————————————
[ Figure 4 about here ]

——————————————

To summarize, the exponential-gamma model (with no provision for “never triers”)
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is highly robust and accurate. If an analyst has proper covariate measures available, the

EG C model appears to offer reliable forecasts starting around week 12. If covariate effects

are unavailable or in any way untrustworthy, then the simpler EG model can be employed

around week 20. For typical forecasting situations, which often use 26 weeks of calibration

data to make forecasts for a 52-week time horizon, the two models are very similar. Other

criteria, such as the potential diagnostic value of measuring covariate effects, would play

a larger role in model selection.

4.2 Analysis of Parameter Stability

In order to gain insight as to why the forecasting performance of some models is relatively

insensitive to the length of calibration period—when compared to other models—we

explore the issue of parameter stability. In particular, do we see much variation in the

parameter estimates as we increase the length of the calibration period (i.e., provide more

“information” for parameter estimation purposes)? If the parameter estimates for a given

model specification are relatively insensitive to calibration period length, we would expect

to see little variation in forecasting performance as the calibration period changes.

To analyze parameter variation across different model specifications and calibration

periods, we created indexed parameter estimates by dividing all parameters for each of

the 1760 model × calibration period × dataset combinations by their respective estimates

based on 52 weeks of calibration data. This gives us the best possible indication of the loss

of information that results from using a shorter (i.e., < 52 weeks) calibration period. The

across-dataset averages of these indexed parameter values are then plotted for each model

specification and calibration period. This approach allows for detection of both systematic

biases and random instabilities of the parameters. We first discuss the stability analysis

for each of the key parameters and conclude this section by integrating these stability

analysis results with our forecasting conclusions.

Probably the most important parameter common to all of our models is the mean of

the implied time-to-purchase distribution. This is simply the scale parameter (λ) for the

exponential model and the shape parameter (r) divided by the scale parameter (α) for the

exponential-gamma model. Figure 5 demonstrates how the estimates of these means vary
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across model specifications and calibration periods.

——————————————
[ Figure 5 about here ]

——————————————

This and the subsequent two figures can be read as follows: a “perfect” model would

have indexed parameter values equal to 1.0 for all calibration periods. In other words, such

a model would always provide the correct “full information” (i.e., 52-week) estimate for

the parameter of interest, regardless of calibration period length. It follows that indexed

values above 1.0 indicate overestimates and values below 1.0 are underestimates compared

to the 52-week numbers.

Perhaps the most noticeable aspect of this graph is the high degree of instability

evident for the three models that involve “never triers” and at least one other component

(i.e., E NC, EG N, and EG NC). These jumps are severe and unpredictable, even for

long calibration periods. This is clear evidence of the inadequacies of the “never triers”

component, and a strong indication that using more bells and whistles does not necessarily

lead to a better model.

In contrast, the “winners” here are the same two EG models discussed in the section

4.1—EG and EG C—which capture the full-information estimates of the mean time-to-

trial parameters far better than the other models. The EG C model is accurate right

from week 8, and varies very little over longer calibration periods. As expected, given its

tendency to over-forecast with limited calibration data, the pure EG model dramatically

overstates the mean over short calibration periods (since it improperly accounts for accel-

erated purchases due to promotional activity), but settles down quite nicely by week 20.

In fact, for most of the longer calibration periods, the EG model is slightly better than

EG C, although both are excellent.

Three of the models without heterogeneity show systematic and highly consistent un-

derestimates of the mean. Even after the forecasts have begun to stabilize for several of

these models (e.g., around week 20 for E N), the underlying parameters are still fairly

biased.

For brevity, we skip the stability analysis for the “never triers” parameter. As just
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discussed, most of these plots show high degrees of instability. Furthermore, in many cases

(especially when heterogeneity is included in the model), the “never triers” parameter is

not significantly different from 1.0 for all calibration-period lengths and so it is not very

meaningful to examine its stability.

While the mean time-to-trial parameter demonstrates very different stability patterns

across the various model specifications, the covariate parameters do not exhibit such differ-

ences in stability performance. Therefore, they do not discriminate effectively among the

different models. Nevertheless, their behavior offers insight about the minimum necessary

calibration period, because the parameter estimates are quite erratic up to about week 20

and then settle down to be relatively stable (see Figure 6). We only present the stability

plot for the promotion parameter because the plots for other parameters are very similar.

——————————————
[ Figure 6 about here ]

——————————————

The last parameter remaining to be examined is the r parameter, which reflects the

variance of the mixing gamma distribution in the heterogeneous models.3 By now it should

come as no surprise that the models that include both heterogeneity and “never triers”

will be highly unstable, so we omit these two models and only show the stability pattern

the exponential-gamma models with and without covariates only (see Figure 7).

——————————————
[ Figure 7 about here ]

——————————————

As may be expected, the EG C model performs quite consistently across different

calibration periods, while the pure EG model is very unstable until week 19. As discussed

earlier, the EG model infers that the underlying heterogeneity distribution is a lot tighter

(i.e., lower variance) than is actually the case, since it is tricked by the large number of

early, promotion-induced buyers. Even with as many as 18 weeks of calibration data, the

average value of the r parameter is about 50 times larger than its 52-week estimate.

After that point, however, the graph shows the largest contrast we have seen between
3One summary measure of heterogeneity in probability models is the coefficient of variation of the mixing

distribution (Morrison and Schmittlein 1988). For the gamma distribution, C.V. = 1/
√

r. Consequently,
we can interpret r as a measure of heterogeneity.
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these two models. The estimated values of r for the EG model move almost precisely to

the 52-week values, and barely budge over all remaining calibration periods. (Thus we

have further insight as to why the EG model generates poor forecasts when its model

parameters are estimated using a short calibration period.) On the other hand, the EG C

model continues to overestimate the r parameter—albeit quite stable—until the calibra-

tion period reaches 48 weeks in length. This overestimation is not a particularly critical

concern, since the α parameter adjusts to keep the timing distribution fairly accurate (as

per Figure 5 and the forecasting results). In some cases, however, it may be desirable or

important to ensure that all of the model parameters are maximally accurate and stable,

in which case the pure EG model would be preferred.

The overall conclusion of the stability analysis is immediate: the only model speci-

fications that pass the stability test for all parameters are the two exponential-gamma

models. Just as we saw before, the EG C model performs well for all calibration periods

at least 12 weeks in length, while the simpler EG model is very poor until week 20 and

very good beyond that point. It is encouraging to see such strong confirmation of the

earlier forecasting results. Furthermore, the problems shown here for models involving the

“never triers” component provide clear evidence why we deem such models to be unreli-

able, despite the fact that their forecasts can be quite accurate in many cases. Finally it is

good to see that the stability of the covariate parameters are reasonably invariant across

the various model specifications. It is interesting that they are not adversely affected by

the presence (or absence) of other model components. This finding demonstrates the value

of performing this type of parameter stability analysis in conjunction with the focus on

forecasting capabilities.

5 Discussion and Conclusions

The primary objectives of this research were i) to study the impact on forecasting perfor-

mance of incorporating marketing mix covariate effects in models of trial purchases, and ii)

to explore the trade-off between model calibration period and forecasting performance. In

doing so, we have identified what can be considered the “components” of a trial purchasing
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model with good forecasting properties. We summarize and synthesize our findings as a

set of five principles that an analyst should be able to draw from our study. We then touch

on a number of related issues that should be taken into consideration when generalizing

beyond the scope of our study, and identify a set of future research questions.

i. The underlying structural model, which dictates the time-to-trial for an individual

panelist in each of our datasets, appears to be most consistent with a simple expo-

nential process. On the surface, the data may not appear to be as clean and regular

as a pure exponential process would imply, but this is due, in part, to the presence

of heterogeneity and covariate effects (as well as random error).

ii. It is important to allow for consumer heterogeneity in the unobserved purchase rates.

This observation might not have been immediately obvious from a quick first glance

at Figure 1, but the subsequent analyses clearly showed that the two best models

(in terms of forecast accuracy and parameter stability) feature a gamma mixing

distribution for the exponential purchase rates.

iii. In contrast, the concept of a “never triers” parameter seems reasonable at first

glance, but does not hold up well under further scrutiny. On its own, this parameter

acts as a weak proxy for a more comprehensive model of consumer heterogene-

ity, and when a separate heterogeneity distribution is included in the model, there

appears to be a substantial confound between these two components. Based on

forecasting accuracy, this parameter offers a negligible improvement (if any) beyond

the exponential-gamma models; moreover, when judged by parameter stability, the

“never triers” parameter fares very poorly. Its estimated values are highly unstable,

even when long calibration periods are used.

iv. When marketing mix covariates such as advertising, coupons, and in-store promo-

tions are available to the analyst, they can contribute significantly to the model’s

forecasting performance. This is especially true when the calibration period is fairly

short. The performance of the exponential-gamma model with covariates is quite

remarkable even with as few as 12 weeks of calibration data. The average MAPE
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for such a specification is roughly 10%, and it does not change dramatically even

when 10–20 additional weeks of data are available to estimate the model parameters.

Furthermore, the parameter stability analysis suggests that the estimated values of

the covariate effects are fairly stable (especially with 20 or more weeks of calibration

data), and relatively invariant across different model specifications. Thus, the co-

variates not only help explain some of the variation present in the time-to-purchase

data, but they can be used to help guide policy decisions, such as the allocation of

expenditures across markets and promotional vehicles.

v. When covariates are unavailable (or untrustworthy), reliable forecasts can not be

obtained until roughly 20 weeks of calibration data are available. However, after that

point, the best no-covariate model (the exponential-gamma) becomes remarkably

strong both in its forecasting accuracy and its parameter stability. On both criteria

it actually surpasses the equivalent exponential-gamma model with covariates over

most calibration periods beyond 20 weeks in length.

This last conclusion—the solid performance of the pure, no-covariate exponential-

gamma model— is perhaps the most surprising finding in this paper. Although we found

no problems at all with the inclusion of covariates in our various models, they apparently

do not contribute much to a model’s forecasting capabilities if the model is well-specified

in the first place and a reasonable amount of data is available for parameter estimation.

Of course, in many cases it is necessary to include covariates for diagnostic purposes,

and they are absolutely essential if an analyst wishes to make forecasts before 20 weeks

of data are available. But even when the analyst wishes to rely principally on a model

with covariates, she should probably still run the pure EG model to get a quick and easy

“second opinion” about the forecast.

To elaborate on this latter point, the pure EG model is very easy to estimate using

standard PC software (such as the Excel Solver). Furthermore, since its two parameters

tend to show a high degree of stability, their estimated values could be databased to

establish norms for future products or to serve as empirical priors for a Bayesian analysis

of this forecasting problem. This could be an extremely useful exercise to help managers
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anticipate what market outcomes might be even before the new product is launched (e.g.,

Eskin and Malec 1976). As Urban and Katz (1983) demonstrated for the ASSESSOR

model, there are valuable benefits to be gained in the form of cumulative learning across

multiple new product launches and their associated forecasting models.

It follows that a key area for future research involves the application of Bayesian

methods to the problem of forecasting new product trial. In particular, Bayesian meth-

ods provide a framework for formally incorporating information about the market gained

from previous new product launches. As such, they may greatly contribute to a model’s

forecasting performance, making it possible to generate sufficiently accurate forecasts of

trial sales with a limited amount (i.e., less than 12 weeks) of in-market data.

Additional research questions can be asked about deeper issues embedded in the new

product purchase process. One set of issues consists of subtleties involved in the trial

process, for instance: (1) why does the “never triers” component fare so poorly in this

case, and in what contexts might it be more helpful?; (2) how well will the exponential-

gamma models (as well as the others discussed here) capture heterogeneity across different

geographic markets and/or different channels of distribution (e.g., grocery stores vs. drug

stores vs. mass merchandisers)?; and (3) how should the models be adapted to handle

markets in which we observe distribution-build (i.e., markets that do not have the forced,

100% retail distribution that is present for all of the datasets used here)? There is a sparse

amount of published research that covers these issues, especially in the CPG context, and

a clear need for a better understanding of all of them.

Furthermore, there is a need to address issues that exist beyond the trial model, per se.

We noted earlier that trial model tends to reflect the basic shape/nature of the subsequent

repeat-purchase models, especially when repeat purchase behavior is modeled using a series

of “depth-of-repeat” timing models (Eskin 1973, Kalwani and Silk 1980). Fader and Hardie

(1999) have demonstrated that using the pure EG model in such a context results in a

very robust model of repeat purchasing for a new CPG product (in spite of the theoretical

concerns previously raised in footnote 2). A natural extension to this work would be to

replace the core EG model with the EG C model to arrive at a model of repeat purchasing

for a new CPG product that incorporates the effects of marketing mix covariates. In any
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event, the specific form and implementation of the repeat purchase model is outside the

scope of this paper, but it is encouraging to know that the “winning” trial model discussed

here lends itself to a variety of potentially useful repeat models.
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Appendix A: Incorporating the Effects of Covariates

Over the past 30 years, researchers in a number of disciplines such as biostatistics, eco-

nomics, and sociology have developed methods for studying event-time data (e.g., Cox

and Oakes 1984, Kalbfleisch and Prentice 1980, Lancaster 1990, Lawless 1982). At the

heart of these methods is the hazard rate function,

h(t) =
f(t)

1− F (t)
(A1)

which specifies the instantaneous rate of the event (e.g., trial) occurring at T = t con-

ditional on it not having occured up to time t. The hazard rate function and cdf are

mathematically equivalent ways of specifying the distribution of a continuous nonnegative

random variable. Because F (0) = 0, it follows from (A1) that

F (t) = 1− exp
(

−
∫ t

0
h(u)du

)

= 1− exp
(−H(t)) (A2)

where H(t) is called the integrated hazard function.

A popular, easily interpretable method for incorporating the effects of exogenous co-

variates in event-time models is the proportional hazards approach. In this framework, the

covariates have a multiplicative effect on the hazard rate. More specifically, let F0(t|θ) be
the so-called “baseline” cdf for the distribution of an individual’s time-to-trial, and f0(t|θ)
and h0(t|θ) the associated pdf and hazard rate function. The most common formulation
of the proportional hazards specification states that

h(t|θ,x(t),β) = h0(t|θ) exp[β′x(t)]

where x(t) denotes the vector of covariates at time t and β denotes the effects of these

covariates. It follows from (A2) that the with-covariates cdf for the distribution of time-

to-trial is given by
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F (t|θ,X(t),β) = 1− exp
(

−
∫ t

0
h(u|θ,x(t),β)du

)

= 1− exp
(−H(t|θ,X(t),β)

)

where X(t) represents the covariate path up to time t, i.e., {x(u) : 0 < u ≤ t}.
Assuming the time-varying covariates remain constant within each unit of time (e.g.,

week),

H(t|θ,X(t),β) =
∫ 1

0
h(u)du+

∫ 2

1
h(u)du+ · · ·+

∫ t

Int(t)
h(u)du

= exp[β′x(1)]
∫ 1

0
h0(u)du+ exp[β′x(2)]

∫ 2

1
h0(u)du+

· · ·+ exp[β′x(Int(t+ 1))]
∫ t

Int(t)
h0(u)du

=
Int(t)∑
i=1

[
ln[1− F0(i− 1|θ)]− ln[1− F0(i|θ)]

]
exp[β′x(i)]

+
[
ln[1− F0(Int(t)|θ)]− ln[1− F0(t|θ)]

]
exp[β′x(Int(t+ 1))] (A3)

since
∫ i
i−1 h0(u)du = − ln[1− F0(u)]|ii−1 = ln[1− F0(i− 1)]− ln[1− F0(i)].

For specific baseline distributions, the above expression can be simplified; for example,

if F0(t|θ) is exponential with rate parameter θ, we have

H(t|θ,X(t),β) = θ
{Int(t)∑

i=1

exp[β′x(i)] + [t− Int(t)] exp[β′x(Int(t+ 1))]
}

= θA(t)

Therefore the cdf of the with-covariates extension of the exponential distribution is

F (t|θ,X(t),β) = 1− exp
(−θA(t)) . (A4)

When β = 0 (i.e., the covariates are omitted), A(t) = t and (A4) reduces to the cdf of the

exponential distribution (i.e., the baseline cdf).
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Appendix B: Identifying the Structural Model

At the heart of any model of trial purchasing lies the specification of the structural model;

that is, the distribution of an individual’s time-to-trial. As previously noted, developers

of the various published trial forecasting models have all assumed a particular structural

model without providing any justification for their choice. As we seek to gain a thorough

understanding of trial forecasting models, it is important that we build on a solid founda-

tion, i.e., start with the “correct”, rather than assumed, structural model, F0(t|θ). In this
appendix we report on a careful empirical investigation designed to identify the correct

form of the structural model for models of time-to-first purchase for consumer packaged

goods.4 Within the marketing literature on purchase timing, a number of researchers have

explored the issue of what distribution should be used to characterize interpurchase times

(e.g., Gupta (1991), Jain and Vilcassim (1991)). The findings of this stream of work are

mixed in terms of determining what distribution should be used to model interpurchase

times. Furthermore, this work has focused on established CPG products. It is therefore

important that we perform our own analysis in this new CPG product setting.

It is well known that a failure to control for unobserved heterogeneity in the empirical

investigation of a structural model results in biases in the estimated hazard rate function;

in particular, there is bias towards negative duration dependence (Heckman and Singer

1984a). For example, in fitting a Weibull distribution to some data, we may find that

the estimated value c is less than 1.0 and conclude that there is a decreasing hazard rate;

in actual fact, the observed data could be the realization of a heterogeneous exponential

process, and our failure to account for heterogeneity would lead us to draw incorrect

conclusions. (See Vaupel and Yashin (1985) for a complete discussion of other incorrect

conclusions that can be drawn from fitting homogeneous models to heterogeneous data.)

It is therefore standard practice to use some parametric distribution, g(θ), to control

for unobservables. (The choice of g(θ) is typically justified on the grounds of mathematical

convenience.) What is less well-known is that inferences about the structural model are
4In deeming a particular cdf, F0(t|θ), to be the “correct” structural model, we are conditioning on a

given set of candidate structural models. If the true structural model is not one of the candidate models, we
would not be able to identify it. However, the set of candidate models considered in this paper represent the
set of models considered in the marketing literature and can therefore be viewed as sufficiently exhaustive.
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sensitive to assumptions made about the distribution of unobserved heterogeneity. While

F0(t|θ) and g(θ) are unobservable, we can estimate the mixture F (t). Unfortunately it not
possible to uniquely identify F0(t|θ) and g(θ), given F (t); for any F (t), one can produce

different structural models that, along with a matching g(θ), result in the same F (t)— see,

for example, Heckman and Singer (1984b, p. 274).

A good marketing-related example of this problem is found by examining the so-called

“Bass model”, where the hazard rate of the distribution of adoption times is of the form

p + qF (t). Note that there is no explicit accounting for heterogeneity and therefore the

model should be interpreted as describing a population of homogeneous buyers. However,

as shown by Bemmaor (1994), it can be derived/interpreted as the mixture distribution

associated with a shifted Gompertz structural model (i.e., an individual consumer’s time to

adoption follows a shifted Gompertz distribution) and an exponential mixing distribution

to account for consumer heterogeneity. Therefore the “Bass model” may fit observed

adoption time data reasonably well, but it is not possible to distinguish between these

alternative explanations.

With this in mind, we cannot say that Hardie et al.’s (1998) support for EG model

implies that time-to-trial at the individual-level follows the exponential distribution (with

heterogeneity in trial rates captured by a gamma distribution). It could be the case that

we have a homogeneous group of buyers, each of whose time-to-trial follows the Lomax or

“Pareto of the second kind” distribution (which are other names by which the EG model

goes by in the statistics literature).

Heckman and Singer (1984b) propose the use of a non-parametric approach to con-

trolling for the unobserved heterogeneity, which allows us to investigate the correct form

of the structural model without imposing arbitrary parametric specifications for g(θ) that

could bias the identification of F0(t|θ). In particular, they propose that g(θ) be specified
as a discrete pdf with K support points at locations θk and associated probability mass

πk (k = 1, . . . ,K,
∑

k πk = 1).5

In our empirical analysis, we will utilize this approach to control for unobserved hetero-

geneity as we attempt to identify the “correct” structural model for the trial process. Our
5In this study, we assume g(θ) is univariate; in principle, it could be multivariate.
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search for the correct model proceeds as follows: we identify a set of candidate structural

models, and fit them to a number of datasets using the Heckman and Singer approach to

control for unobserved heterogeneity. Using certain fit criteria, we identify which struc-

tural model best fits the observed trial pattern for each dataset. From this we identify the

“best” overall structural model.

The candidate structural models are identified from the existing literature. The sim-

plest model is the exponential distribution, as used by Anscombe (1961) and indirectly by

Fourt and Woodlock (1960) and Eskin (1973, 1974). Such a distribution is consistent with

the Poisson counting process that lies at the heart of the familiar NBD model (Ehrenberg

1959; Morrison and Schmittlein 1988), which is used to characterize the distribution of

repeat buying for established CPG products. A generalization of this distribution is the

Erlang-2 distribution, as proposed by Greene (1982) and used by Herniter (1971) in his

empirical analysis. In an established product setting, this distribution has been used by

Gupta (1991), and is the timing model that corresponds to the counting process associated

with the CNBD model (Chatfield and Goodhardt 1973, Schmittlein and Morrison 1983).

Another generalization of the exponential distribution is the Weibull model, as used by

Massy (Massy 1968, 1969; Massy, Montgomery, and Morrison 1970). Finally, we consider

the Erlang-k distribution, as proposed by Herniter (1971). Rather than directly using

the Erlang-k distribution, we use the gamma distribution, which relaxes the restriction

on the Erlang-k distribution that the shape parameter be a positive integer k. The pdfs

associated with this set of structural models are presented in Table B1.

——————————————
[ Table B1 about here ]

——————————————

We perform this analysis on the five BehaviorScan test market datasets described in

Section 3. Given the interval-censored nature of these data, the likelihood functional,

conditional on θk, is:
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L(θk,β|data) = [
1− F (52|θk,β)

](N−∑52
i=1 ni)

52∏
i=1

[
F (i|θk,β)− F (i− 1|θk,β)

]ni

= exp [−H(52|θk,X(52),β)](N−∑52
i=1 ni)

×
52∏
i=1

{
exp[−H(i− 1|θk,X(i− 1),β)]− exp[−H(i|θk,X(i),β)]

}ni

where ni is the number of triers in week i (i.e., # of ti ∈ (i − 1, i]), N is the number of

households in the panel, and

H(t|θk, X(i), β) =
t∑

i=1

[
ln [1− F0(i− 1|θk)]− ln [1− F0(i|θk)]

]
exp[β′x(i)]

For K support points, the overall likelihood function is

L =
K∑

k=1

πkL(θk, β)

Note that this formulation of the likelihood function does not force a “never triers” term

(i.e., p); for the class of structural models considered here, this would correspond to a mass

point of size 1 − p located at θ = 0. Empirically, the data may “request” a mass point

at zero. However, at this stage of the analysis, where we wish to identify the “correct”

structural model, it would be counter-productive to force a mass point at zero as this

would represent a constraint on the distribution of unobserved heterogeneity.

For each dataset, we fit the time-to-first purchase model F (t) associated with each

of the four structural models under consideration. For each structural model, the exact

specification of the non-parametric g(θ) is determined by using the heuristic of choosing

the number of mass points to minimize a log-likelihood-based fit measure. The particular

measure used is Bozdogan’s (1987) CAIC measure: CAIC = −2LL+ q[ln(N) + 1], where

LL = log-likelihood, q = number of model parameters, and N = number of observations

(i.e., the panel size).

Specifications with K = 1, 2, and 3 support points were estimated for each dataset ×
structural model combination. The summary results are reported in Table B2; in every
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case, CAIC was minimized with one or two support points, so the numbers corresponding

to 3 support points are not reported.

——————————————
[ Table B2 about here ]

——————————————

Before interpreting these results, it is important to note that, for some of the datasets,

we were unable to obtain interior solutions in the parameter space for the model specifica-

tions associated with Weibull and gamma structural models. Despite repeated attempts

to re-estimate the models, the same corner solution was obtained. In all cases, this was

associated with one or more of the θk tending to zero (i.e., a “never triers” component).

The logic followed in identifying the “correct” structural model is to compare the

fit (in terms of CAIC) of the various structural models for each dataset. Within each

structural model, we consider the non-parametric heterogeneity specification (be it one

or two support points) that best fits the data; i.e., minimizes CAIC. In all cases, the

exponential structural model best fits the data, and we can therefore conclude that it is

the “correct” structural model to use when developing models of time-to-first purchase,

at least for the range/type of datasets considered here.

Aside from this main result, there are two interesting points to note. First, in all

cases, the estimate of the shape parameter of the gamma structural model is less than

or equal to 1.0 (i.e., a monotone decreasing or constant hazard rate); this suggests there

is no support for the Erlang-k model as proposed by Herniter (1971) and Greene (1982).

Second, we consider the issue of how to specify g(θ) in our subsequent model building

work. It is important to note that Heckman and Singer’s (1984b) proposal to use a non-

parametric g(θ) was strictly for the purposes of identifying the structural model; once the

structural model has been identified, there is nothing stopping the modeler from using

a flexible parametric mixing distribution for subsequent work. We note from the above

analysis that the non-parametric specification of g(θ) requires very few support points.

This suggests that, for the data associated with new consumer packaged goods products,

we can use a simple unimodal parametric distribution to capture unobserved heterogeneity.

This provides support for our use of a gamma mixing distribution when we develop models
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of trial purchasing.

Readers familiar with the hazard rate modeling literature may be wondering we haven’t

used models with a nonparametric baseline hazard function and parametric unobserved

heterogeneity (e.g., Han and Hausman (1990), Meyer (1990), Vanhuele et al. (1995)).

While such an approach is very useful when there is a need to make inferences about

the shape of the hazard rate function for the purpose of hypothesis testing, it becomes

useless in a forecasting setting. Should there be evidence of duration dependence, the

need to make predictions well beyond the calibration period implicitly requires us to know

the exact form the hazard rate function well into the future. This can be very difficult

with a nonparametric baseline hazard function, whereas it is automatic with a parametric

baseline hazard function. Given that forecasting is central to this paper, we have focused

on parametric baseline hazard functions.
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Table 1: Functional Forms for Candidate Trial Models

Model Functional Form “Never Triers” Heterogeneity Covariates

E F (t) = 1− e−λt N N N

E N F (t) = p
[
1− e−λt

]
Y N N

EG F (t) = 1−
(

α

α+ t

)r

N Y N

EG N F (t) = p

[
1−

(
α

α+ t

)r]
Y Y N

E C F (t) = 1− e−λA(t) N N Y

E NC F (t) = p
[
1− e−λA(t)

]
Y N Y

EG C F (t) = 1−
(

α

α+A(t)

)r

N Y Y

EG NC F (t) = p

[
1−

(
α

α+A(t)

)r]
Y Y Y



Table B1: Alternative Structural Models

Structural Model Probability Density Function

exponential f0(t|θ) = θe−θt

Erlang-2 f0(t|θ) = θ2te−θt

Weibull f0(t|θ, c) = cθctc−1e−(θt)c

gamma f0(t|θ, µ) = θµtµ−1e−θt

Γ(µ)

Table B2: Model Fit (CAIC) for the Various Specifications

Structural
Model

# Support
Points

# Model
Params

Data Set
A B C D E

(N=566) (N=1300) (N=721) (N=2273) (N=2946)

exponential 1 4 2046.8 2570.3 1832.1 2333.0 7822.5
2 6 2025.3 2551.2 1801.9 2349.2 7832.9

Erlang-2 1 4 2192.9 2879.5 2015.7 2404.9 8065.3
2 6 ** 2664.2 1988.2 2361.7 7856.9

Weibull 1 5 2026.3 ** ** 2340.7 7827.8
2 7 2028.1 ** ** ** 7839.5

gamma 1 5 2026.9 ** ** 2340.7 7828.2
2 7 ** ** ** 2358.2 **

** = corner solution



F
ig

ur
e 

1:
F

or
ec

as
ti

ng
 e

rr
or

s:
  A

ll 
m

od
el

s 
(a

ve
ra

ge
 a

cr
os

s 
5 

da
ta

se
ts

)

02040608010
0

12
0

14
0

16
0

18
0

20
0

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average MAPE

E E
_N

E
G

E
G

_N

E
_C

E
_N

C

E
G

_C

E
G

_N
C



F
ig

ur
e 

2:
 

F
or

ec
as

ti
ng

 e
rr

or
s:

 M
od

el
s 

w
it

h 
co

va
ri

at
es

 o
nl

y

0102030405060

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average MAPE

E
_C

E
_N

C

E
G

_C

E
G

_N
C



F
ig

ur
e 

3:
F

or
ec

as
ti

ng
 e

rr
or

s:
 M

od
el

s 
w

it
ho

ut
 c

ov
ar

ia
te

s

0102030405060708090

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average MAPE

E
_N

E
G

E
G

_N



F
ig

ur
e 

4:
F

or
ec

as
ti

ng
 e

rr
or

s:
 E

xp
on

en
ti

al
-g

am
m

a 
m

od
el

s

0102030405060708090

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average MAPE

E
G

E
G

_C



F
ig

ur
e 

5:
P

ar
am

et
er

 s
ta

bi
lit

y:
 M

ea
n 

ti
m

e-
to

-p
ur

ch
as

e 
pa

ra
m

et
er

0

0.
51

1.
52

2.
5

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average indexed parameter estimate

E E
_N

E
G

E
G

_N

E
_C

E
_N

C

E
G

_C

E
G

_N
C



F
ig

ur
e 

6:
P

ar
am

et
er

 s
ta

bi
lit

y:
 P

ro
m

ot
io

n 
pa

ra
m

et
er

0

0.
51

1.
52

2.
5

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average indexed parameter estimate

E
_C

E
_N

C

E
G

_C

E
G

_N
C



F
ig

ur
e 

7:
P

ar
am

et
er

 s
ta

bi
lit

y:
 G

am
m

a 
di

st
ri

bu
ti

on
 v

ar
ia

nc
e 

pa
ra

m
et

er

012345

4
12

20
28

36
44

52

L
en

gt
h 

of
 c

al
ib

ra
ti

on
 p

er
io

d 
(w

ee
ks

)

Average indexed parameter estimate

E
G

E
G

_C


