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Abstract. Estimation obtained through classical regression model reveals 

the fitting (or prediction) and projection (or forecast) values with a certain error. 

This situation leads to loss of information and imprecision of data.  However, if the 

imprecise information is converted to fuzzy data rather than single value, an 

estimation procedure can be obtained in which observation errors are hidden in 

fuzzy coefficients. Thus, it would be more realistic to make an interval estimate 

instead of a single value estimate with a certain margin of error. Therefore, in this 

study, a novel fuzzy least squares method developed for the variables expressed by 

LR-type fuzzy numbers, based on the optimal classical lagged regression model 

structure determined by the genetic algorithm, was addressed. a numerical 

example to explain how the proposed method is applicable was considered. 

Keywords: Genetic Algorithms, LR-Type Fuzzy Numbers, Fuzzy Least 

Squares Method, Time Series, Forecasting. 
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1. Introduction 
In the real world, the data cannot be considered and modeled precisely. For 

example, the water level of a river, the temperature in a room or the electricity 

consumption cannot be measured in an exact way because of their fluctuations[1]. 

Therefore, trying to find an applicable method with less error to estimate the 

variation of a dependent (output or response) variable according to the variation of 

explanatory (input or independent) variables is one of the most important goals for 

today's researchers. For this, regression analysis, which is made to determine the 

best fitting coefficients of the model afterward creating an appropriate 
mathematical model from the knowledge of the values of a given data set, is one of 

the most used statistical tools. 

The classical statistical regression approach that is bounded by some strict 
assumptions about the given data provides a crisp relationship between explanatory 

and response variables, based on a crisp data set, from a statistical viewpoint. In 

addition, deviations between the observed and the estimated values are supposed to 
be due to measurement errors and/or random variations[2]. However, in many real 

applications, the relationships among variables where the available data may be 

very limited and imprecise, and variables may be interacting in an uncertain, 
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qualitative. At the same time, the deviations due to the imprecisely observed data 
or the indefiniteness of the system structure and parameters may be. In this case, 

the uncertainty is not due to randomness but fuzziness[3]. As a result, two types of 

uncertainty arise. First, there exists probabilistic uncertainty, which is solved 
overtime or through experimentation. Secondly, there is fuzzy uncertainty that has 

nothing to do with experimentation or time. In other words, some aspects of 

uncertainty measure the vagueness of the phenomena (due to their inconsistency to 

the existent criteria or vagueness in their definition) cannot be summarized in 
random terms. This kind of uncertainty is evaluated by a measure called possibility. 

Hence, error terms are deleted in fuzzy regression models and are, in fact, hidden 

in the fuzzy coefficients [4]. This fuzzy uncertainty described as ambiguity and 

vagueness has revealed the theory of fuzzy sets introduced by Zadeh [5] to build 

such a system as needed to deal with ambiguous and vague sentences or 

information[6]. 
For overcoming such limitations mentioned in classical statistical 

regression approach, fuzzy regression, which is an extension of the classical 

regression and is used in estimating the relationships among variables where the 

available data are very limited and imprecise, and variables are interacting in an 
uncertain, qualitative and fuzzy way, is introduced. Fundamental differences 

between fuzzy regression and classical regression are as follows: 

-Fuzzy regression can be used to fit fuzzy data and crisp data into a 
regression model, whereas ordinary regression can only fit crisp data. 

- Statistical regression analysis is based on some strict assumptions. The 

unobserved error term should mutually be independent and identically distributed. 
Lack of such assumptions would affect the effectiveness of the method. In this 

case, fuzzy regression can be replaced. 

- In contrast to the ordinary regression that is based on probability theory, 

fuzzy regression is based on possibility theory and fuzzy set theory. 
- Ordinary regression modeling data with randomness type of uncertainty 

but fuzzy regression modeling data with fuzziness type of uncertainty. 

- In ordinary regression, the unfitted errors between a regression model and 
observed data are assumed as observation error that is a random variable. In fuzzy 

regression, the same unfitted errors are viewed as the fuzziness of the model 

structure[7]. 

From the methodological and conceptual aspects, it is possible to roughly 
divide the fuzzy linear regression (FLR) methods into two categories as linear 

programming (LP)-based methods and fuzzy least-squares methods. 

Linear programming (LP)-based methods using the minimum fuzziness 
criterion aims to build fuzzy linear models by minimizing the system fuzziness 

subject to including the data points of each sample within a specified feasible data 

interval. This approach was first proposed by Tanaka, Hayashi and Watada [8], 
Asai [9], afterward was investigated and improved by many authors. 

Fuzzy Least Squares and Least Absolutes Methods based on a distance on 

the space of fuzzy numbers extend the least absolutes/least squares errors criterions 
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to the fuzzy setting. This approach was first proposed by Diamond [10], Celmiņš 
[11], simultaneously, afterward, was investigated and improved by many 

researchers. In the literature, there are also studies that present the fitting (or 

prediction) and projection (or forecast) of time series in the framework of fuzzy 
regression.Again, it is possible these studies to divide based on linear programming 

(LP) and fuzzy least squares/ least absolutes. For studies on fuzzy linear 

programming (possibilistic) estimation of time series, look at: [12-15]. For studies 
on fuzzy least squares/ least absolutes estimation of time series, look at: [16]. In 

addition, there are also the fuzzy possibilistic methods [17-19]  and fuzzy least 

squares/ least absolutes methods [20]combined with heuristic (evolutionary) 

techniques. 
Combining different forecasting structures can be an effective way of 

improving forecasting performance. Therefore, in this study, to identify the 

functional relationship between variables with fuzzy input and output observations, 
a novel fuzzy least squares method developed for the variables expressed by LR 

typed fuzzy numbers, based on the optimal classical lagged regression model 

structure determined by the genetic algorithm, is applied. This paper is organized 
as follows. The following section (Section 2) introduces the preliminary concepts 

related fuzzy sets and fuzzy arithmetic. Section 3 presents the research 

methodology. In Section 4, the improved method for the case study is proposed. 

The results of the numerical example are given in Section 5. Finally, Section 6 
concludes the study, and give recommendations for future research.  

 

2. Preliminary Concepts about Fuzzy Sets and Fuzzy Arithmetic 

A fuzzy set �̃� on the universal set 𝑋 is described by its membership 

function�̃�(𝑥): 𝑋 → [0,1]  (where 𝑋 = ℝ is assumed).  The α-cut of a fuzzy set  �̃� 

is defined as the crisp set 𝐴𝛼 = {𝑥 ∈ ℝ: �̃�(𝑥) ≥ α }, α ∈ (0,1]. If  𝐴𝛼 represented 

by [𝐴𝛼𝑙 , 𝐴𝛼𝑟 ] for any α = [0,1] is a non-empty compact interval, A fuzzy set �̃� of  ℝ 

is called a fuzzy number. The so-called LR-fuzzy numbers described by �̃� =(𝑛, 𝑙, 𝑟)𝐿𝑅 with central value 𝑛 ∈ ℝ, left and right spreads  𝑙, 𝑟 ∈ ℝ, decreasing left 

and right shape functions 𝐿, 𝑅: ℝ+ → [0,1], with 𝐿(0) = 𝑅(0) = 1 are also one of 

the specific type of fuzzy numbers, which are  rich and flexible enough to cover 
most of the applications. Such LR-fuzzy numbers have the form of membership 

function [21] 

�̃�(𝑥) = {𝐿 (𝑛 − 𝑥𝑙 ) , 𝑥 ≤ 𝑛,𝑅 (𝑥 − 𝑛𝑟 ) , 𝑥 > 𝑛. 
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According to this, the so-called triangular fuzzy numbers being a special 

type of LR-fuzzy number and denoted by �̃�  =  (𝑛, 𝑙, 𝑟)𝑇 are defined by the 

following membership function: 
 

�̃�(𝑥) = { 𝑥 − (𝑛 − 𝑙)𝑙 , 𝑥 ∈ [𝑛 − 𝑙, 𝑛],(𝑛 + 𝑟) − 𝑥𝑟 , 𝑥 ∈ (𝑛, 𝑛 + 𝑟]. 
Theα-cut of the LR-triangular fuzzy number�̃�is as follows 𝑁𝛼 = [𝑁𝛼𝑙 , 𝑁𝛼𝑟] = [𝑛 − (1 − 𝛼)𝑙, 𝑛 + (1 − 𝛼)𝑟], 𝛼 ∈ [0,1]. 
 

A number of results for the algebraic operations of LR-fuzzy numbers 

based on Zadeh’s extension principle are present. Let �̃� = (𝑚, 𝑙𝑚 , 𝑟𝑚)𝐿𝑅 and �̃� =(𝑛, 𝑙𝑛, 𝑟𝑛)𝐿𝑅 be two triangular fuzzy numbers and λ be a real number. Then 

 𝜆 ⊗ �̃� = {(𝜆𝑚, 𝜆𝑙𝑚 , 𝜆𝑟𝑚)𝐿𝑅          , 𝜆 > 0,Ɩ {0}           , 𝜆 = 0,(𝜆𝑚, |𝜆|𝑙𝑚, |𝜆|𝑟𝑚)𝐿𝑅   , 𝜆 < 0,  
 

Where Ɩ {0}stands for the indicator function of the crisp zero. When 𝐼 = [𝑖1, 𝑖2] and 𝐽 =  [𝑗1, 𝑗2] be two closed intervals, then 

 𝜆 ⊗ 𝐼 = { [𝜆𝑖1, 𝜆𝑖2]          , 𝜆 > 0,0                         , 𝜆 = 0,[𝜆𝑖2, 𝜆𝑖1] , 𝜆 < 0.  

 𝐼 ⊗ 𝐽 =  [𝑖1  +  𝑗1, 𝑖2 + 𝑗2] 
 

The distance between two these intervals 

 𝒟(𝐼, 𝐽) =  (𝑖1 − 𝑗1)2  +  (𝑖2 − 𝑗2)2. 
 

3. Research methodology 

 

3.1. Modeling of univariate time series 𝑌𝑡 , the sequence of data points indexed in successive equally spaced 𝑡 = 1,2, … , 𝑇  time order, is called as the univariate time series.There are two main 

points of time series: the dynamic causal effect, seeking an answer to the question 

of "What is the effect of 𝑋 on 𝑌 over time?" and the forecasting, seeking an answer 

to the question of "What are predicted future values of 𝑌, given available 

information?”.  In this study, an autoregressive (AR) model is used to obtain the 

prediction and forecasting of a univariate time series. Because,the intuition behind 
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this model is, that the observed time series 𝑌𝑡  depends on a weighted linear sum of 

the past values, k, of 𝑌𝑡  and a random shock𝜀𝑡 . From this perspective, an 

autoregressive model corresponds simply to a linear regression of the current value 

of the series against one or more prior values of the series, and can therefore be 
analyzed among other methods with the standard linear least squares technique, 

where the resulting estimation of the parameters, has a straight forward 

interpretation.Technical, the AR (k) model can be formulated as follows: 
 𝑌𝑡 = 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯ + 𝛽𝑘𝑌𝑡−𝑘 + 𝜀𝑡, 

 

where 𝑌𝑡  denotes the time-series and 𝜀𝑡  indicates a white-noise process. The value 

of 𝑝 is called the order of the AR model. 

 

3.2. Estimation procedure of fuzzy lagged time series model 

Assume that  𝑌�̃�  and �̃�𝑡−1 , �̃�𝑡−2, … , �̃�𝑡−𝑝 are respectively the fuzzy 

dependent and independent variables expressed as LR-fuzzy numbers of their 

observations. A lagged regression model for the aforementioned data is 

 𝑌�̃� = 𝛽0 ⊕ 𝛽1�̃�𝑡−1 ⊕ 𝛽1�̃�𝑡−2 ⊕ … ⊕ 𝛽𝑘�̃�𝑡−𝑘 ⊕ 𝜀𝑡 . 

 

Here, in order to estimate the crisp coefficients vector𝛽 =[𝛽0 𝛽1 … 𝛽𝑘]𝑡, a novel method developed by Chachi, J., and Taheri, S. M. 
(2016) to identify the functional relationship between variables by means of a 

fuzzy regression model where both input and output observations are given as 

fuzzy data is considered. The prediction procedure adapted to the lagged regression 
model is constructed according to the following steps. 

Step 1:Primarily, the regression model based on the α-level sets of the 

fuzzy input-output data is constructed. By considering the α-level sets of the 

observed data, the following form of the univariate lagged interval-valued (or 
multiple) regression models is considered 

 [𝑦𝑡,𝛼𝑙 , 𝑦𝑡,𝛼𝑟 ] = 𝛽0(𝛼) ⊕ 𝛽1(𝛼) ⊗ [𝑦𝑡−1,𝛼𝑙 , 𝑦𝑡−1,𝛼𝑟 ] ⊕ … ⊕ 𝛽𝑘(𝛼) ⊗[𝑦𝑡−𝑘,𝛼𝑙 , 𝑦𝑡−𝑘,𝛼𝑟 ]. 
 

Note that, the regression coefficients 𝛽0(𝛼), 𝛽1(𝛼), … , 𝛽𝑘(𝛼) are real-

valued functions of𝛼 ∈ [0,1]. 
Step 2: The unknown vector parameter 𝛽 = [𝛽0(𝛼) 𝛽1(𝛼) … 𝛽𝑘(𝛼)]𝑡 

is evaluated by minimizing the following objective function 
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𝒟(𝛽) = ∑ 𝒟(𝑌𝑡,α,𝑛
𝑡=𝑘+1 𝑋𝑡,α𝛽) 

This objective function is the sum of squared distances between the α-level 

sets of observations of the dependent variable 𝑌𝑡,α and their estimated values𝑋𝑡,α𝛽, 

where 𝑋𝑡,α = [1 𝑌𝑡−1,α … 𝑌𝑡−𝑘,α]is the vector of the 𝛼-level sets of 

independent variables. 

Since the interval multiplication is applied, it is necessary to ensure that the 

minimum and maximum values of the α-level sets are properly considered for both 

positive and negative cases of𝛽0(𝛼), 𝛽1(𝛼), … , 𝛽𝑘(𝛼). In each case, such a 

requirement can be overcome by considering the following substitution variables. 

 𝐿𝑡𝑗,α = {𝑋𝑡𝑗,α𝑙 𝛽j(𝛼) ≥ 0,𝑋𝑡𝑗,α𝑟 𝛽j(𝛼) < 0, 𝑅𝑡𝑗,α = {𝑋𝑡𝑗,α𝑟 𝛽j(𝛼) ≥ 0,𝑋𝑡𝑗,α𝑙 𝛽j(𝛼) < 0, 
 

 

Where,𝑗 = 0,1, … , 𝑘, 𝑡 = 1, … , 𝑇 and 𝑋0𝑗,α𝑙 = 𝑋0𝑗,α𝑟 = 1 . Then, ifthe objective 

function 𝒟(𝛽)is rewritten,  
 𝒟(𝛽) = ‖𝑌α𝑙 − 𝐿α𝛽‖2 + ‖𝑌α𝑟 − 𝑅α𝛽‖2, 
 

Where, ‖. ‖is the Euclidean norm, and 𝐿α and 𝑅α are matrices with general 

elements 𝐿𝑡𝑗,α and𝑅𝑡𝑗,α, respectively. By equating to zero the partial derivative of 𝒟(β) according to the unknown parameter β, the best value of β which minimizes 

the objective function 𝒟(β), is found. As a result, the mentioned situation 

corresponds to the system of linear equations in form of  

 𝐿α𝑡 𝐿α𝛽 − 𝐿α𝑡 𝑌α𝑙 + 𝑅α𝑡 𝑅α𝛽 − 𝑅α𝑡 𝑌α𝑟 = 0, 
 

Where  𝐿α𝑡  and 𝑅α𝑡  are the transposes of matrices 𝐿αand𝑅α, respectively. Subject to 

the existence of (𝐿α𝑡 𝐿α + 𝑅α𝑡 𝑅α)−1,the least squares estimate of 𝛽 is obtained as 

 𝛽 = (𝐿α𝑡 𝐿α + 𝑅α𝑡 𝑅α)−1(𝐿α𝑡 𝑌α𝑙 + 𝑅α𝑡 𝑌α𝑟). 
Step 3: Finally, the optimal solutions𝛽𝑗(𝛼),𝑗 = 0,1, … , 𝑘, to estimate the 

regression coefficients 𝛽𝑗, are aggregated as  �̂�𝑗 = ∫ 𝛽𝑗(𝛼)𝑑𝛼1
0 , 𝑗 = 0,1, … , 𝑝. 

Thus, the optimal model is obtained as �̂̃�𝑡 = �̂�0 ⊕ �̂�1 ⊗ �̃�𝑡−1 ⊕ … ⊕ �̂�𝑘 ⊗ �̃�𝑡−𝑘 . 
 

4. Method proposed for the case study 
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In this research, the consumer price index (CPI) forecasting is addressed as 

a numerical example to explain how the proposed method is applicable to obtain a 

suitable regression model for fuzzy observations. Here, the objective is an annual 

forecast based on the monthly CPI (base year1978-1979) data between 1982 and 
2016. Therefore, it is necessary to create a regression model suitable for the fuzzy 

data obtained by converting the monthly consumer price index data into annual 

data by taking their lower limit, average and upper limit values. Hence, error terms 
are deleted in the fuzzy regression model and are, in fact, hidden in the fuzzy 

coefficients. According to this, conversion of monthly CPI data to annual data is 

 

Table 1. Annual CPI data expressed in triangular fuzzy numbers 

Years 
CPI-

Lower 

CPI-

Average 

CPI-

Upper 
Years 

CPI- 

Lower 

CPI-

Average 

CPI-

Upper 

1982 (373, 410, 462) 2000 (2561547, 2960721, 3401704) 

1983 (481, 539, 633) 2001 (3473079, 4545060, 5820672) 

1984 (655, 800, 947) 2002 (6174953, 6733431, 7598668) 

1985 (1000, 1160, 1366) 2003 (7761927, 8506320, 9007595) 

1986 (1410, 1561, 1785) 2004 (9049038, 9208410, 9599091) 

1987 (1837, 2168, 2767) 2005 (9682418, 10136773, 10700413) 

1988 (2933, 3801, 4848) 2006 (10120727, 10952013, 11634954) 

1989 (5113, 6447, 8183) 2007 (11125675, 11910289, 12610805) 

1990 (8493, 10547, 13141) 2008 (12034795, 13155479, 13908329) 

1991 (13697, 17503, 22484) 2009 (13178158, 13975633, 14785709) 

1992 (24485, 30053, 37748) 2010 (14256818, 15172005, 15747233) 

1993 (39859, 50392, 64695) 2011 (14955449, 16157062, 17375868) 

1994 (66961, 106102, 150181) 2012 (16542725, 17591030, 18446882) 

1995 (160158, 206323, 263667) 2013 (17751610, 18908996, 19812036) 

1996 (285265, 366475, 462066) 2014 (19127577, 20584646, 21481504) 

1997 (486939, 672724, 916498) 2015 (20512553, 22164543, 23318354) 

1998 (979423, 1225733, 1526376) 2016 (22477401, 23885562, 25308122) 

1999 (1588988, 1943553, 2449441)         

To get rid of the heteroscedasticity problem in the regression model to be 
established regarding the CPI forecasting, it would be better to use their natural 

logarithms instead of the CPI data in Table 1. According to this, flowchart for 

prediction in the fuzzy logic framework of the logarithmic CPI data is 
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DATA MANIPULATION AND 

MODEL ESTABLISHING 

 

Establishing the algorithm of the lagged 

regression model according to the 

central values of the lnCPI 

Finding the appropriate lagged 

regression model using genetic 

algorithm (Initializing the population, 

and set the genetic algorithm (GA) 

parameters e.g. mutation and crossover 

rates, maximum generation number, 

and etc.) 

THE DETERMINATION OF 

LAGGED TIME SERIES MODEL 

BASED ON GENETIC 

ALGORITHM 

Initialize population 

Find fitness of population    

While (termination criteria is 

reached) do 

Parent selection 

Crossover 

Mutation  

Decode and Fitness Function 

calculation 

Survivor selection 

Find best 

Return best 

The classical regression model based on the centers of the observations is 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 = 0.215 + 0.185𝑙𝑛𝐶𝑃𝐼𝑡−1 − 0827𝑙𝑛𝐶𝑃𝐼𝑡−2 

Taking of the logarithmic CPI-Average 

data as the central values (lnCPI= 

logarithmic CPI) 
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Figure 1. Flowchart of the proposed methodology 

FUZZIFICATION AND FUZZY ESTIMATION OF LAGGED TIME SERIES 

MODEL 

 

 Obtaining annual data in triangular fuzzy number form by taking the monthly lower 

limit, average and upper limit values of consumer price index data 

Obtaining the interval-valued regression model for each 𝛼 ∈ [0,1]  𝑙𝑛𝐶𝑃𝐼𝑡,𝛼𝑙 , 𝑙𝑛𝐶𝑃𝐼𝑡,𝛼𝑟  = 𝛽0(𝛼) ⊕ 𝛽1(𝛼) ⊗  𝑙𝑛𝐶𝑃𝐼𝑡−1,𝛼𝑙 , 𝑙𝑛𝐶𝑃𝐼𝑡−1,𝛼𝑟  ⊕ 𝛽2(𝛼)⊗  𝑙𝑛𝐶𝑃𝐼𝑡−2,𝛼𝑙 , 𝑙𝑛𝐶𝑃𝐼𝑡−2,𝛼𝑟   
Obtaining the sum of squared distances between the α-level sets of observations of 

the dependent variable and independent variables 

According to the classical regression model, there is respectively the positive, 

negative relationship between the dependent and independent variables. Therefore, 

the coefficients according to the procedure described in Step 2 considering the sign 

of the coefficients 𝛽1(𝛼) and 𝛽2(𝛼) as positive and negative for each 𝛼 ∈ [0,1] are 

estimated as 𝛽 𝛼 =  𝛽0(𝛼)𝛽1(𝛼)𝛽2(𝛼)

 =  𝐿α𝑡 𝐿α + 𝑅α𝑡 𝑅α −1 𝐿α𝑡  𝑌α𝑙 + 𝑅α𝑡  𝑌α𝑟  

where,𝐿α =  1 𝑙𝑛𝐶𝑃𝐼𝑡−1,𝛼𝑙 𝑙𝑛𝐶𝑃𝐼𝑡−2,𝛼𝑟  , 𝑅α = 1 𝑙𝑛𝐶𝑃𝐼𝑡−1,𝛼𝑟 𝑙𝑛𝐶𝑃𝐼𝑡−2,𝛼𝑙  , 𝑌α𝑙 =  𝑙𝑛𝐶𝑃𝐼𝑡 ,𝛼𝑙   and  𝑌α𝑟 =  𝑙𝑛𝐶𝑃𝐼𝑡 ,𝛼𝑟  . 
Derivation of estimated coefficients 

𝛽 0 =   𝛽0 𝛼 𝑑𝛼1

0

= 0.8183 𝛽 1 =   𝛽1 𝛼 𝑑𝛼1

0

= 1.0005 𝛽 2 =   𝛽2 𝛼 𝑑𝛼1

0

= −0.0396 
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If the phase of “Establishing the algorithm of the lagged regression model 
according to the central values of the CPI” in the Flowchart is further elaborated, 
the algorithm is 

 

Fitness Function (gen) { 
max.lag=Length(gen) 
 X=NULL 
 AIC.Criterion=NULL 
 DO FOR i=1, max.lag 
  IF gen[i]==1 THEN 
  X= [, append (lnCPIt-i)] 
 ENDDO 
 Result=Regress (lnCPIt,X) 
 AIC.Criterion=AIC (Result) 
 Return (AIC.Criterion) 

} 

Figure 2. The proposed fitness function algorithm 

 

5. Results and discussions 
According to the regression coefficients estimated at the end of the 

presented methodology regarding the prediction of the logarithmic CPI data using 

to explain how the proposed method is applicable to obtain a suitable regression 
model for fuzzy observations, the fuzzy linear regression model is 

 𝑙𝑛𝐶𝑃𝐼̃̂ 𝑡 = 0.8183 ⊕ 1.0005 ⊗ 𝑙𝑛𝐶𝑃𝐼̃ 𝑡−1 ⊝ 0.0396 ⊗ 𝑙𝑛𝐶𝑃𝐼̃ 𝑡−𝑘 . 
 

The arranged form of the established regression model for the forecasting 
of the logarithmic CPI data,of which the syntax of the code is written in MATLAB, 

and its goodness of fit is 

 

 

 

Table 2. The performance of established fuzzy regression model for 
logarithmic CPI data 

 𝑙𝑛𝐶𝑃𝐼̃̂ 𝑡 = (𝑙𝑛𝐶𝑃𝐼̂ 𝑡, 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙 , 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑟) Performance 

(Goodness of fit) 

Classical 

regression 

based model 

𝑙𝑛𝐶𝑃𝐼̂ 𝑡 = 0.215 + 0.185𝑙𝑛𝐶𝑃𝐼𝑡−1 − 0827𝑙𝑛𝐶𝑃𝐼𝑡−2 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙 = 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 − 𝑡0.052 ,35−3 √𝑉𝑎�̂�(𝑙𝑛𝐶𝑃𝐼̂ 𝑡) 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑟 = 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 + 𝑡0.052 ,35−3 √𝑉𝑎�̂�(𝑙𝑛𝐶𝑃𝐼̂ 𝑡) 

 

𝛾2 = 332.572 
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Proposed 
model 

𝑙𝑛𝐶𝑃𝐼̂ 𝑡 = 0.8183 + 1.0005𝑙𝑛𝐶𝑃𝐼𝑡−1− 0.0396𝑙𝑛𝐶𝑃𝐼𝑡−1 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙 = 1.0005𝑙𝑛𝐶𝑃𝐼𝑡−1𝑙 − 0.0396𝑙𝑛𝐶𝑃𝐼𝑡−2𝑙  𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑟 = 1.0005𝑙𝑛𝐶𝑃𝐼𝑡−1𝑟 − 0.0396𝑙𝑛𝐶𝑃𝐼𝑡−2𝑟  

𝛾2 = 48.793 

 

Here, the sum of squared distances between fuzzy numbers is 𝛾2 = ∑ [𝑙𝑛𝐶𝑃𝐼𝑡 − 𝑙𝑛𝐶𝑃𝐼̂ 𝑡]2 +𝑇𝑡=1 [(𝑙𝑛𝐶𝑃𝐼𝑡 − 𝑙𝑛𝐶𝑃𝐼𝑡𝑙 ) − (𝑙𝑛𝐶𝑃𝐼̂ 𝑡 −𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙)]2 + [(𝑙𝑛𝐶𝑃𝐼𝑡 + 𝑙𝑛𝐶𝑃𝐼𝑡𝑟) − (𝑙𝑛𝐶𝑃𝐼̂ 𝑡 + 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙)]2
. In addition,  𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑙 and 𝑙𝑛𝐶𝑃𝐼̂ 𝑡𝑟  demonstrated in the classical regression based model corresponds to lower 

and upper values of prediction interval for new observations, respectively (namely, 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 − 𝑡0.052 ,35−3 √𝑉𝑎�̂�(𝑙𝑛𝐶𝑃𝐼̂ 𝑡) ≤ 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 ≤ 𝑙𝑛𝐶𝑃𝐼̂ 𝑡 + 𝑡0.052 ,35−3 √𝑉𝑎�̂�(𝑙𝑛𝐶𝑃𝐼̂ 𝑡) 

). The smaller the 𝛾2 value, which is the sum of squared distances between 

prediction and real observation value, is, the higher the goodness of fit would be. 

According to this, as observed from 𝛾2 values in Table 3, the performance of the 

proposed model will be higher than the conventional regression equation with a 

predictive interval. 

So, Logarithmic CPI and its fitting (prediction) values of the proposed 
model are as in Figure 3. 

 
Figure 3. Logarithmic CPI and fitting (prediction) values 

 
If a projection according to the resulting fuzzy regression model is made, 

the findings obtained will be as Figure 3. 
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Figure 4. The projection of logarithmic CPI 

 
As a result, Real and projection CPI values are obtained by taking the anti-

log of real and projection lnCPI values.  

 

 
 

                    Table 3. Forecasting CPI in 2020 and 2026 

 (CPI-Lower, CPI-Medium, CPI-Upper) 

2020 (5.588, 17.590, 29.614) 
2026 (8.979, 18.328, 27.694) 

 

6. Conclusions and Future Researches 
One of the main issues in linear regression models is imprecision or 

vagueness in the definition and/or observation of output and/or of inputs. Data 

imprecision may be due to several causes: (i) imprecision in measuring the 

empirical phenomena observed; (ii) vagueness of the variables of interest (inputs 
and/or outputs) when they are expressed in linguistic terms; (iii) partial or total 

ignorance about the variables’ values on specific instances; (iv) categorization 
(granularity) of the variables of interest. Therefore, In order to make the available 
information suitable, Converting imprecise data into fuzzy data could be more 

effective than replacing them with a single value.This situation is the same for time 

series, too. For example, when a monthly time series is converted to a yearly series, 

the monthly average is usually taken over the years. Then, the fitting (or 
prediction) and projection (forecast) values are revealed with a certain error 

through the regression model.This situation leads to loss of information and 

imprecision of data. However, if the imprecise information is converted to fuzzy 

data rather than single value, an estimation procedure can be obtained in which 
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observation errors are hidden in fuzzy coefficients.Thus, it would be more realistic 

to make an interval estimate instead of a single value estimate with a certain 

margin of error. For this, there are many fuzzy regression models based on linear 

programming and fuzzy least squares methods in the literature.In this study, A 
fuzzy least squares based approach, a novel method developed by Chachi, J., and 

Taheri, S. M. (2016) to identify the functional relationship between variables with 

fuzzy input and output observations has been adapted to the lagged regression 
created to forecast univariate time series. As a case study, the consumer price index 

(CPI) data between 1982 and 2016 has been addressed.Accordingly, firstly, after 

taking the logarithmic CPI-average data as the central values, the optimal lagged 

regression model according to the central values of the logarithmic CPI was 
determined by the genetic algorithm. Then, annual data obtained in triangular fuzzy 

number form by being taken the monthly lower limit, average and upper limit 

values of logarithmic CPI data was predicted by the fuzzy least squares method 
according to the optimal classical lagged regression model structure determined by 

the genetic algorithm. As a result, prediction and projection CPI values were 

obtained by taking the anti-log of prediction and projection values of the 
logarithmic CPI data. Here, the presented method is discussed for a univariate 

model. In addition, as a future research, the method discussed can be adapted to 

multivariate models. Because, to establish a relationship with the regression 

between monthly and annual data, Monthly data are usually converted into annual 
data by being taken their average. However, this condition causes loss of 

information. It would be more realistic to use the improved fuzzy regression model 

presented in the research instead of estimating it with a certain error-sharing 
regression model to overcome this problem. 
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