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Abstract. Solar energy and the concept of passive architecture and Net Zero Energy buildings are 

being increased. For an optimal management of the building energy, a Model Predictive Control is 

generally used but requires an accurate building model and weather forecast. For a more reliable 

modelling, the knowledge of the global solar irradiation is not sufficient; three methods, smart 

persistence, artificial neural network and random forest, are compared to forecast the three 

components of solar irradiation measured on the site with a high meteorological variability. Hourly 

solar irradiations are forecasted for time horizons from h+1 to h+6. The random forest method (RF) 

is the most efficient and the accuracy of forecasts are in term of nRMSE, from 19.65% for h+1 to 

27.78% for h+6 for global horizontal irradiation, from 34.11% for h+1 to 49.08% for h+6 for beam 

normal irradiation, from 35.08% for h+1 to 49.14% for h+6 for diffuse horizontal irradiation. The 

improvement brought by the use of RF compared to the two other methods increases with the 

forecasting horizon. A seasonal study is realized and shows that the forecasting during spring and 

autumn is less reliable than during winter and summer due to a higher meteorological variability. 

1 Introduction  

There has been a rapid increase in solar passive 

architectural buildings in the last few years to achieve 

the net-zero energy concept. Due to the dynamic change 

in solar radiation, reliable energy generation forecasting 

is necessary for grid operation in the case of solar energy 

generation and also for passive solar architectural 

building design for the optimal thermal performance of 

buildings [1]. 

Net Zero Energy Buildings are at the frontier of the 

energy efficiency and renewable energy sources 

integration in buildings. A proper design of these 

buildings, taking into account their connectivity, is a key 

stone to reach them. Once designed their operation 

requires of an optimal control system called Model 

Predictive Control (MPC) [2].  

MPC requires a model of the system, real-time 

controllers and weather forecasts. A lot of attention has 

been paid to the two first: obtaining good models for 

buildings and checking the robustness of the control 

scheme adopted. However, less attention has been paid 

to the weather forecasting requirements for such 

applications [2].  

MPC is a control that employs an explicit model of the 

system to be controlled which is used to predict the 

future output behaviour. This prediction capability 

allows solving optimal control problems on line, where 

tracking error, namely the difference between the 

predicted output and the desired reference, is minimized 

over a future horizon, possibly subject to constraints on 

the manipulated inputs and outputs. The result of the 

optimization is applied according to a receding horizon 

philosophy: At time t only the first input of the optimal 

command sequence is actually applied to the system. 

The remaining optimal inputs are discarded, and a new 

optimal control problem is solved at time t+ 1. There is 

extensive literature covering this field [3-4]. 

Different solar systems require different solar forecasts. 

For solar concentrating systems the normal beam 

incident irradiance must be forecast, whereas for non-

concentrating systems primarily the global irradiance on 

a tilted surface is required. Efficient and renewable 

thermal comfort management inside buildings can be 

considered as a non-concentrating solar system.. For a 

more reliable modelling, the knowledge of the horizontal 

global solar irradiation is not sufficient; it is necessary to 

know the main solar components (normal beam and 

horizontal diffuse) mainly for two reasons: 

 

1. To know the solar irradiation incident on each 

surface whatever the orientation and inclination are; 

the global irradiation cannot be measured in each 

building area and the received solar irradiation can 

be computed from beam, diffuse and global 

components; 
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2. To calculate more accurately the heat exchanges 

(diffuse and beam solar irradiance being different 

influences). 

Don’t forget that the forecasting tool can be used for 
estimating the future thermal but also electrical 

production (by photovoltaic systems). 

The choice of the forecasting methods depends on the 

forecasting time horizon and the temporal resolution as 

seen in Fig. 1. 

 

Fig. 1. Forecasting time horizon versus temporal resolution [5]. 

The existing methods can be classified in four different 

sets [5-6]: 

• Time series based methods: this set holds approaches 

based on statistical models solely ground on past 

measurements; 

• NWP (Numerical Weather Forecast) based methods: 

this set holds approaches based on weather forecasts 

provided by a specialized provider; 

• Satellite imagery based methods: this set holds 

approaches based on images of the earth taken by 

satellite; 

• Sky image based methods: this set holds approaches 

based on observations of cloud cover from the 

ground with an in situ camera. 

The objective of this paper being to forecast hourly solar 

irradiation from 1 to 6 hours ahead, we concentrated our 

attention on methods developed for now-casting. The 

most efficient existing methods for such a forecast for 

these time horizons are time series analysis, artificial 

intelligence methods and deep learning methods [7]. 

If forecasting methods are largely developed for global 

solar irradiation (GHI), those developed for Beam 

Normal Irradiation (BNI) are few in number and those 

for Diffuse Horizontal Irradiation component (DHI) are, 

to the best of our knowledge, practically non-existent. 

2 Pre-processing  

2.1 Cleaning and filtering 

An automatic quality control used in the frame of 

GEOSS project (Group on Earth Observation System of 

System) [8] is applied to the solar data. Before 

introducing the solar data into the machine learning 

process, the data must be cleaned and filtered. The data 

are filter out in order to remove night hours. The data 

near sunset and sunrise are generally not reliable 

(instrumental errors especially due to the cosine response 

and mask effect of the surrounding mountains), a pre-

processing operation is applied based on the solar 

elevation: solar radiation data with a solar elevation is 

lower than 10° are removed [9]. 3 years of hourly data 

have been used in this study. After cleaning and filtering 

the total number of hourly data for each solar component 

(global, beam and diffuse) is 10559 (about 60% of the 

data were not used (2% for outliers data and 58% for sun 

height less than 10°). 

2.2 Stationarization 

Machine learning methods are efficient tools for 

forecasting time series with a stationary behavior. To 

make solar irradiation data stationary and to separate the 

climatic effect and the seasonal effects, the solar data are 

generally transformed in non-dimensional variables 

called "clearness index", and denoted kt, given by the 

ratio of the solar radiation on the earth to that outside the 

atmosphere and defined by equation (1) [10]: 

 (1) 

with GHI the global irradiation at the earth's horizontal 

surface for a given location and G0 the global solar 

radiation on the top of atmosphere. It is the clearness 

index series kt that induces randomness, caused by the 

diversity of atmospheric components (dust, aerosols, 

clouds motion, and humidity) on the solar irradiation 

measured at earth ‘surface. 
The extraterrestrial irradiation G0 can be efficiently 

replaced by the clear sky solar irradiation GCS taking into 

account the climatic conditions of the meteorological 

site; thus the clearness index is replaced by the clear sky 

index kg,cs defined by: 

 

(2) 

with GHICS the Global Horizontal solar Irradiation in 

clear sky conditions.  

For the other components of solar radiation (direct and 

diffuse), similar index can be defined such as kb [11] and 

kd [12]:  

  and    
(3) 

With BNI, the Beam Normal Irradiation and DHI, the 

Diffuse Horizontal Irradiation. BNI is often called DNI 

(Direct Normal Irradiation) but in this paper Direct is 

replaced by Beam for avoiding confusion between Direct 

and Diffuse. 

Various models of clear sky solar irradiations are 

available in the literature which differ from each other 

mainly in the inputs needed by each model. The most 

widely used clear sky models are the Solis model 

developed by Mueller et al [13] and simplified by 

Ineichen [14], the European Solar Radiation Atlas 

(ESRA) model [15] and the Reference Evaluation on 

Solar Transmittance 2 (REST2) model [16].  

Thus, we decided to use the simplified Solis clear sky 

model [14], it allows to calculate GHICS, DNICS and to 

deduce DHICS by Eq. (4).   
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  GHICS=DHICS+BNICS x cos z  (4) 

 is the zenithal angle calculated at the middle of the 

hour [10]. For a better accuracy, the monthly mean 

values of aerosol optical depth and water vapour column 

are used as inputs in the Solis model; these averaged 

values were calculated from data measured at the Pic du 

Midi site (180 km from Odeillo, our study site presented 

below and same altitude) available in the data basis 

AERONET (AErosol Robotic NETwork) for four years 

(2001-2004) [17]. 

This clear sky model was validated for each month by 

comparison with experimental solar radiation data (GHI, 

BNI, DHI) measured in clear sky conditions. For 

illustration purpose, experimental and modelled solar 

irradiances by clear sky are plotted in Fig. 2 for 1 day in 

April and in September. 

  

  

  

Fig. 2. Experimental and modelled solar irradiance curves in 

clear sky conditions for April (left) and September (right), GHI 

(top), BNI (middle) and DHI components (below) (hour in true 

solar time). 

A good concordance is noted between modelled and 

experimental curves; the diffuse solar irradiance by clear 

sky is always lower to the irradiance by partially or 

cloudy skies because this component is minimum when 

the sky is clear and maximum in cloudy conditions.  

2.3 Choice of input data 

The purpose of this paper is to predict the future solar 

irradiation (at different time horizons) based on the past 

observed data i.e. mathematically: 

  (5) 

A variable X with the symbol represents a forecasted 

data, without this symbol, X is a measured data.  The 

solar data at future time step (t+h) X ̂_(t+h) is forecasted 
from the observed data X measured at the times (t, t-1…, 
t-n); thus, the objective is to determine the value of n i.e. 

the dimension of the input matrix; to do it, an auto 

mutual information method [18] is used. The auto 

mutual information is a property of the time series, 

depends on each dataset and is characteristic to the 

degree of statistical dependence between Xt+h and Xt-i 

with 0≤i≤n. 
Another preprocess called k-fold sampling is used with 

the dataset [19]: it consists in dividing randomly the data 

set into a training data set (80%) and a test data set 

(20%); this process is repeated k times and the value of 

the reliability metrics given in this paper are the average 

value on the k-fold. Here k is taken equal to 10. Thus, 

the results are independent of the set of data used for the 

training because using only one data set (with its own 

statistical particularities) can reduce the robustness of the 

conclusions. 

3 The meteorological site  

The meteorological data GHI, BNI and DHI were 

provided by the PROMES laboratory (CNRS UPR 

8521), located in south of France at Odeillo (Pyrénées 

Orientales, France, 42°29 N, 2°01 E, 1550 m asl), the 

station is located in the mountains, at about 100 km from 

the Mediterranean sea and presents often a high 

nebulosity (Fig. 3). The solar data are measured and 

stored with a 1 minute time interval of measurement.  

This meteorological station being situated in altitude, the 

climate is very perturbed, the rainfall continues to be 

present during the driest months and this station is 

classified according to the Köppen-Geiger classification 

in Cfb (i.e. hot temperate climate without dry period and 

temperate summer). Consequently, the variability of the 

solar radiation is high and its forecasting is all the more 

difficult to realize. This variability of the solar 

irradiation can be quantified thanks to various 

parameters, Voyant et al [20] tested some of them and 

deduced that the more significant was the mean absolute 

log return; the mean absolute log return was calculated 

for Odeillo and are, for the three components: 

- 0.6109 for GHI 

- 0.9945 for BNI 

- 0.4732 for DHI 

It appears that the variability of BNI is higher than for 

GHI and DHI and should be more difficult to predict. 

   

Fig. 3. Meteorological site (Odeillo) 
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4 Brief description of the forecasting 
methods 

Each forecasting methodology is described shortly in 

this paragraph: Scaled (or Smart) persistence, Artificial 

Neural Network and Random Forest. The first method 

uses a naïve model, easy to implement and requiring no 

training step i.e. no historical data set; it is generally 

used as a reference model in view to compare it with 

more sophisticated models in terms of accuracy. The 

second and third models belong to the family of machine 

learning methods, more complex to implement but 

generally more reliable too.  

4.1 Smart-Persistence 

The persistence model, the simplest forecasting model, 

assumes that the future value is same as the previous one 

(Eq. (6)). Persistence forecast accuracy decreases 

significantly with forecasting horizon [21]. 

 

 with X=GHI, BNI or DHI   (6) 

The smart persistence is an improved version of the 

persistence one taking into account the diurnal solar 

cycle: the clear sky solar radiation profile over the day is 

used [20]:   

  with X=GHI, BNI or DHI   
(7) 

This smart persistence model is applied in this paper to 

the three solar components and used mainly as a 

reference model. 

4.2 Artificial Neural Network (ANN): Multi-layer 
Perceptron 

It is the more known and used machine learning method 

for forecasting purposes. ANN is a nonlinear 

approximator implementing a simple pattern of elements 

interconnected one another. The ANN used here is the 

Multilayer Perceptron (MLP) with feed-forward back 

propagation often used in solar forecasting estimation 

and prediction [22-23]. The hidden layer receives input 

data and send an output signal to the output layer. A 

neuron receives signals from other previous neurons or 

input data unidirectionally for a feed-forward MLP 

configuration (Fig 4). 

 
Fig. 4. Neuron model [24]. 

For the k-th neuron of the hidden layer, a weight wk,j  

taken various values determined during the training 

phase, is linked to each input xj; An activation function f 

is applied to the weighted sum ( ) for 

calculating an output if this sum exceeds a given bias 

. This output is then distributed to 

other next neurons. A sigmoid function for hidden layers 

and a linear one for the output layer were taken as 

activation functions. For the regression of the time series 

Xt, the mathematical expression for a MLP with one 

hidden layer of m neurons, one output neuron and n 

input variables is a function described by: 

 
(8) 

With X the input vector (n x 1) of clear sky index 

kg,cs,kb,cs or kd,cs,  the output value corresponding to 

the predicted values of the model at horizon t+h, bk and 

bo the bias related to the hidden neuron k and to the 

output, and ωk,j the weights between the j-th measured 

input and the k-th hidden neuron. f is the transfer 

function of the hidden neurons, ω*k the weight between 

the output and k-th hidden neurons. The optimization of 

the MLP is made by the Levenberg–Marquardt learning 

algorithm: several configurations with a different 

number of hidden nodes in the hidden layer are tested 

(the number of hidden nodes varying between 3 and 

n+2) and the most efficient is selected. 

Once the clear sky index is forecasted , the value of 

the forecasted solar irradiation, (  or  

is obtained in multiplying  by the calculated clear 

sky irradiation ( (   or  

4.3 Random Forest 

The random forest method belongs to the regression tree 

(RT) family, it is an improved model of bagging 

regression tree [7-25].  

The binary RT method consists in an iterative split of the 

data into two groups according to some thresholds and 

rules [26]; it constructs a set of decision rules on the 

predictor variables [27] in view to partition the data into 

smaller groups with binary splits based on a single 

predictor variable [25]. For RT, the predictor and the 

threshold or grouping are chosen for maximizing the 

homogeneity of the corresponding values in the resulting 

groups. The homogeneity is calculated as the sum of 

variance of data within each groups, this variance being 

minimized [26]. Each group is then divided in two 

subgroups and so on. For each final group (called a leaf), 

the predicted value is the mean of the values belonging 

to the leaf. The procedure grows maximal trees and then 

techniques such as cross validation are used to prune the 

overfitted tree to an optimal size [28]. 

It appeared that the output error obtained by a single RT 

is due to the specific choice of the training data set [25]. 

Thus, for solving this problem, Breiman [29] proposed to 

grow several trees and to average their predicted values 

to yield a more stable final prediction. To avoid having 

to use too much data for creating several independent 

trees, samples of data are chosen randomly in the 

original data set. This method is called bagging 

(contraction of bootstrap aggregating). The complexity 
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of the model is tuned with the number of bagged trees, 

and each individual tree is not pruned [25]. 

The bagged trees are not statistically independent and the 

variance of their mean cannot be indefinitely decreased 

[25] because they are built from the same data set. To 

reduce this problem, Breiman [30] added a 

randomization step to bagging, each split of each bagged 

RT is built in a random subset of the predictors [26]. 

Numerous trees are growing creating a random forest 

(RF).  

Each subset of data used to grow the tree is replaced in 

the dataset before growing the next tree. This 

randomization gives more robustness to the model and 

decreases the risk of overfitting. At the end, the 

responses are aggregated to make the forecast. For more 

precisions about the regression trees based models, the 

reader can refer to the references given in this section. 

A comparison of these three methods (RT, Bagged RT 

and RF) is given in Prasad et al [25] in term of strengths 

and limitations.  

RF is recognized as one of the most effective machine 

learning models for forecasting and will be used in this 

paper. 

5 Results  

5.1 Statistical index for accuracy evaluation 

In this paper, we use four error metrics: 

- The mean absolute error (MAE) is appropriate for 

applications with linear cost functions, i.e. 

situations where the costs resulting from a poor 

forecast are proportional to the forecast error: 

   (9) 

- The root mean square error (RMSE) is more 

sensitive to important forecast errors, and hence is 

suitable for applications where small errors are 

more tolerable and larger errors lead to costs that 

are disproportionate, as in the case of utility 

applications, for example. It is probably the 

reliability factor that is the most widely used: 

  (10) 

These errors are then normalized, the mean value of 

irradiation is generally used as reference: 

 
(11) 

  (12) 

5.2 Auto-mutual analysis results 

The choice of the number of endogenous inputs was 

realized by the auto-mutual information method which 

determines the number of previous solar irradiation data 

used to predict the future solar irradiation at time h+1 to 

h+6. The auto-mutual method showed that the number of 

inputs (n in equation 5) for predicting GHI is 6, for BNI 

7 and for DHI 10. 

5.3 Annual performances 

5.3.1 Global Horizontal Solar Irradiation: GHI 

Table 1 gives the values of the performance metrics 

calculated on the test data set (RMSE and MAE are 

given in Wh.m-2) for GHI. 

Table 1. Performance metrics for GHI (in bold the best 

predictor for each horizon and each of error metric) 

 

Model h+1 h+2 h+3 h+4 h+5 h+6 

SP 

RMSE 97.7 132.4 157.1 176.5 193.1 202.7 

nRMSE 0.217 0.294 0.348 0.391 0.428 0.449 

MAE 57.0 80.8 98.7 112.8 124.6 130.8 

nMAE 0.126 0.179 0.219 0.250 0.276 0.290 

ANN 

RMSE 101.8 126.6 141.9 150.3 154.8 157.3 

nRMSE 0.226 0.281 0.315 0.333 0.343 0.348 

MAE 72.9 91.0 106.8 112.6 117.6 118.6 

nMAE 0.162 0.202 0.237 0.250 0.260 0.263 

RF 

RMSE 88.6 104.6 116.2 119.9 124.6 125.4 

nRMSE 0.196 0.232 0.257 0.266 0.276 0.278 

MAE 61.5 73.6 84.1 86.5 90.2 91.1 

nMAE 0.136 0.163 0.186 0.192 0.200 0.202 

 

As the ranking of the model is almost always identical 

from a RMSE point of view or MAE point of view, 

(excepted for h+1) we only present in Fig. 5 the results 

in term of RMSE and nRMSE expressed in percentage. 

 

Fig. 5. Comparison of forecasting models for various horizon 

in term of nRMSE (left) and RMSE (right) for hourly GHI. 

The smart persistence, a naive model, was used as a 

reference, this model has a good RMSE and MAE for a 

time horizon h+1 but its performances decrease rapidly 

with the time horizon. We note that the gap in term of 

performances between ANN and RF increases with the 

time horizon, from 2.92% at h+1 to 7.07 % at h+6 in 

nRMSE value. 

5.3.2 Beam Normal Solar Irradiation: BNI 

Table 2 gives the values of the performance metrics 

computed on the test data set (RMSE and MAE are 

given in Wh.m-2) for BNI. The results in term of RMSE 

and nRMSE are presented in Fig. 6 for BNI. 

The forecasting of BNI is more difficult and the 

performances of the models are less satisfying than with 

GHI, this is because BNI is more sensitive to 

meteorological conditions and because the beam 

radiation intensity is more rapid and of a greater 
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magnitude as suggested by the higher value of the mean 

absolute log return characterizing the intermittency 

degree. One more time, RF is the most performant model 

whatever the time horizon is and the gap in term of 

nRMSE between ANN and RF passes from 4.11% at 

h+1 to 12.8% at h+6 justifying even more the use of RF 

for BNI forecasting than for GHI one. 

Table 2. Performance metrics for BNI (in bold the best 

predictor for each horizon and each of error metric) 

 

Model h+1 h+2 h+3 h+4 h+5 h+6 

SP 

RMSE 207.9 287.6 338.9 378.2 412.7 434.5 

nRMSE 0.374 0.518 0.610 0.680 0.742 0.782 

MAE 125.2 187.1 230.3 266.0 298.2 317.7 

nMAE 0.226 0.337 0.414 0.478 0.536 0.571 

ANN 

RMSE 212.3 270.1 297.7 321.6 337.0 344.0 

nRMSE 0.382 0.486 0.536 0.578 0.606 0.619 

MAE 168.1 223.3 244.9 274.6 283.7 299.2 

nMAE 0.303 0.402 0.441 0.494 0.510 0.538 

RF 

RMSE 189.5 223.7 242.5 254.1 265.4 272.8 

nRMSE 0.341 0.403 0.436 0.457 0.477 0.491 

MAE 141.6 175.2 194.2 207.2 216.7 226.2 

nMAE 0.255 0.315 0.349 0.373 0.390 0.407 

 

Fig. 6. Comparison of forecasting models for various horizon 

in term of nRMSE (left) and RMSE (right) for hourly BNI. 

5.3.3 Diffuse Horizontal Solar Irradiation: DHI 

Table 3 gives the values of the performance metrics 

calculated on the test data set (RMSE and MAE are 

given in Wh.m-2) for DHI. The results in term of RMSE 

and nRMSE are presented in Fig. 7 for DHI. 

The metrics values are of the same order of magnitude as 

for BNI excepted for the smart persistence. The smart 

persistence presents bad results because the daily profile 

of the DHI by clear sky (taken into account in this 

model) is not as well defined as for BNI or GHI. As seen 

for the two other components, the gap in term of 

performances between RF and ANN increases with the 

forecasting time horizon from 5.91% for h+1 to 14.74% 

for h+6. The use of a forecaster using random forest 

method for the DHI component gives very correct 

results. 

 

 

 

 

Table 3. Performance metrics for DHI (in bold the best 

predictor for each horizon and each of error metric) 

Models metrics h+1 h+2 h+3 h+4 h+5 h+6 

SP 

RMSE 87.3 96.5 104.0 110.3 114.2 115.3 

nRMSE 0.636 0.697 0.751 0.796 0.824 0.833 

MAE 76.3 80.5 84.1 86.9 88.9 89.6 

nMAE 0.551 0.582 0.607 0.628 0.641 0.647 

ANN 

RMSE 56.8 70.3 79.7 84.6 86.2 88.5 

nRMSE 0.410 0.507 0.575 0.611 0.622 0.639 

MAE 40.6 52.3 60.5 64.3 65.1 66.4 

nMAE 0.293 0.377 0.437 0.464 0.470 0.479 

RF 

RMSE 48.5 58.0 63.1 66.0 67.6 68.1 

nRMSE 0.351 0.419 0.456 0.477 0.488 0.491 

MAE 33.6 41.0 44.7 47.7 48.9 50.1 

nMAE 0.243 0.296 0.323 0.344 0.353 0.357 

 

Fig. 7. Comparison of forecasting models for various horizon 

in term of nRMSE (left) and RMSE (right) for hourly DHI. 

5.3.4 Comparison 

It is impossible to compare the performances of the 

models according to the solar component in term of 

absolute value of RMSE (or MAE) because the daily 

DHI, BNI and GHI are very different. Thus, we plotted 

in Fig. 8, a comparison of the performances in term of 

relative RMSE for the three models. For each forecasting 

horizon, the three first histograms correspond to the 

smart persistence, then ANN, then RF. 

As previously underlined, GHI is forecasted with a better 

accuracy compared with BNI and DHI. It is probably 

due to the fact that in GHI, the two components, DHI 

and BNI, have compensating effects (when diffuse 

increases, beam decreases) and the speed of variation of 

GHI is less important than for DNI. Concerning the 

performances of the forecasters for GHI, the relative low 

reliability is probably due to clear sky index which is 

higher than 1 and can reach high values. 

The accuracy obtained for BNI and DHI using ANN and 

RF are of the same order of magnitude; in contrast, the 

smart persistence is not adapted at all for forecasting 

DHI for the reason previously explained. 

With SP and ANN methods, DHI and BNI are predicted 

with a nRMSE nearly twice as high than for GHI, with 

random forest method this difference is reduced when 

the forecasted horizon increases and for (h+6) the 

accuracy obtained for DHI and BNI prediction is the 

same than for GHI prediction. 

It seems that random forest have for all these reasons is 

the best predictor. 
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Fig. 8. Comparison of forecasting models for the three 

components. 

5.4 Seasonal performances 

It is interesting to observe the performances of the model 

season by season and thus to observe the impact of the 

meteorological conditions (and of its variability) on the 

accuracy of each model. As it is difficult to compare the 

performances of the models according to the season in 

term of absolute value of RMSE (or MAE) because 

according to the season the average hourly irradiation are 

different, only nRMSE values are given in Tables and 

Figures. 

5.4.1 Global Horizontal Solar Irradiation: GHI 

The performance metrics for GHI are presented in Table 

4. and in Fig 9. 

Table 4. nRMSE for GHI by season for the three forecasting 

models: Smart Persistence, ANN MLP, Random Forest. 

  

h+1 h+2 h+3 h+4 h+5 h+6 

SP 

Winter  0.194 0.266 0.316 0.355 0.385 0.409 

Spring  0.292 0.375 0.440 0.479 0.522 0.541 

Summer 0.174 0.233 0.275 0.313 0.328 0.347 

Automn 0.238 0.321 0.378 0.427 0.477 0.507 

ANN 

Winter  0.204 0.267 0.303 0.325 0.355 0.360 

Spring  0.261 0.328 0.366 0.380 0.392 0.395 

Summer 0.163 0.214 0.242 0.255 0.273 0.265 

Autumn 0.240 0.307 0.350 0.379 0.404 0.411 

RF 

Winter  0.181 0.211 0.238 0.253 0.258 0.271 

Spring  0.232 0.276 .0300 0.304 0.314 0.314 

Summer 0.156 0.177 0.194 0.204 0.213 0.207 

Autumn 0.211 0.250 0.286 0.300 0.320 0.315 

Whatever the forecasting horizon and the model are, the 

best results are obtained for summer then for winter; in 

summer, the occurrence of clear sky irradiations is 

higher and in winter, the occurrence of cloudy ones too; 

the solar irradiation during intermediate seasons are 

more difficult to forecast. In spring and secondly in 

autumn, the difference in performance term between the 

three models is the highest, thus when the variability of 

the GHI is high, the utilization of a more complex 

forecasting tool is necessary. 

 

 

Fig. 9. Comparison of forecasting models performances for 

various seasons in term of nRMSE for hourly GHI. 

5.4.2 Beam Normal Solar Irradiation: BNI 

The nRMSE for BNI are presented in Table 5 and Fig. 

10. 

Table 5. nRMSE for BNI by season for the three forecasting 

models: Smart Persistence, ANN MLP, Random Forest. 

  

h+1 h+2 h+3 h+4 h+5 h+6 

SP 

Winter  0.444 0.515 0.557 0.591 0.617 0.648 

Spring  0.548 0.714 0.820 0.900 0.978 1.00 

Summer 0.365 0.471 0.537 0.587 0.616 0.626 

Automn 0.533 0.681 0.755 0.811 0.871 0.913 

ANN 

Winter  0.318 0.407 0.457 0.499 0.528 0.543 

Spring  0.483 0.619 0.685 0.735 0.777 0.800 

Summer 0.298 0.377 0.423 0.442 0.460 0.470 

Autumn 0.474 0.603 0.651 0.704 0.737 0.755 

RF 

Winter  0.255 0.317 0.351 0.389 0.394 0.405 

Spring  0.441 0.526 0.562 0.598 0.625 0.632 

Summer 0.284 0.324 0.354 0.368 0.382 0.383 

Autumn 0.421 0.488 0.530 0.556 0.586 0.601 

 

The same remarks can be made than for GHI concerning 

the more important difficulty to forecast BNI in spring 

and autumn. The gap between the worst and the best 

model is higher than in GHI case and it appears clearly 

that SP is not adapted to a BNI forecasting. 

 

Fig. 10. Comparison of forecasting models performances for 

various seasons in term of nRMSE for hourly BNI. 
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5.4.3 Diffuse Horizontal Solar Irradiation: DHI 

The nRMSE for DHI are presented in Table 6 and Fig. 

11. 

Table 6. nRMSE for DHI by season for the three forecasting 

models: Smart Persistence, ANN MLP, Random Forest. 

  

h+1 h+2 h+3 h+4 h+5 h+6 

SP 

Winter  0.682 0.755 0.813 0.862 0.887 0.901 

Spring  0.550 0.616 0.681 0.737 0.770 0.778 

Summer 0.653 0.707 0.741 0.766 0.789 0.793 

Automn 0.657 0.732 0.777 0.816 0.841 0.848 

ANN 

Winter  0.418 0.544 0.628 0.670 0.674 0.690 

Spring  0.402 0.489 0.554 0.588 0.603 0.619 

Summer 0.363 0.445 0.498 0.524 0.532 0.551 

Autumn 0.431 0.563 0.608 0.646 0.659 0.676 

RF 

Winter  0.362 0.433 0.497 0.531 0.544 0.550 

Spring  0.344 0.407 0.448 0.468 0.484 0.486 

Summer 0.312 0.377 0.396 0.401 0.408 0.431 

Autumn 0.365 0.436 0.459 0.485 0.507 0.510 

As noted previously, the smart persistence is really a bad 

predictor for DHI, it is probably due to the fact that DHI 

by clear sky, DHICS, is lower than DHI by cloudy sky 

and thus kd,CS is higher than 1 and can vary in a large 

range, perturbing this method application. For the other 

methods, the accuracy of the prediction stays in a correct 

range.  

 

Fig. 11. Comparison of forecasting models performances for 

various seasons in term of nRMSE for hourly DHI. 

6 Conclusion 

Three forecasting methods, smart persistence, artificial 

neural network (multilayer Perceptron) and random 

forest, were compared and tested on solar data measured 

in a meteorological site presenting a high variability. The 

objective was to predict the hourly solar irradiation for a 

time horizon from h+1 to h+6; these methods were 

applied on the three solar components: horizontal global, 

normal beam and horizontal diffuse.  

It appears that random forest method allows to predict 

these three components with a good accuracy: 

- nRMSE from 19.65% for h+1 to 27.78% for h+6 

for GHI; 

- nRMSE from 34.11% for h+1 to 49.08% to h+6 for 

BNI; 

- nRMSE from 35.08% for h+1 to 49.14% for h+6 

for DHI. 

The random forest method gives the best results and the 

improvement due to the utilization of RF in comparison 

of ANN is even more important that the forecasting 

horizon increases; the improvement in term of nRMSE 

(nRMSERF-nRMSESC) due to a RF use compared to a SP 

use is:  

- For GHI forecasting, +2.02% for h+1 to +17.13% 

for h+6; 

- For BNI, +3.3% for h+1 to 28.36 for h+6; 

- For DHI, +28.56% for h+1 to 34.13% to h+6. 

A seasonal study was realized and showed that the 

forecasting during spring and autumn is more difficult to 

realize than during winter and summer due to a higher 

variability of the climate on these periods. 

BNI and DHI are more complicated to predict than GHI: 

the BNI and DHI components are more sensitive to 

meteorological conditions than GHI one (for GHI, the 

two components, DHI and BNI, have compensating and 

smoothing effects (when diffuse increases, beam 

decreases) and the variability of BNI is more important 

with a higher speed of variation and a higher amplitude. 

For DHI, the fact that the clearness index is higher than 1 

and can reach high values (contrary to BNI and GHI 

with a clearness index between 0 and 1) perturbs the 

forecasting process. 
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