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Abstract—This paper presents a systematic online prediction
method (Social-Forecast) that is capable to accurately forecast the
popularity of videos promoted by social media. Social-Forecast
explicitly considers the dynamically changing and evolving propa-
gation patterns of videos in social media when making popularity
forecasts, thereby being situation and context aware. Social-
Forecast aims to maximize the forecast reward, which is defined
as a tradeoff between the popularity prediction accuracy and
the timeliness with which a prediction is issued. The forecasting
is performed online and requires no training phase or a priori
knowledge. We analytically bound the prediction performance
loss of Social-Forecast as compared to that obtained by an
omniscient oracle and prove that the bound is sublinear in the
number of video arrivals, thereby guaranteeing its short-term
performance as well as its asymptotic convergence to the optimal
performance. In addition, we conduct extensive experiments
using real-world data traces collected from the videos shared
in RenRen, one of the largest online social networks in China.
These experiments show that our proposed method outperforms
existing view-based approaches for popularity prediction (which
are not context-aware) by more than 30% in terms of prediction
rewards.

Index Terms—Situational and contextual awareness, social me-
dia, online social networks, popularity prediction, online learning,
forecasting algorithm

I. INTRODUCTION

Networked services in the Web 2.0 era focus increasingly
on the user participation in producing and interacting with
rich media. The role of the Internet itself has evolved from
the original use as a communication infrastructure, where
users passively receive and consume media content to a
social ecosystem, where users equipped with mobile devices
constantly generate media data through a variety of sensors
(cameras, GPS, accelerometers, etc.) and applications and,
subsequently, share this acquired data through social media.
Hence, social media is recently being used to provide sit-
uational awareness and inform predictions and decisions in
a variety of application domains, ranging from live or on-
demand event broadcasting, to security and surveillance [1],
to health communication [2], to disaster management [3], to
economic forecasting [4]. In all these applications, forecasting
the popularity of the content shared in a social network is
vital due to a variety of reasons. For network and cloud
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service providers, accurate forecasting facilitates prompt and
adequate reservation of computation, storage, and bandwidth
resources [5], thereby ensuring smooth and robust content
delivery at low costs. For advertisers, accurate and timely pop-
ularity prediction provides a good revenue indicator, thereby
enabling targeted ads to be composed for specific videos and
viewer demographics. For content producers and contributors,
attracting a high number of views is paramount for attracting
potential revenue through micro-payment mechanisms.

While popularity prediction is a long-lasting research top-
ic [15] [14] [27] [28], understanding how social networks
affect the popularity of the media content and using this
understanding to make better forecasts poses significant new
challenges. Conventional prediction tools have mostly relied
on the history of the past view counts, which worked well
when the popularity solely depended on the inherent attractive-
ness of the content and the recipients were generally passive.
In contrast, social media users are proactive in terms of the
content they watch and are heavily influenced by their social
media interactions; for instance, the recipient of a certain
media content may further forward it or not, depending on not
only its attractiveness, but also the situational and contextual
conditions in which this content was generated and propagated
through social media [16]. For example, the latest measure-
ment on Twitter’s Vine, a highly popular short mobile video
sharing service, has suggested that the popularity of a short
video indeed depends less on the content itself, but more on the
contributor’s position in the social network [17]. Hence, being
situation-aware, e.g. considering the content initiator’s infor-
mation and the friendship network of the sharers, can clearly
improve the accuracy of the popularity forecasts. However,
critical new questions need to be answered: which situational
information extracted from social media should be used, how
to deal with dynamically changing and evolving situational
information, and how to use this information efficiently to
improve the forecasts?

As social media becomes increasingly more ubiquitous and
influential, the video propagation patterns and users’ sharing
behavior dynamically change and evolve as well. Offline
prediction tools [15] [18] [19] [20] depend on specific training
datasets, which may be biased or outdated, and hence may
not accurately capture the real-world propagation patterns
promoted by social media. Moreover, popularity forecasting is
a multi-stage rather than a single-stage task since each video
may be propagated through a cascaded social network for a
relatively long time and thus, the forecast can be made at any
time while the video is being propagated. A fast prediction
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has important economic and technological benefits; however,
too early a prediction may lead to a low accuracy that is less
useful or even damaging (e.g. investment in videos that will
not actually become popular). The timeliness of the prediction
has yet to be considered in existing works [14]-[20] [27] [28]
which solely focus on maximizing the accuracy. Hence, we
strongly believe that developing a systematic methodology for
accurate and timely popularity forecasting is essential.

In this paper, we propose for the first time a systematic
methodology and associated online algorithm for forecasting
popularity of videos promoted by social media. Our Social-
Forecast algorithm is able to make predictions about the
popularity of videos while jointly considering the accuracy
and the timeliness of the prediction. We explicitly consider the
unique situational conditions that affect the video propagated
in social media, and demonstrate how this context information
can be incorporated to improve the accuracy of the forecasts.
The unique features of Social-Forecast as well as our key
contributions are summarized below:

• We rigorously formulate the online popularity prediction
as a multi-stage sequential decision and online learning
problem. Our solution, the Social-Forecast algorithm,
makes multi-level popularity prediction in an online fash-
ion, requiring no a priori training phase or dataset. It
exploits the dynamically changing and evolving video
propagation patterns through social media to maximize
the prediction reward. The algorithm is easily tunable to
enable tradeoffs between the accuracy and timeliness of
the forecasts as required by various applications, entities
and/or deployment scenarios.

• We analytically quantify the regret of Social-Forecast,
that is, the performance gap between its expected reward
and that of the best prediction policy which can be
only obtained by an omniscient oracle having complete
knowledge of the video popularity trends. We prove that
the regret is sublinear in the number of video arrivals,
which implies that the expected prediction reward asymp-
totically converges to the optimal expected reward. The
upper bound on regret also gives a lower bound on the
convergence rate to the optimal average reward.

• We validate Social-Forecast’s performance through exten-
sive experiments with real-world data traces from RenRen
(the largest Facebook-like online social network in Chi-
na). The results show that significant improvement can
be achieved by exploiting the situational and contextual
meta-data associated with the video and its propagation
through the social media. Specifically, the Social-Forecast
algorithm outperforms existing view-based approaches by
more than 30% in terms of prediction rewards.

The rest of the paper is organized as follows. Section II
discusses related works. In Section III, we describe the system
model and rigorously formulate the online popularity predic-
tion problem. Section IV presents a systematic methodology
for determining the optimal prediction policy with complete
prior knowledge of the video propagation pattern. In Section
V, we propose the online learning algorithm for the optimal
prediction policy and prove that it achieves sublinear regret

bounds. Section VI discusses the experimental results and our
findings. Section VII concludes this paper.

II. RELATED WORKS

In this section, we review the representative related works
from both the application and the theoretical foundation per-
spectives.

A. Popularity Prediction for Online Content

Popularity prediction of online content has been extensive-
ly studied in the literature. Early works have focused on
predicting the future popularity of content (e.g. video) on
conventional websites such as YouTube. Various solutions are
proposed based on time series models like ARIMA (Autore-
gressive integrated moving average) [6] [7] [8], regression
models [9] [10] [11] and classification models [9] [12] [13].
These methods are generally view-based, meaning that the
prediction of the future views is solely based on the early
views, while disregarding the situational context during prop-
agation. For instance, it was found that a high correlation exists
between the number of video views on early days and later
days on YouTube [14]. By using the history of views within
the past 10 days, the popularity of videos can be predicted
up to 30 days ahead [15]. While these predictions methods
provide satisfactory performance for YouTube-like accesses,
their performance is largely unacceptable [16] when applied
to predicting popularity in the social media context. This
is because in this case the popularity of videos evolves in
a significantly different manner which is highly influenced
by the situational and contextual characteristics of the social
networks in which the video has propagated [21].

Recently, there have been numerous studies aiming to accu-
rately predicting the popularity of content promoted by social
media [2] [3] [23]-[26][43]. For instance, a propagation model
is proposed in [18] to predict which users are likely to mention
which URLs on Twitter. In [19], the retweets prediction on
Twitter is modeled as a classification problem, and a variety
of context-aware features are investigated. For predicting the
popularity of news in Digg, such aspects as website design
have been incorporated [20], and for predicting the popularity
of short messages, the structural characteristics of social media
have been used [22]. For video sharing in social media, our
earlier work [16] has identified a series of context-aware
factors which influence the propagation patterns.

Our work in this paper is motivated by these studies, but it
is first systematic solution for forecasting the video popularity
based on the situational and contextual characteristics of social
media. First, existing works are mostly measurement-based
and their solutions generally work offline, requiring existing
training data sets. Instead, Social-Forecast operates entirely
online and does not require any a priori gathered training
data set. Second, Social-Forecast is situation-aware and hence
it can inherently adapt on-the-fly to the underlying social
network structure and user sharing behavior. Last but not
least, unlike the early empirical studies which employ only
simulations to validate the performance of their predictions, we
can rigorously prove performance bounds for Social-Forecast.



3

Importantly, our Social-Forecast can be easily extended to
predict other trends in social media (such as predicting who
are the key influencers in social networks, which tweets and
news items may become viral, which content may become
popular or relevant etc.) by exploiting contextual and sit-
uational awareness. For instance, besides popularity, social
media has been playing an increasingly important role in
predicting present or near future events. Early studies show
that the volume and the frequency of Twitter posts can be
used to forecast box-office revenues for movies [23] and detect
earthquakes [3]. Sentiment detection is investigated in [29]
by exploring characteristics of how tweets are written and
meta-information of the words that compose these messages.
In [2], Google Trends uses search engine data to forecast
near-term values of economic indicators, such as automobile
sales, unemployment claims, travel destination planning, and
consumer confidence. Social-Forecast can be easily adapted
for deployment in these applications as well.

Table I provides a comprehensive comparison between
existing works on popularity prediction and Social-Forecast,
highlighting their differences.

B. Quickest Detection and Contextual Bandits Learning

In our problem formulation, for each video, the algorithm
can choose to make a prediction decision using the currently
observed context information or wait to make this prediction
until the next period, when more context information arrives.
This introduces a tradeoff between accuracy and delay which
relates to the literature on quickest detection [30] [31] [32]
which is concerned with the problem of detecting the change
in the underlying state (which has already occurred in the
past). For example, authors in [32] study how to detect the
presence of primary users by taking channel sensing samples
in cognitive radio systems. In the considered problem, there
is no underlying state; in fact, the state is continuously and
dynamically changing, and the problem becomes forecasting
how it will evolve and which event will occur in the future.
Moreover, many quickest detection solutions assume prior
knowledge of the hypotheses [32] while this knowledge is
unknown a priori in our problem and needs to be discovered
over time to make accurate forecasts.

Our forecasting algorithm is based on the contextual bandits
framework [33]-[37] but with significant innovations aimed at
tackling the unique features of the online prediction problem.
First, most of the prior work [34]-[37] on contextual bandits is
focused on an agent making a single-stage decision based on
the provided context information for each incoming instance.
In this paper, for each incoming video instance, the agent needs
to make a sequence of decisions at multiple stages. The context
information is stage-dependent and is revealed only when that
stage takes place. Importantly, the reward obtained by selecting
an action at one stage depends on the actions chosen at other
stages and thus, rewards and actions at different stages are
coupled. Second, in existing works [33]-[37], the estimated
rewards of an action can be updated only after the action is
selected. In our problem, because the prediction action does
not affect the underlying popularity evolution, rewards can be
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Fig. 1. System diagram.

computed and updated even for actions that are not selected.
In particular, we update the reward of an action as if it was
selected. Therefore, exploration becomes virtual in the sense
that explicit explorations are not needed and hence, in each
period, actions with the best estimated rewards can always be
selected, thereby improving the learning performance.

III. SYSTEM MODEL

A. Sharing Propagation and Popularity Evolution

We consider a generic Web 2.0 information sharing system
in which videos are shared by users through social media
(see Figure 1 for a system diagram). We assign each video
with an index k ∈ {1, 2, ...,K} according to the absolute
time tkinit when it is initiated1. Once a video is initiated, it
will be propagated through the social media for some time
duration. We assume a discrete time model where a period
can be minutes, hours, days, or any suitable time duration. A
video is said to have an age of n ∈ {1, 2, ...} periods if it
has been propagated through the social media for n periods.
In each period, the video is further shared and viewed by
users depending on the sharing and viewing status of the
previous period. The propagation characteristics of video k up
to age n are captured by a dn-dimensional vector xk

n ∈ Xn

which includes information such as the total number of views
and other situational and contextual information such as the
characteristics of the social network over which the video was
propagated. The specific characteristics that we use in this
paper will be discussed in Section VI. In this section, we keep
xk
n in an abstract form and call it succinctly the context (and

situational) information at age n.

1It is easy to assign unique identifiers if multiple videos which are
generated/initiated at the same time.
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Fig. 2. An illustration of context information taking the history characteris-
tics.

Several points regarding the context information are note-
worthy. First, the context space Xn can be different at different
ages n. In particular, xk

n can include all history information
of video k’s propagation characteristics up to age n and
hence xk

n includes all information of xk
m, ∀m < n (See

Figure 2). Thus the type of contextual/situational information
is also age-dependent. Second, xk

n can be taken from a large
space, e.g. a finite space with a large number of values or
even an infinite space. For example, some dimensions of xk

n

(e.g. the Sharing Rate used in Section VI) take values from
a continuous value space and xk

n may include all the past
propagation characteristics (e.g. xk

m ∈ xk
n,∀m < n). Third, at

age n, xk
m, ∀m > n are not yet revealed since they represent

future situational and contextual information which is yet to
be realized. Hence, given the context information xk

n at age
n, the future context information xk

m, ∀m > n are random
variables.

We are interested in predicting the future popularity status
of the video by the end of a pre-determined age N , and we
aim to make the prediction as soon as possible. The choice
of N depends on the specific requirements of the content
provider, the advertiser and the web hosts. In this paper,
we will treat N as given2. Thus, the context information
for video k during its lifetime of N periods is collected in
xk = (xk

1 ,x
k
2 , ...,x

k
N ). For expositional simplicity, we also

define xn+ = (xn+1, ...,xN ), xn− = (x1, ...,xn−1) and
x−n = (xn− ,xn+).

Let S be the popularity status space, which is assumed
to be finite. For instance, S can be either a binary space
{Popular, Unpopular} or a more refined space containing
multiple levels of popularity such as {Low Popularity, Medium
Popularity, High Popularity} or any such refinement. We let
sk denote the popularity status of video k by the end of
age N . Since sk is realized only at the end of N periods,
it is a random variable at all previous ages. However, the
conditional distribution of sk will vary at different ages since
they are conditioned on different context information. In many
scenarios, the conditional distribution at a higher age n is
more informative for the future popularity status since more
contextual information has arrived. Nevertheless, our model
does not require this assumption to hold.

2This assumption is generally valid given that the video sharing events have
daily and weekly patterns, and the active lifespans of most shared videos
through social media are quite limited [21].

B. Prediction Reward

For each video k, at each age n = 1, ..., N , we can make a
prediction decision akn ∈ S∪{Wait}. If akn ∈ S, we predict akn
as the popularity status by age N . If akn = Wait, we choose
to wait for the next period context information to decide (i.e.
predict a popularity status or wait again). When the prediction
is used to make an one-shot decision (e.g. ad investment),
introducing a “Wait” option is of significant importance to
allow trade-off between accuracy and timeliness. For each
video k, at the end of age N , given the decision action vector
ak, we define the age-dependent reward rkn at age n as follows,

rkn =

{
U(akn, s

k, n), if akn ∈ S
rkn+1, if akn = Wait (1)

where U(akn, s
k, n) is a reward function depending on the

accuracy of the prediction (determined by akn and the realized
true popularity status sk) and the timeliness of the prediction
(determined by the age n when the prediction is made).

The specific form of U(akn, s
k, n) depends on how the

reward is derived according to the popularity prediction based
on various economical and technological factors. For instance,
the reward can the ad revenue derived from placing proper ads
for potential popular videos or the cost spent for adequately
planning computation, storage, and bandwidth resources to
ensure the robust operation of the video streaming services.
Even though our framework allows any general form of the
reward function, in our experiments (Section VI), we will
use a reward function that takes the form of U(akn, s

k, n) =
θ(akn, s

k) + λψ(n) where θ(akn, s
k) measures the prediction

accuracy, ψ(n) accounts for the prediction timeliness and
λ > 0 is a trade-off parameter that controls the relative
importance of accuracy and timeliness.

Let n∗ be the first age at which the action is not “Wait”
(i.e. the first time a forecast is issued). The overall prediction
reward is defined as the rk = rkn∗ . According to equation
(1), when the action is “Wait” at age n, the reward is the
same as that at age n + 1. Thus rk1 = rk2 = ... = rkn∗ . This
suggests that the overall prediction reward is the same as the
age-dependent reward at age 1, i.e. rk = rk1 . For age n >
n∗, the action ank and the age-dependent reward rkn do not
affect the realized overall prediction result since a prediction
has already been made. However, we still select actions and
compute the age-dependent reward since it helps learning the
best action and the best reward for this age n which in turn
will help decide whether or not we should wait at an early
age. Figure 3 provides an illustration on how the actions at
different ages determine the overall prediction reward.

Remark: The prediction action itself does not generate
rewards. It is the action (e.g. online ad investment) taken using
the prediction results that is rewarding. In many scenarios, this
action can only be taken once and cannot be altered afterwards.
This motivates the above overall reward function formulation
in which the overall prediction reward is determined by the
first non-“Wait” action. Nevertheless, our framework can also
be easily extended to account for more general overall reward
functions which may depend on all non-“Wait” actions. For
instance, the action may be revised when a more accurate
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Fig. 3. An illustration for the multi-stage decision making. The first n− 1
action is “Wait”. If the age-n action is “Wait”, then rkn = rkn+1 which depends
on later actions. If the age-n action is not “Wait”, then rkn ̸= rkn+1 and rk
does not depend on later actions. However, we can still learn the reward of
action at age n+ 1 as if all actions before n+ 1 were “Wait”.

later prediction is made. In this case, the reward function
U(akn, s

k, n) in (1) will depend on not only the current
prediction action akn ∈ S but also all non-“Wait” actions after
age n. We will use the reward function in (1) because of its
simplicity for the exposition but our analysis also holds for
general reward functions.

C. Prediction Policy

In this paper, we focus on prediction policies that depend on
the current contextual information. Let πn : Xn → S∪{Wait}
denote the prediction policy for a video link of age n and
π = (π1, ..., πN ) be the complete prediction policy. Hence, a
prediction policy π prescribes actions for all possible context
information at all ages. For expositional simplicity, we also
define πn+ = (πn+1, ..., πN ) as the policy vector for ages
greater than n, πn− = (π1, ..., πn−1) as the policy vector for
ages smaller than n and π−n = (πn− , πn+). For a video with
context information xk, the prediction policy π determines the
prediction action at each age and hence the overall prediction
reward, denoted by r(x|π), as well as the age-dependent
rewards rn(x|π), ∀n = 1, ..., N . Let f(x) be the probability
distribution function of the video context information, which
also gives information of the popularity evaluation patterns.
The expected prediction reward of a policy π is therefore,

V (π) =

∫
x∈X

r(x|π)f(x)dx (2)

Note that the age-n policy πn will only use the context
information xn rather than x to make predictions since xn+

has not been realized at age n.
Our objective is to determine the optimal policy πopt

that maximizes the expected prediction reward, i.e. πopt =
argmax

π
V (π). In the following sections, we will propose a

systematic methodology and associated algorithms that find
the optimal policy for the case when f(x) is known or un-
known, which are referred to as the complete and incomplete
information scenarios, respectively.

IV. WHY ONLINE LEARNING IS IMPORTANT?

In this section, we consider the optimal policy design prob-
lem with the complete information of the context distribution
f(x) and compute the optimal policy πopt. In the next section
in which f(x) is unknown, we will learn this optimal policy

πopt online and hence, the solution that we derive in this
section will serve as the benchmark. Even when having the
complete information, determining the optimal prediction pol-
icy faces great challenges: first, the prediction reward depends
on all decision actions at all ages; and second, when making
the decision at age n, the actions for ages larger than n are
not known since the corresponding context information has
not been realized yet.

Given policies π−n, we define the expected reward when
taking action an for xn as follows,

µn(x
′
n|π−n, an) =

∫
x

Ixn=x′
n
rn(x|π−n, an)f(x)dx (3)

where Ixn=x′
n

is an indicator function which takes value
1 when the age-n context information is x′

n and value 0
otherwise. The optimal π∗(π−n) given π−n thus can be
determined by

π∗
n(xn|π−n) = argmax

a
µ(xn|π−n, a), ∀xn (4)

and in which we break ties deterministically. Equation (4)
defines a best response function from a policy to a new
policy F : Π → Π where Π is the space of all policies.
In order to compute the optimal policy πopt, we iteratively
use the best response function in (4) using the output policy
computed in the previous iteration as the input for the new
iteration. Note that a computation iteration is different from a
time period. “Period” is used to describe the time unit of the
discrete time model of the video propagation. A period can
be a minute, an hour or any suitable time duration. In each
period, the sharing and viewing statistics of a specific video
may change. “Iteration” is used for the (offline) computation
method for the optimal policy (which prescribes actions for
all possible context information in all periods). Given the
complete statistical information (i.e. the video propagation
characteristics distribution f(x)) of videos, a new policy is
computed using best response update in each iteration.

We prove the convergence and optimality of this best
response update as follows.

Lemma 1. π∗
n(xn|π−n) is independent of πm, ∀m < n, i.e.

π∗
n(xn|π−n) = π∗

n(xn|πn+).

Proof: By the definition of age-dependent reward, the
prediction actions before age n does not affect the age-n
reward. Hence, the optimal policy depends only on the actions
after age n.

Lemma 1 shows that the optimal policy πn at age n is fully
determined by the policies for ages larger than n but does
not depend on the policies for ages less than n. Using this
result, we can show the best response algorithm converges
to the optimal policy within a finite number of computation
iterations.

Theorem 1. Starting with any initial policy π0, the best
response update converges to a unique point π∗ in N compu-
tation iterations. Moreover, π∗ = πopt.

Proof: Given the context distribution f(x) which also
implies the popularity evolution, the optimal age-N policy
can be determined in the first iteration. Since we break ties
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deterministically when rewards are the same, the policy is
unique. Given this, in the second iteration, the optimal age-
(N − 1) policy can be determined according to (4) and is
also unique. By induction, the best response update determines
the unique optimal age-n policy after N + 1 − n iterations.
Therefore, the complete policy is found in N iterations and
this policy maximizes the overall prediction reward.

Theorem 1 proves that we can compute the optimal pre-
diction policy using a simple iterative algorithm as long as
we have complete knowledge of the popularity evolution
distribution. In practice, this information is unknown and
extremely difficult to obtain, if not possible. One way to
estimate this information is based on a training set. Since the
context space is usually very large (which usually involves
infinite number of values), a very large volume of training set
is required to obtain a reasonably good estimation. Moreover,
existing training sets may be biased and outdated as social
media evolves. Hence, prediction policies developed using
existing training sets may be highly inefficient [38]. In the
following section, we develop learning algorithms to learn
the optimal policy in an online fashion, requiring no initial
knowledge of the popularity evolution patterns.

V. LEARNING THE OPTIMAL FORECASTING POLICY WITH
INCOMPLETE INFORMATION

In this section, we develop a learning algorithm to determine
the optimal prediction policy without any prior knowledge of
the underlying context distribution f(x). In the considered
scenario, videos arrive to the system in sequence3 and we
will make popularity prediction based on past experiences by
exploiting the similarity information of videos.

Since we have shown in the last section that we can
determine the complete policy π using a simple iterative
algorithm, we now focus mainly on learning πn for one age
by fixing the policies π−n for other ages. Importantly, we
will provide not only asymptotic convergence results but also
prediction performance bounds during the learning process.

A. Learning Regret

In this subsection, we define the performance metric of
our learning algorithm. Let σn be a learning algorithm of πn
which takes action σk

n(x
k
n) at instance k. We will use learning

regret to evaluate the performance of a learning algorithm.
Since we focus on πn, we will use simplified notations in this
section by neglecting π−n. However, keep in mind that the
age-n prediction reward depends on actions at all later ages
an+ besides an when an = Wait. Let µn(xn|an) denote the
expected reward when age-n context information is xn and
the algorithm takes the action an ∈ S ∪ {Wait}.

The optimal action given a context xn is therefore,
a∗(xn) = argmaxan µn(xn|an) (with ties broken deter-
ministically) and the optimal expected reward is µ∗

n(xn) =
µn(xn|a∗n). Let ∆ = maxxn∈Xn{µ∗

n(xn)−µn(xn|an ̸= a∗n)}
be the maximum reward difference between the optimal action

3To simplify our analysis, we will assume that one video arrives at one
time. Nevertheless, our framework can be easily extended to scenarios where
multiple videos arrive at the same time.

and the non-optimal action over all context xn ∈ Xn. Finally,
we let rn(xk

n|σk
n) be the realized age-n reward for video k

by using the learning algorithm σ. The expected regret by
adopting a learning algorithm σn is defined as

Rn(K) = E{
K∑

k=1

µ∗
n(x

k
n)−

K∑
k=1

rn(x
k
n|σk

n)} (5)

Our online learning algorithm will estimate the prediction
rewards by selecting different actions and then choose the
actions with best estimates based on past experience. The
reward estimates of akn ∈ S implicitly capture the likelihood of
different popularity levels. The reward estimate of akn = Wait
captures the reward of the best prediction strategy if the
prediction is made at a later age. Thus our algorithm not
only decides which prediction is the best at each age but also
when to make the best prediction in order to maximize the
prediction reward. One way to do this is to record the reward
estimates without using the context/situational information.
However, this could be very inefficient since for different
contexts, the optimal actions can be very different. Another
way is to maintain the reward estimates for each individual
context xn and select the action only based on these estimates.
However, since the context space Xn can be very large, for
a finite number K of video instances, the number of videos
with the same context xn is very small. Hence it is difficult
to select the best action with high confidence. Our learning
algorithm will exploit the similarity information of contexts,
partition the context space into smaller subspaces and learn
the optimal action within each subspace. The key challenge is
how and when to partition the subspace in an efficient way.
Next, we propose an algorithm that adaptively partitions the
context space according the arrival process of contexts.

B. Online Popularity Prediction with Adaptive Partition

In this subsection, we propose the online prediction algorith-
m with adaptive partition (Adaptive-Partition) that adaptively
partitions the context space according to the context arrivals.
This will be the key module of the Social-Forecast algorithm.
For analysis simplicity, we normalize the context space to be
Xn = [0, 1]d. We call a d-dimensional hypercube which has
sides of length 2−l a level l hypercube. Denote the partition of
Xn generated by level l hypercubes by Pl. We have |Pl| = 2ld.
Let P := ∪∞l=0Pl denote the set of all possible hypercubes.
Note that P0 contains only a single hypercube which is Xn

itself. For each instance arrival, the algorithm keeps a set of
hypercubes that cover the context space which are mutually
exclusive. We call these hypercubes active hypercubes, and
denote the set of active hypercubes at instance k by Ak.
Clearly, we have ∪C∈Ak

= Xn. Denote the active hypercube
that contains xk

n by Ck. Let MCk
(k) be the number of times

context arrives to hypercube Ck by instance k. Once activated,
a level l hypercube C will stay active until the first instance
k such that MCk

(k) ≥ A2pl where p > 0 and A > 0 are
algorithm design parameters. When a hypercube Ck of level l
becomes inactive, the hypercubes of level l+1 that constitute
Ck, denoted by Pl+1(Ck), are then activated.
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When a context xk
n arrives, we first check to which active

hypercube Ck ∈ Ak it belongs. Then we choose the action
with the highest reward estimate an = argmax

a
r̄a,Ck

(k),
where r̄a,Ck

(k) is the sample mean of the rewards collected
from action a in Ck which is an activated hypercube at
instance k. When the prediction reward is realized for instance
k (i.e. at the end of age N ), we perform a virtual update for
the reward estimates for all actions (see Figure 4). The reason
why we can perform such a virtual update for actions which
are not selected is because the context transition over time is
independent of our prediction actions and hence, the reward
by choosing any action can still be computed even though it
is not realized.

Algorithm 1 provides a formal description for the Adaptive-
Partition algorithm. Figure 6 illustrates the adaptive partition
process of Adaptive-Partition algorithm. The intuition of our
algorithm is as follows. Our algorithm learns the optimal
action (whether to make a prediction or wait and which
prediction to make) using sample mean reward estimates of
different actions. The reward estimates are updated every
time a new video instance comes and its popularity evolution
pattern is realized. According to the law of large numbers,
the reward estimates tend to be accurate as many videos
have been seen. However, since there are a large number of
different video evolution patterns, it is inefficient to maintain
reward estimates for each pattern due to the small number
of video instances for each individual pattern. Our algorithm
exploits the similarity of video popularity evolution patterns
to speed up learning. Specifically, initially we maintain reward
estimates for the entire context space (i.e. by treating different
patterns equally). These reward estimates are coarse but can
be quickly updated since all video instances can be used. As
we gather more video instances, the context space is gradually
partitioned (i.e. by treating different patterns differently). As
the partition becomes more and more refined, the reward
estimates for each context subspace (i.e. cluster of patterns)
become more and more accurate. Figure 5 illustrates the

process of learning refinement assuming that the context only
includes the BrF.

Algorithm 1 Adaptive-Partition Algorithm
Initialize A1 = P0, MC(0) = 0, r̄a,C(0) = 0,∀a,∀C ∈ P .
for each video instance k do

Determine C ∈ Ak such that xk
n ∈ C.

Select an = argmax
a

r̄a,C(k).
After the prediction reward is realized, update r̄a,C(k+

1) for all a.
Set MC(k)←MC(k − 1) + 1.
if MC(k) ≥ A2pl then

Set Ak+1 = (Ak\C) ∪ Pl+1(C)
end if

end for

Next, we bound the regret by running the Adaptive-
Partition algorithm. We make a widely adopted assump-
tion [34] [35] [36] that the expected reward of an action is
similar for similar contextual and situational information; we
formalize this in terms of (uniform) Lipschitz condition.

Assumption. (Lipschitz) For each an ∈ S ∪ {Wait}, there
exists L > 0, α > 0 such that for all xn,x

′
n ∈ Xn, we have

|µ(xn|an)− µ(x′
n|an)| ≤ L∥xn,x

′
n∥α.

In order to get the regret bound of the Adaptive-Partition
algorithm, we need to consider how many hypercubes of
each level is formed by the algorithm up to instance K.
The number of such hypercubes explicitly depends on the
context arrival process. Therefore, we investigate the regret
for different context arrival scenarios.

Definition. We call the context arrival process the worst-
case arrival process if it is uniformly distributed inside the
context space, with minimum distance between any two context
samples being K−1/d, and the best-case arrival process if
xk ∈ C, ∀k for some level ⌈(log2(K)/p⌉+ 1 hypercube C.

In Theorem 2, we determine the finite time, uniform regret
bound for the Adaptive-Partition algorithm. The complete
regret analysis and proofs can be found in the appendix.

Theorem 2. • For the worst case arrival process, if p =

3α+
√
9α2+8αd
2 , then Rn(K) = O(K

d+α/2+
√

9α2+8αd/2

d+3α/2+
√

9α2+8αd/2 ).
• For the best case arrival process, if p = 3α, then
Rn(K) = O(K2/3).

Proof: See Appendix.
The regret bounds proved in Theorem 2 are sublinear in K

which guarantee convergence in terms of the average reward,
i.e. limK→∞ E[Rn(K)]/K = 0. Thus our online prediction
algorithm makes the optimal predictions as sufficiently many
videos instances have been seen. More importantly, the regret
bound tells how much reward would be lost by running our
learning algorithm for any finite number K of videos arrivals.
Hence, it provides a rigorous characterization on the learning
speed of the algorithm.
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Fig. 6. The context space partitioning of the Adaptive-Partition algorithm.

C. Learning the Complete Policy π

In the previous subsection, we proposed the Adaptive-
Partition algorithm to learn the optimal policy π∗

n(π−n) by
fixing π−n. We now present in Algorithm 2 the Social-Forecast
algorithm that learns the complete policy.

Algorithm 2 Social-Forecast Algorithm
for each video instance k do

for each age n = 1 to N do
Get context information xk

n.
Select akn according to Adaptive-Partition.
Perform context partition using Adaptive-Partition.

end for
Popularity status sk is realized.
for each age n = 1 to N do

Compute the age-dependent reward rkn.
Update reward estimates using Adaptive-Partition.

end for
end for

Social-Forecast learns all age-dependent policies πn,∀n
simultaneously. For a given age n, since π−n is not fixed to be
the optimal policy πopt

−n during the learning process, the learned
policy πn may not be the global optimal πopt

n . However, as
we have shown in Section IV, in order to determine πopt

n ,
only the policies for ages greater than n, i.e. πopt

n+ need to
be determined. Thus even though we are learning πn,∀n
simultaneously, the learning problem of πN is not affected
and hence, πopt

N will be learned with high probability after
a sufficient number of video arrivals. Once πopt

N is learned
with high probability, πopt

N−1 can also be learned with high
probability after an additional number of video arrivals. By
this induction, such a simultaneous learning algorithm can still
learn the global optimal complete policy with high probability.
In the experiments we will show the performance of this
algorithm in practice.

D. Complexity of Social-Forecast

For each age of one video instance arrival, Social-Forecast
needs to do one comparison operation and one update oper-
ation on the estimated reward of each forecast action. It also
needs to update the counting of context arrivals to the current
context subspace and perform context space partitioning if

necessary. In sum, the time complexity has the order O(|S|N)
for each video instance and O(|S|NK) for K video arrivals.
Since the maximum age N of interest and the popularity
status space is given, the time complexity is linear in the
number of video arrivals K. The Social-Forecast algorithm
maintains for each active context subspace reward estimates
of all forecast actions. Each partitioning creates 2d − 1 more
active context subspaces and the number of partitioning is at
most K/A. Thus the space complexity for K video arrivals
is at most O(2dNK/A). Since the context space dimension d
and the algorithm parameter A are given and fixed, the space
complexity is at most linear in the number of video arrivals
K.

VI. EXPERIMENTS

In this section we evaluate the performance of the pro-
posed Social-Forecast algorithm. We will first examine the
unique propagation characteristics of videos shared through
social media. Then we will use these as the context (and
situational) information for our proposed online prediction
algorithm. Our experiments are based on the dataset that
tracks the propagation process of videos shared on RenRen
(www.renren.com), which is one of the largest Facebook-
like online social networks in China. We set one period to be
2 hours and are interested in predicting the video popularity
by 100 periods (8.3 days) after its initiation. In most of our
experiments, we will consider a binary popularity status space
{Popular, Unpopular} where “Popular” is defined for videos
whose total number of views exceeds 10000. However, we
also conduct experiments on a more refined popularity status
space in Section VI(F).

Since our algorithm does not rely on specific assumptions on
the selected reward function, we use two different prediction
reward functions in our experiment in order to show the
generality of our method. The first prediction reward func-
tion takes a linear form of accuracy and timeliness, namely
U(akn, s

k, n) = θ(akn, s
k) + λψ(n) where θ(akn, s

k) represents
the accuracy of the prediction, ψ(n) is the timeliness of the
prediction and λ is a trade-off parameter. In particular, ψ
is simply taken as ψ(n) = N − n. The second prediction
reward function takes a discounted form of accuracy, namely
U(akn, s

k, n) = δnθ(akn, s
k) where δ ∈ [0, 1) is a discounted

factor. For the case of binary popularity status space, the
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accuracy reward function θ is chosen as follows

θ(akn, s
k) =

 1, if akn = sk = Unpopular
w, if akn = sk = Popular
0, if akn ̸= sk

(6)

where w > 0 is fixed reward for correctly predicting popular
videos and hence controls the relative importance of true
positive and true negative. Note that we use these specific
reward functions in this experiment but other reward functions
can easily be adopted in our algorithm.

A. Video propagation characteristics

A RenRen user can post a link to a video taken by
him/herself or from an external video sharing website such
as Youtube. The user, referred to as an initiators [16], then
starts the sharing process. The friends of these initiators can
find this video in their “News Feed”. Some of them may
watch this video and some may re-share the video to their
own friends. We call the users who watched the shared video
viewers and those who re-shared the video spreaders. Since
spreaders generally watched the video before re-shared it,
most of them are also viewers. In the experiment, we will
use two characteristics of videos promoted by social media
as the context (and situational) information for our algorithm.
The first is the initiator’s Branching Factor (BrF), which is
the number of users who are directly following the initiator
and viewed the video shared by initiator. The second is the
Share Rate (ShR), which is the ratio of the viewers that re-
share the video after watching it. Figure 7 shows the evolution
of the number of views, the BrF and the ShR for three
representative videos over 100 periods. Among these three
videos, video 1 is an unpopular video while video 2 and video
3 are popular videos, which become popular at age 37 and age
51, respectively. We analyze the differences between popular
and unpopular videos as follows.

• Video 1 vs Video 2. The ShRs of both videos are similar.
The BrF of video 2 is much larger than that of video
1. This indicates that video 2 may be initiated by users
with a large number of friends, e.g. celebrities and pubic
accounts. Thus, videos with larger BrF potentially will
achieve popularity in the future.

• Video 1 vs Video 3. The BrFs of both videos are low
(at least before video 3 becomes popular). Video 3 has a
much larger ShR than video 1. This indicates that video
3 is being shared with high probability and thus, videos
with larger ShR will potentially become popular in the
future.

The above analysis shows that BrF and ShR are good situa-
tional metrics for videos promoted by social media. Therefore
we will use these two metrics in addition to the total and
per-period numbers of views as the context information for
our proposed online prediction algorithms. The RenRen raw
dataset records the information of each viewing action on
RenRen. In particular, each data entry includes the URL of
the video, the viewer id, the sharer id, the two-hop sharer
id, the initiator and the time stamp when the view occurs.
We pre-processed the raw dataset and extract for each video

0 5 10 15 20 25 30 35 40
0

5000

10000

v
ie

w
s

0 5 10 15 20 25 30 35 40
0

200

400

B
rF

0 5 10 15 20 25 30 35 40
0

0.2

0.4

S
h
R

period

video 3
video 1

video 2

video 1

video 3video 2

video 2

video 1

video 3

Fig. 7. Popularity evolution of 3 representative videos.

URL the viewing and sharing behavior over time such as BrF
and ShR. Nevertheless, our algorithms are general enough to
take other situational metrics to further improve the prediction
performance, e.g. the type of the videos, the number of
spreaders, other metrics representing the propagation topology
etc.

B. Benchmarks

We will compare the performance of our online prediction
algorithm with three benchmarks.

• Szabo and Huberman (SH). The first benchmark is
a conventional view-based prediction algorithm based
on [15]. It uses training sets to establish log-linear
correlations between the early number of views and
the later number of views. Since this algorithm does
not explicitly consider timeliness in prediction, we will
investigate different versions that make predictions at
different ages. Intuitively, the time when the prediction
is made has opposite affects on the prediction accuracy
and timeliness. A later prediction predicts the video with
higher confidence but is less timely.

• Pinto, Almeida and Goncalves (PAG). This benchmark
is also a view-based prediction algorithm [28]. Unlike SH
which uses only the total view count by a reference time
to predict future popularity, PAG incorporates the per-
period view counts up to the reference date. Again, since
this algorithm does not explicitly consider timeliness in
prediction, we will also investigate different versions that
make predictions at different ages.

• Correlation using context information (CC). The above
two benchmarks do not use siutational/contextual infor-
mation as our proposed algorithm does. To enable fair
comparison, we develop a modified prediction algorithm
based on the ideas of SH and PAG by taking into
consideration also the situational/contextual information.
Specifically, the algorithm establishes (log-)linear corre-
lations between the early number of views together with
the context information (i.e. BrF and ShR) and the later
number of views.
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• Perfect Prediction. The last benchmark provides the best
prediction results: for each unpopular video, it predicts
unpopular at age 1; for each popular video, it predicts
popular at age 1. Since this benchmark generates the
highest possible prediction reward, we normalize the
rewards achieved by other algorithms with respect to this
reward.

C. Performance comparison

In this subsection, we compare the prediction performance
of our proposed algorithm with the benchmarks. This set of
experiments are carried out on a set of 5000 video links. The
videos were initiated in sequence and thus, initially we do
not have any knowledge of the videos or video popularity
evolution patterns. For the SH (or PAG, CC) algorithm, we
use three versions, labeled as SH-5 (or PAG-5, CC-5), SH-10
(or PAG-10, CC-10), SH-15 (or PAG-15, CC-15), in which the
prediction is made at age 5, 10, 15, respectively.

Table II records the normalized prediction rewards (column
2 to 4) and the prediction accuracy (column 5) obtained by our
proposed algorithm and the benchmarks for λ = 0.01 and w =
1, 2, 3 given the reward function U(akn, s

k, n) = θ(akn, s
k) +

λψ(n). Table III records the normalized prediction rewards
obtained by our proposed algorithm and the benchmarks for
w = 1 and λ = 0.01, 0.015, 0.02. The trade-off parameter
λ for accuracy and timeliness is set to be small because the
lifetime N is large. We have the following observations:

• The accuracies of all three benchmarks are increasing in
the reference age when the forecast is made. It implies
that having more information is helpful for the prediction.
The prediction rewards of the benchmarks are relatively
insensitive to the time when the forecast is issued. This
is because even though accuracy improves when the
reference age is large, the prediction timeliness decreases.
These two effects almost balance out in our experiments.

• The proposed algorithm Social-Forecast generates sig-
nificantly higher prediction rewards than all benchmark
algorithms. Its performance is not sensitive to the specific
value of w which implies that it is able to predict both
popular and unpopular videos very accurately and in a
timely manner.

Table IV shows the corresponding results for δ = 0.99 given
U(akn, s

k, n) = δnθ(akn, s
k). We obtain similar observations

even though a different reward function is used.
We then vary the popularity threshold. Table V reports

the prediction rewards and accuracies for different thresholds
10000, 30000, 50000 for SH-10, PAG-10, CC-10 and Social-
Forecast by fixing λ = 0.01 and w = 1 given the reward
function U(akn, s

k, n) = θ(akn, s
k)+λψ(n). As the popularity

threshold increases, the rewards and accuracies obtained by the
Social-Forecast algorithm and SH-10 and PAG-10 all increase.
In particular, the PAG algorithm has a significant increase in
the prediction accuracy. This suggests that these benchmark
algorithms have better accuracy in videos with a large number
of views. However, the proposed Social-Forecast significantly
outperforms the benchmarks in all categories.

TABLE II
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYING w

(U(akn, s
k, n) = θ(akn, s

k) + λψ(n))

w = 1 w = 2 w = 3 accuracy
SH-5 0.82 0.82 0.81 0.80
SH-10 0.80 0.80 0.80 0.83
SH-15 0.78 0.80 0.81 0.84
PAG-5 0.71 0.77 0.80 0.64

PAG-10 0.79 0.82 0.84 0.81
PAG-15 0.78 0.82 0.85 0.85

CC-5 0.82 0.81 0.81 0.79
CC-10 0.79 0.80 0.81 0.80
CC-15 0.82 0.83 0.84 0.89

Social-Forecast 0.92 0.93 0.94 0.94

TABLE III
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYING λ

(U(akn, s
k, n) = θ(akn, s

k) + λψ(n))

λ = 0.01 λ = 0.015 λ = 0.02
SH-5 0.82 0.82 0.83
SH-10 0.80 0.79 0.79
SH-15 0.78 0.76 0.75
PAG-5 0.71 0.73 0.74
PAG-10 0.79 0.79 0.78
PAG-15 0.78 0.76 0.75

CC-5 0.82 0.82 0.83
CC-10 0.79 0.79 0.78
CC-15 0.82 0.79 0.78

Social-Forecast 0.92 0.93 0.94

D. Learning performance

Our proposed Social-Forecast algorithm is an online al-
gorithm and does not require any prior knowledge of the
video popularity evolution patterns. Hence, it is important
to investigate the prediction performance during the learning
process. Our analytic results have already provided sublinear
bounds on the prediction performance for any given number
of video instances which guarantee the convergence to the
optimal prediction policy. Now, we show how much prediction

TABLE IV
COMPARISON OF NORMALIZED PREDICTION REWARD WITH VARYING w

(U(akn, s
k, n) = δnθ(akn, s

k))

w = 1 w = 2 w = 3 accuracy
SH-5 0.76 0.76 0.76 0.80
SH-10 0.75 0.74 0.73 0.83
SH-15 0.73 0.74 0.74 0.84
PAG-5 0.61 0.69 0.75 0.64

PAG-10 0.73 0.76 0.77 0.81
PAG-15 0.73 0.76 0.78 0.85

CC-5 0.76 0.76 0.76 0.79
CC-10 0.74 0.74 0.75 0.80
CC-15 0.77 0.77 0.77 0.89

Social-Forecast 0.92 0.91 0.92 0.92

TABLE V
COMPARISON OF NORMALIZED PREDICTION REWARD AND ACCURACY
WITH VARYING POPULARITY THRESHOLD (IN EACH ENTRY, THE FIRST
NUMBER IS THE REWARD, THE SECOND NUMBER IS THE ACCURACY)

SH-10 PAG-10 CC-10 Social-Forecast
1e4 0.80, 0.83 0.79, 0.81 0.79, 0.80 0.92, 0.94
3e4 0.81, 0.82 0.86, 0.90 0.83, 0.90 0.94, 0.96
5e4 0.84, 0.87 0.85, 0.89 0.81, 0.88 0.95, 0.96
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Fig. 8. Prediction performance during the learning process.

reward that we can achieve during the learning process in
experiments. Figure 8 shows the normalized prediction reward
of Social-Forecast, SH-10, PAG-10 and CC-10 as the number
of video instances increases for λ = 0.10 and w = 2. As
more video instances arrive, our algorithm learns better the
optimal prediction policy and hence, the prediction reward
improves with the number of video instances. In particular,
the proposed prediction algorithm is able to achieve more than
85% of the best possible reward even with a relatively small
number of video instances. On the other hand, the normalized
prediction rewards of the benchmark algorithms stay nearly
invariant since they are trained offline and do not adapt to the
new arriving videos.

E. More refined popularity prediction
In the previous experiments, we considered a binary pop-

ularity status space. Nevertheless, our proposed popularity
prediction methodology and associated algorithm can also
be applied to predict popularity in a more refined space. In
this experiment, we consider a refined popularity status space
{High Popularity, Medium Popularity, Low Popularity} where
“High Popularity” is defined for videos with more than TH1

views, “Medium Popularity” for videos with views between
TH2 < TH1 and TH1, and “Low Popularity” for videos
with views below TH2. Table VI illustrates the normalized
rewards and accuracy obtained by different algorithms for
λ = 0.01, 0.02, 0.03 and TH1 = 10000, TH2 = 5000.
Table VII reports the normalized rewards and accuracy of
Social-Forecast, SH-10, PAG-10 and CC-10 by varying the
High popularity threshold TH1 given λ = 0.02, w = 1. It
can been seen that the rewards obtained by all algorithms
decrease compared with the binary popularity status case since
prediction becomes more difficult. However, the performance
improvement of Social-Forecast against the benchmark solu-
tions becomes even larger. This suggests that our algorithm,
which explicitly considers the contextual information asso-
ciated with the social network, is able to achieve a higher
performance gain against the benchmark approaches for more
refined popularity prediction.

TABLE VI
COMPARISON OF NORMALIZED PREDICTION REWARD FOR TERNARY

POPULARITY LEVELS.

λ = 0.01 λ = 0.02 λ = 0.03 accuracy
SH-5 0.71 0.75 0.78 0.63
SH-10 0.72 0.72 0.74 0.74
SH-15 0.70 0.68 0.68 0.76
PAG-5 0.66 0.71 0.75 0.57
PAG-10 0.74 0.74 0.74 0.73
PAG-15 0.73 0.70 0.69 0.76

CC-5 0.73 0.77 0.79 0.66
CC-10 0.73 0.73 0.74 0.72
CC-15 0.73 0.71 0.70 0.79

Social-Forecast 0.92 0.94 0.86 0.90

TABLE VII
COMPARISON OF NORMALIZED PREDICTION REWARD AND ACCURACY
WITH VARYING POPULARITY THRESHOLD (IN EACH ENTRY, THE FIRST
NUMBER IS THE REWARD, THE SECOND NUMBER IS THE ACCURACY)

SH-10 PAG-10 CC-10 Social-Forecast
1e4 0.72, 0.74 0.74, 0.73 0.74, 0.72 0.94, 0.90
3e4 0.75, 0.75 0.79, 0.81 0.79, 0.81 0.91, 0.94
5e4 0.76, 0.74 0.77, 0.78 0.75, 0.75 0.89, 0.92

F. Prediction timeliness

Finally, we investigate at which age the forecast is actually
made by our proposed Pop-Forecast algorithm. Figure 9 shows
the percentage of the forecasts made at ages between 1 to 10
for the cases of binary and ternary popularity levels. As we can
see, most of our forecasts are made at early ages of the video
propagation, yet the accuracy is still very high by incorporating
the contextual information of the social network in which the
video is propagated.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel, systematic and
highly-efficient online popularity forecasting algorithm for
videos promoted by social media. We have shown that by
incorporating situational and contextual information, signif-
icantly better prediction performance can be achieved than
existing approaches which disregard this information and
only consider the number of times that videos have been
viewed so far. The proposed Social-Forecast algorithm does
not require prior knowledge of popularity evolution or a
training set and hence can operate easily and successfully
in online, dynamically-changing environments such as social
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TABLE VIII
NOTATION TABLE

Notation Description
MC(k) number of arrivals to C by k
D(k) deterministic control function, D(k) = kz log k

Ea,C(k) set of rewards collected from action a by k for C
a∗(C) optimal action for the center context of C
µ̄a,C maximum expected reward for contexts in C by taking a
µ
a,C

minimum expected reward for contexts in C by taking a
LC,l,B suboptimal action set for C with level l given parameter B
A, p algorithm parameters
L,α Lipschitz condition parameters

WC(k) event that the algorithm virtually exploits in C at k
Va,C(k) event that a suboptimal action a is chosen in C at k
Hk a positive number measuring the estimation gap

media. We have systematically proven sublinear regret bounds
on the performance loss incurred by our algorithm due to
online learning. Thus Social-Forecast guarantees both short-
term performance as well as its asymptotic convergence to the
optimal performance in the long term.

This paper considered a single learner who observes the
propagation patterns of videos promoted by one social media.
One important future work direction is to extend to scenarios
where there are multiple distributed learners (e.g. multiple
advertisers, content producers and web hosts) who have access
to multiple different social medias or different sections of
one social media. In such scenarios, significant improvement
is expected by enabling cooperative learning among the dis-
tributed learners [39]. The challenges in these scenarios are
how to design efficient cooperative learning algorithms with
low communication complexity [40] and, when the distributed
learners are self-interested and have conflicting goals, how
to incentivize them to participate in the cooperative learning
process using, e.g. rating mechanisms [41] [42]. Finally, while
this paper has studied the specific problem of online predic-
tion of video popularity based on contextual and situational
information, our methodology and associated algorithm can
be easily adapted to predict other trends in social media (such
as identifying key influencers in social networks, the potential
for becoming viral of contents or tweets, identifying popular
or relevant content, providing recommendations for social TV
etc.).

APPENDIX

In this appendix, we analyze the learning regret of the
Adaptive-Partition algorithm. The notations are summarized in
Table VIII. To facilitate the analysis, we artificially create two
learning steps in the algorithms: for each instance k, it belongs
to either a virtual exploration step or a virtual exploitation
step. Let MC(k) be the number of context arrivals in C by
video instance k. Given a context xk

n ∈ C, which step the
instance k belongs to depends on MC(k) and a deterministic
function D(k). If MC(k) ≤ D(k), then it is in a virtual
exploration step; otherwise, it is in a virtual exploitation step.
Notice that these steps are only used in the analysis; in the
implementation of the algorithm, these different steps do not
exist and are not needed.

We introduce some notations here. Let Ea,C(k) be the set of
rewards collected from action a by instance k for hypercube

C. For each hypercube C let a∗(C) be the action which
is optimal for the center context of that hypercube, and let
µ̄a,C := supx∈C µ(x|a) and µ

a,C
:= infx∈C µ(x|a). For a

level l hypercube C, the set of suboptimal action is given by

LC,l,B := {a : µ
a∗,C
− µ̄a,C > BLdα/22−lα} (7)

colorwhere B > 0 is a constant that will be determined later.
The regret can be written as a sum of three components:

R(K) = E[Re(K)] + E[Rs(K)] + E[Rn(K)] (8)

where Re(K) is the regret due to virtual exploration steps by
instance K, Rs(K) is the regret due to sub-optimal action
selection in virtual exploitation steps by instance K and
Rn(K) is the regret due to near-optimal action selections in
virtual exploitation steps by instance K. The following series
of lemmas bound each of these terms separately.

We start with a simple lemma which gives an upper bound
on the highest level hypercube that is active at any instance k.

Lemma 2. All the active hypercubes Ak at instance k have
at most a level of (log2 k)/p+ 1.

Proof: Let l + 1 be the level of the highest level active
hypercube. Since there are totally k instances, we must have
l∑

j=1

A2pj < k, otherwise the highest level active hypercube

will be less than l + 1. Summing up the left-hand side, we
have for k/A > 1,

A
2p(l+1)−1

2p − 1
< k ⇒ 2pl <

k

A
⇒ l <

log2(k)

p
(9)

The next three lemmas bound the regrets for any level l
hypercube.

Lemma 3. If D(k) = kz log k. Then, for any level l hypercube
the regret due to virtual explorations by instance k is bounded
above by kz log k + 1.

Proof: Since the instance k belongs to a virtual explo-
ration step if and only if MC(k) ≤ D(k), up to instance K,
there can be at most ⌈kz log k⌉ virtual exploration steps for one
hypercube. Therefore, the regret is bounded by kz log k + 1.

Lemma 4. Let B = 2
Ldα/22−α + 2. If p > 0, 2α/p ≤ z < 1,

D(k) = kz log k, then for any level l hypercube C, the regret
due to choosing suboptimal actions in virtual exploitation
steps, i.e. E[RC,s(K)], is bounded above by 2β2.

Proof: Let Ω denote the space of all possible outcomes,
and w be a sample path of the reward realization. The event
that the algorithm virtually exploits in C at instance k occurs
when exploitation condition holds and the current context falls
in an active hypercube C and thus is given by

WC(k) := {w :MC(k) > D(k),xk
n ∈ C,C ∈ Ak}

We will bound the probability that the algorithm chooses a
suboptimal arm in an virtual exploitation step in C, and then
bound the expected number of times a suboptimal action is
chosen by the algorithm. Recall that loss in every step is at
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most 1. Let Va,C(k) be the event that a suboptimal action is
chosen. Then

E[RC,s(K)] ≤
K∑

k=1

∑
a∈LC,l,B

P (Va,C(k),WC(k))

For any a, we have

{Va,C(k),WC(k)}
⊂{r̄a,C(k) ≥ µ̄a,C +Hk,WC(k)}
∪ {r̄a∗,C(k) ≤ µa∗,C

−Hk,WC(k)}

∪ {r̄a,C(k) ≥ r̄a∗,C(k), r̄a,C(k) < µ̄a,C +Hk,

r̄a∗,C(k) > µ
a∗,C
−Hk,WC(k)}

for some positive number Hk > 0 that controls the reward
estimate gap which will be determined later. This implies

P (Va,C(k),WC(k))

≤P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk + Ldα/22−lα,WC(k))

+P (r̄worst
a∗,C (MC(k)) ≤ µa∗,C

−Hk − Ldα/22−lα,WC(k))

+P (r̄besta,C (MC(k)) ≥ r̄worst
a∗,C (MC(k)),

r̄besta,C (MC(k)) < µ̄a,C +Hk,

r̄worst
a∗,C (MC(k)) > µ

a∗,C
−Hk,WC(k))

Consider the last term in the above equation, we want to
make it zero so that we can focus only on the first two
terms. If 2Hk ≤ (B − 2)Ldα/22−lα, then the three events
in the last term cannot happen simultaneously. Thus, if we
let Hk = k−z/2, z ≥ 2α/p and B = 2

Ldα/22−α + 2, then
the last probability is 0. For the first two terms, by using a
Chernoff-Hoeffding bound, for any a ∈ LC,l,B , since on the
event WC(k), MC(k) ≥ kz log k, we have

P (r̄besta,C (MC(k)) ≥ µ̄a,C +Hk,WC(k))

≤e−2(Hk)
2kz log k ≤ e−2 log k ≤ 1

k2

and

P (r̄worst
a∗,C (MC(k)) ≤ µa∗,C

−Hk,WC(k))

≤e−2(Hk)
2kz log k ≤ e−2 log k ≤ 1

k2

Finally, the regret due to virtual exploitation is bounded by
K∑

k=1

1
k2 < β2. Therefore, E[RC,s(K)] ≤ 2β2.

Lemma 5. Let B = 2
Ldα/22−α + 2. If p > 0, 2α/p ≤

z < 1, D(k) = kz log k, then for any level l hypercube C,
the regret due to choosing near optimal actions in virtual
exploitation steps, i.e. E[RC,n(K)], is bounded above by
2ABLdα/22(p−α)l.

Proof: The one-step regret of any near optimal action a
is bounded by 2BLdα/22−lα according to the definition of
near optimal actions. Since C remains active for at most A2pl

context arrivals, we have

E[RC,n(K)] ≤ 2ABLdα/22(p−α)l (10)

Now we are ready to prove Theorem 2.
Proof: We let B = 2

Ldα/22−α + 2.
Consider the worst-case. It can be shown that in the

worst case the highest level hypercube has level at most
1 + log2p+d K. The total number of hypercubes is bounded
by

1+log
2p+d K∑

l=0

2dl ≤ 22dK
d

d+p (11)

We can calculate the regret from choosing near optimal
action as

E[Rn(K)] ≤ 2ABLdα/2
1+log

2p+d K∑
l=0

2(p−α)l (12)

≤2ABLdα/222(d+p−α)K
d+p−α
d+p (13)

Since the number of hypercubes is O(K
d

d+p ), regret due to
virtual explorations is O(K

d
d+p+z logK), while regret due to

suboptimal selection is O(K
d

d+p+z), for z ≥ 2α
p . These three

terms are balanced when z = 2α/p and d+p−α
d+p = d

d+p + z.
Solving for p we get

p =
3α+

√
9α2 + 8αd

2
(14)

Substituting these parameters and summing up all the terms
we get the regret bound.

Consider the best case, the number of activated hypercubes
is upper bounded by log2K/p + 1, and by the property of
context arrivals all the activated hypercubes have different
levels. We calculate the regret from choosing near optimal
arm as

E[Rn(K)] ≤ 2ABLdα/2
1+log2 K/p∑

l=0

2p−αl (15)

≤2ABLdα/2 2
2(p−α)

2p−α
K

p−α
p (16)

The terms are balanced by setting z = 2α/p, p = 3α.
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