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Abstract
Dairy commodity prices have become more volatile over the last 10–11 yr. The aim of this paper was to produce 
reliable price forecasts for the most frequently traded dairy commodities. Altogether five linear and nonlinear 
time series models were applied. The analysis reveals that prices of dairy commodities reached a structural 
breakpoint in 2006/2007. The results also show that a combination of linear and nonlinear models is useful in 
forecasting commodity prices. In this study, the price of cheese is the most difficult to forecast, but a simple 
autoregressive (AR) model performs reasonably well after 12 mo. Similarly, for butter the AR model performs the 
best, while for skimmed milk powder (Smp), whole milk powder (Wmp) and whey powder (Whp) the nonlinear 
methods are the most accurate. However, few of the differences between models are significant according to the 
Diebold–Mariano (DM) test. The findings could be of interest to the whole dairy industry.
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Introduction

Milk products account for about 6% of agricultural exports 
FAO (2016). Although the global dairy trade increases every 
year, only 14.3% of all milk delivered to dairy and 20% of all 
tradable dairy products were traded internationally in 2013 
(IFCN, 2014). The four main traded dairy products on the 
world market are butter, cheese, skimmed milk powder (Smp) 
and whole milk powder (Wmp) (FAO, 2016). The prices of 
these four commodities and whey powder (Whp) from 2002 to 
2016 are shown in Figure 1. All prices have a general upward 
trend until 2014, with increasing volatility from 2007 on. The 
variation in the length and amplitude of the price cycles 
challenges forecasting and decision making. Prices declined 
sharply in 2015 due to- decreased demand from China and 
the Russian Federation’s import embargo for several dairy 
products. Increased production from key exporters as the 
European Union (EU) also played a role. Increased production 
in the EU was associated with abolishment of milk quotas. 
The price turned upward again in the second half of 2016, 
triggered by a slowdown in milk supply.
Given the high volatility of commodity prices and the importance 
of raw materials in production, accurate forecasts are of great 
interest for various purposes. For business management of 

farm businesses, agribusinesses, wholesalers and retailers, 
forecasting commodity prices is important to marketing or 
procurement. Reliable price forecasts can aid cash flow 
management and improve farm production decision planning: 
what and how much feed to grow, what time of year to produce 
the milk, etc. A price forecast is also useful for planning annual 
cash flow and loan requests. Good price forecasts will also 
give dairy companies better tools to plan their activities, 
for example, when to sell their products, what produce and 
when. Therefore, research on agricultural price forecasting is 
important (Martin-Rodriguez & Cáceres-Hernández, 2012).
The causes of extreme price volatility in dairy commodity 
markets are well established in economics literature. Even 
small changes in supply can cause very large changes in 
price (O’Connor & Keane, 2011; Bolotova, 2016). Economic 
theory suggests that seasonality and cycles are common 
features in agricultural commodity prices (Tomek & Robinson, 
2003; Piot-Lepetit & M’Barek, 2011). Such cycles may be the 
result of the lag between the decision to change milk supply 
be based on current price and the actual availability of this 
milk on the market because of the time it takes to expand or 
contract supply (Bergmann et al., 2015). While price cycles 
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have attracted a relatively strong attention in the literature, 
there are relatively few studies focusing on forecasting of 
dairy commodity prices over the last 15 yrs. A finding from 
using autoregressive integrated moving average (ARIMA) 
models is that unit root behaviour is common in commodity 
prices (Myers et al., 2010). To cope with this problem, both 
cointegration and vector error-correction models (VECM) 
gained popularity. Among other models used to analyse 
agricultural commodity price series are structural time series 
(Labys & Kouassi, 1996; Durbin & Koopman, 2001; Nicholson 
& Stephenson, 2015), multi-resolution analysis (Hansen & 
Li, 2016) and state space models (Aoki & Havenner, 1991; 
Foster et al., 1995; Walburger & Foster, 1998).
An interesting question is whether futures have the potential 
to make traditional price forecast methods redundant. A 
relatively large body of literature has explored the predictive 
performance of futures prices for different commodities, 
ranging from oil and metals to cattle and dairy products. Yang 
et  al. (2001), Bowman & Husain (2004), Coppola (2008), 
Reichsfeld & Roache (2009), Reeve & Vigfusson (2011) 
and Chinn & Coibion (2013) found evidence which support 
the predictive performance of futures. Contrary, Moosa and  
Al-Loughani (1994), Fortenbery & Zapata (1997), Chernenko 
et al. (2004), Ahlquist & Kilian (2010) and Ahlquist et al. 
(2013) found little support for futures as the best forecast. To 
sum up, literature has not yet reached a consensus on the 
predictive performance of futures. Thus, it is fair to claim that 
the introduction of futures has not deemed traditional price 
forecasts redundant.

In recent years, nonlinear time series models have become 
increasingly popular in fields such as macroeconomics and 
finance (Teräsvirta et al., 2011). However, in forecasts of dairy 
commodity prices, there are relatively few applications of 
nonlinear models. The aim of this article was to explore the 
usefulness of nonlinear time series models as compared to 
linear models in forecasting the world’s five most traded dairy 
commodity prices. The remainder of the paper is organized 
as follows: First materials and methods are presented, then 
follows results, discussion and conclusion.

Material and preliminary statistics

For all commodities except Whp, monthly prices from the 
United States Department of Agriculture agricultural marketing 
service (USDA, 2019) were used. For Whp, the prices from 
2010 on were collected from Süddeutsche Butterbörse (SB, 
2019), and earlier from the USDA. Summary statistics of the 
five dairy commodities from 2002 to 2016 are provided in 
Table 1. The cheese price refers to the price of cheddar.
In Table 1, one can see that there is considerable volatility 
in all prices, with butter, Smp and Wmp showing the largest 
fluctuations.
We now study some statistical properties of the price series, 
shown in Tables A1 and A2. Tables A1 and A2 report the 
Elliott–Rothenberg–Stock (ERS) (Elliott et al., 1996) and 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiatkowski  
et al., 1992) tests for nonstationarity. The ERS test takes 
unit root as the null hypothesis, while the KPSS test takes 
the null hypothesis as a stationary process. While the ERS 
test statistics are mixed with respect to a unit root, the KPSS 
test results show that most series are nonstationary. However, 
when dealing with nonlinear time series, one should keep 
in mind that many unit root tests have a low power against 
nonlinearity. Thus, tests of unit root may confuse nonlinearity 
with a unit root. Generally, if the data has a unit root, we 
differentiate the series to make it stationary. However, when the 

Figure 1. World market prices of cheese, butter, Smp, Wmp and 
Whp from 2002 to 2016 in USD/ton.

Table 1: Summary statistics for the prices of cheese, butter, Smp, 
Wmp and Whp from 2002 to 2016 in USD/ton

Commodity Average s.d. Min. Max.

Cheese 3,381 992 1,550 5,500

Butter 2,861 1,127 963 4,890

Smp 2,775 1,017 1,196 5,348

Wmp 2,935 1,080 1,229 5,538

Whp 957 376 363 1,856

Smp = skimmed milk powder; Whp = whey powder; Wmp = whole 
milk powder.
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data is nonlinear, taking differences will change the nonlinear 
structure of the data, and therefore it is not recommended 
(see, e.g., Teräsvirta et al., 2011). Thus, under the heading 
“stationarity and non-stationarity” on page 3, Teräsvirta et al. 
(2011). state that “it is necessary to develop new tools, and 
well-tried, familiar tools have to be discarded as being no 
longer appropriate”.

Methods

Testing for linearity and structural breaks
In this paper, the parametric Tsay test (Tsay, 1986) against 
linearity together with the Teräsvirta test (Teräsvirta et al., 
1993) and the Brock, Dechert and Scheinkman (BDS) test 
(Brock et al., 1987) are applied. Originally designed to test 
for independence and identical distribution (iid), the BDS test 
is also shown to have power against nonlinear alternatives 
(Brock et al., 1991). In fact, simulations have shown that it 
exhibits the highest power in detecting nonlinearity, and 
for this reason it should be the first to be used (Bisaglia & 
Gerolimetto, 2014). One advantage of the BDS test is that it 
is a statistic which requires no distributional assumption of the 
data to be tested.
Testing whether the parameters in a model are constant over 
time is another option. The Chow test proposed by Chow 
(1960) and the cumulative sum (CUSUM) test (Brown et al., 
1975) were applied. Unfortunately, there is no good theory 
about how to forecast in the presence of breaks, and the simple 
rule is to split the sample at the estimated break (Hansen, 
2012). One obvious disadvantage with this procedure is loss 
of data. Others recommend forecasting models with time 
varying parameters (Hyndman, 2014), for example, the self-
exciting threshold autoregressive (SETAR) model in (2). In a 
preliminary analysis, the author tried to split the sample at the 
point of the structural break. However, this did not improve 
forecasts significantly, and it was therefore decided to include 
the whole sample in the analysis.

Time series models and forecasting methods

The linear model
The primary argument for linearity is simplicity in estimation, 
interpretation and forecasting, and the analysis of nonlinear 
models is reasonably straightforward.

The autoregressive (AR) model
As AR models are well known and make up important building 
blocks in all subsequent models in this paper, it is reasonable 
to include AR models in the analysis. An AR model is based 
on the idea that the current value of a series yt can be 
explained as a function of p past values, yt–1, yt–2, yt–p, where 

p determines the number of steps into the past needed to 
forecast the current value. An AR model for yt of order p is of 
the form

	  1 1 2 2( ) ( ) .. ) ,(t t t p t p ty y y yφ φ φ− − −= + + ++ … ε � (1)

where yt is stationary, φ1, φ2, …, φp are constants (φp ≠ 0) and εt 
is a Gaussian white noise process (Shumway & Stoffer, 2010).

Nonlinear models
To model nonlinear behaviour, it is natural to allow for the 
existence of different states of the world or regimes, and to 
allow the dynamics to be different in different regimes. By 
extending AR models to allow for nonlinear behaviour, the 
resulting nonlinear models are easy to understand and due 
to their variety and flexibility, the so-called regime switching 
models have become popular in the class of nonlinear 
models.

1.	 The SETAR model
The SETAR model is a piecewise linear autoregression 
which has been widely applied in econometrics. A popular 
choice in practice is the two-regime model (Teräsvirta et al., 
2011):

 1 1 1 12 2) ( ) ) {1 (( ( )}t t t t d tt t dc I yy I y c−−= < + − <+ +φ φw wε ε �(2)

Here wt = (1, yt−1, … yt−p), and yt−d, d > 0, is an observable switch-
variable. I is an indicator function, c1 a threshold parameter to 
be estimated and ϕ1 and ϕ2 are parameter vectors. Further, 
ε1t = σ1εt and ε2t = σ2εt, with {εt} ~ iid (0, 1), σ > 0. Finally,  
d is a positive integer indicating the time delay. The regime 
of yt is determined by its own lagged value yt−d, thus the term 
“self-exciting”, and d determines with how many lags does yt−d 
influence the regime at time t. The switch-points are generally 
unknown. The observations yt are generated either from the 
first regime when yt−d is smaller than the threshold, or from 
the second regime when yt−d is greater than the threshold. 
Estimation of the model can be carried out by conditional least 
squares.
Before developing an SETAR model, the time series 
were tested for the existence of possible threshold-type 
nonlinearity and the number of such thresholds. The test 
proposed by Hansen (1999) implemented in the R procedure 
SETARTest was applied. To select an appropriate SETAR 
model, the selectSETAR function in R was used. The time 
series, the embedding parameters and a vector of values 
for each provided hyper-parameter are passed to this 
function. The routine then tries to fit the model for the full 
grid of hyper-parameter values and gives as output a list 
of the best combinations with respect to the pooled Akaike 
information criterion (AIC). The pooled AIC sums the AICs in 

100



Hansen: Forecasting dairy commodity prices

the different regimes. All SETAR models in this paper have 
only two regimes.

2.	 The logistic smooth transition autoregressive (LSTAR) 
model

Sometimes it is reasonable to assume that the regime switch 
happens gradually in a smooth fashion. The step function  
I (yt−d ≤ c1) in (2) is replaced by a transition function. Here, the 
focus is on the logistic transition function. An LSTAR model of 
order p can be defined as (Teräsvirta et al., 2011):

1
10 1 20 2( ) [(1 exp{ ( })) ]t t t t d ty y cγ ε−

− += + + + + − −φ φφ φw w �	
						            (3)

where εt ~ iid(0, 2
εσ ) and γ determines the speed and 

smoothness of the transition, γ > 0. The remaining parameters 
are similar to (4). Now the observations yt switch between two 
regimes smoothly in the sense that one regime has more 
impacts in some times, and the other regime in other times. 
If, for example, γ = 0 holds, then model (3) is a linear AR 
(p) model. When γ = 0 then ϕ20, ϕ2 and c in (3) can take any 
values, and the model is not defined. To choose parameters 
in the LSTAR models, we used the selectLSTAR function in 
the package tsDyn.

3.	 The additive autoregressive model (AAR)
In contrast to the SETAR and LSTAR models, the AAR 
model is nonparametric. Additive models are a flexible class  
of estimators which combine many methods as building 
blocks for fitting an additive model. AAR models avoid 
forcing the data into a given structure. Thus, they maintain 
a lot of the nice properties of linear models but are much 
more flexible.
A nonlinear AAR model can be written as:

	  1 22  1( ) ( ) ( ) ,t t i t i tp p tiy y yf f fy ε− − −= + + + +… � (4)

where εt ~ iid(0, 2
εσ ), ijs are positive integers, and fi(⋅)s are 

smooth functions of the lagged variables to be estimated. 
The key feature of the model is additivity. Each input feature 
makes a separate contribution to the response, and these just 
add up. The smooth functions (splines) f are composed by 
sums of base functions and their corresponding regression 
coefficients. The places where the polynomial pieces connect 
are called knots. The mgcv package in R represents the 
smooth functions using penalised regression splines to 
regularise the smoothness. By default, the mgcv procedure 
uses basis functions for these splines that are designed to be 
optimal, given the number of functions used. The smoothing 
parameters are chosen by minimising the generalised cross 
validation (GCV) score of the whole model (Hastie et al., 
2009). All AAR models in this paper are estimated using cubic 
regression splines.

Forecasting the prices of different dairy commodities in 
2016
Four different forecasting models were fitted with data from 
January 2002 to December 2015 as the training set: the AR, 
the SETAR, the LSTAR and the AAR. The year 2016 was used 
as the test set. Due to computational problems, the LSTAR 
models were dropped for Smp and Wmp. Further, for cheese, 
the LSTAR, AAR and SETAR models did not perform well, 
therefore they are not shown.

Forecasts based on the AR models
At time T, the optimal j-step ahead forecast CT+j is the 
conditional expectation E(CT+j |ƳT), where ƳT denotes the 
information till time T. For each commodity models with 
different time lags were tried, and the AIC (Akaike, 1969) and 
the Bayesian information criterion (BIC) (Schwarz, 1978) were 
used to choose between models. Model parameters for each 
commodity are given in the Appendix.

Forecasts based on the nonlinear models
The forecasts were obtained recursively from the estimated 
model. Ignoring the residuals in the second and more steps 
ahead forecasts leads to biased forecasts, so-called naive. 
Therefore, the bootstrap resampling method was applied, 
where residuals are resampled from the empirical residuals 
from the model (Franses & van Dijk, 2000). The bootstrap 
does not require knowledge of the distribution of the residuals. 
It is therefore more robust and considered more satisfactory 
on the purely pragmatic grounds of producing better forecasts 
(Teräsvirta et al., 2011). Let us consider the simple regression 
model

		  1 1( )t t ty g x ε+ += + � (5)

for example,

		
2

1 1t t ty x ε+ += + � (6)

where

		  1 1,t t tx xφ η+ += + � (7)

and {ηt} ~ iid (0, 2
ησ ).

Suppose we have observations until T and want to forecast 
yT+1. The one-step forecast becomes

		  ,1 ( ),T
y
T g xf = � (8)

as E{εT+1} = 0, given the information until T. The two-step 
forecast is not as easy. The optimum two-step forecast is

	 2 1,2  { | } { ( ) | },y
T T T TTf E y E g x+ += =F F � (9)
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where  TF  is the information set. As xT+1 is usually not known 
at time T, it must be forecasted from (7). The one-step OLS 
forecast becomes

		  ,1 .x
T Tf xφ= � (10)

Expressing (6) in the form

		  ,1 1,2 { },( ) |y x
T T TTf E g f η += + F � (11)

the bootstrap method yields the following two-step forecast:

		
�

,1
)

,2
(

1

1 ) ( ,B
t

N jy x
TT jB

fb g f
N

η
=

= +∑ �
(12)

where � ( )
,t

jη  j = 1, …, NB, are the NB independent draws with 

replacement from the set of residuals � 2{ }
T
t tη

=  estimated from 
(9) over the sample period. The forecast will be

		  � 22 2
,2  ,  assuming thaty

ttf x ησφ= + � (13)

		  � ( )1
1

is near zero.BN
tB j

j
N η−

=∑ � (14)

In practice the function � (
,

)
1( )

jx
T tg f η+  is not known and must 

be estimated. Thus, g must be replaced with ĝ in the forecast 
above. In this paper, the number of bootstrap replications was 
set to 200.

Testing the models and evaluating the forecasts
A good forecast is one that generates low expected loss 
when used in economic decisions. The costs of different 
mistakes – typically different magnitudes of over- and 
underpredictions of the outcome – must therefore be 
considered in selecting a forecasting model, estimating 
its parameters and generating forecasts. A model which 
fits the training data well will not necessarily forecast well 
(Hyndman & Athanasopoulos, 2019). Thus, the ultimate 
test of the models is their predictive accuracy on a test set 
unknown to the model, a common principle, for example, 
when comparing different machine learning models. In 
this study, five different commodities with quite different 
prices were compared. Percentage errors have the 
advantage of being unit-free, and so are frequently used 
to compare forecast performances between datasets. 
Thus, mean absolute percentage error (MAPE) is the most 
commonly used measure of forecast accuracy (Hyndman & 
Athanasopoulos, 2019).

| 1
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= ∑

Root mean squared error (RMSE) was also applied, as it is 
one of the most commonly used scale-dependent accuracy 
measures (Hyndman & Athanasopolous, 2019). The RMSE is:

2
1RMSE .

T
tt
e

T
==

∑

A difference between the two measures is that because the 
RMSE squares the errors, it penalises large errors heavier 
than the MAPE. Similar evaluation metrics as applied in this 
study are also used in other comparisons of forecasts, see, for 
example, Guo & Tseng (1997). Plots of the residuals and the 
BDS test were used to evaluate the models.
The most versatile and widely used forecast accuracy test to 
compare the quality of forecast between competing models in 
empirical studies is the Diebold–Mariano (DM) test (Diebold & 
Mariano, 2002). To compare forecasts, we apply the modified 
DM version proposed by Harvey et al. (1997). The DM test is 
a formal test to compare predictive accuracy. Thus, the fact 
that estimated MSE of forecast A in one sample is lower than 
that of forecast B does not necessarily mean that method A 
is the best in the population. The DM test aims at answering 
the question: Is method A truly superior in the population 
or is it merely lucky given the sample? If we denote the 
forecast error L(et), DM calculates the time t forecast error 
loss �(MSE) differential between two forecasts 1 and 2 as: d12t 
= L(e1t) – L(e2t). The DM test tests the hypothesis of equal 
expected loss, that is, d12t = 0. If two methods are equally good  

E(d12t) = 0, which means that �
1212 21  (0,  1),/ dDM Nd σ →=  

where 12 121
 (1/ ) ,

T
tt

d T d
=

= ∑  12d  is the sample mean loss 

differential, and �
12dσ  is a consistent estimate of the s.d. of 12.d  

In this study, we apply the DM test to test out of sample forecast 
accuracy. Unfortunately, we had problems with negative long-
run variance in the DM tests, which is common when dealing 
with multi-step-ahead predictions in small samples (Harvey  
et al., 1997). Thus, we did not manage to perform the DM 
tests for a longer forecast period than 6 mo ahead.
All models were estimated using the free statistical software 
package R, and the libraries flinear, forecast, mgcv, urca, 
tsDyn, strucchange and carjols.

Results

Linearity and structural breaks
The test results of the null hypothesis that the time series are 
linear are given in Tables 2 and 3.
Following the recommendations in Teräsvirta et al. (2011), a 
significance level of 10% was applied. In Tables 2 and 3 we 
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can see that all three tests suggest that the prices of butter, 
Smp and Wmp are nonlinear. However, for cheese and Whp, 
the Tsay test does not reject the null hypothesis of linearity. 
From Figure 1, one can see a possible structural break 
around 2007. Therefore, the series were tested for a potential 
breakpoint between 2006 and 2008, and the results of the 
Chow test are given in Table 4.
The results suggest that the dry products first reached the 
breakpoint. It was first half a year later butter and cheese 
followed. Similarly, the CUSUM test for structural change 
confirms the existence of a structural break in all commodity 
prices, with test statistics 4.959*** for cheese, 4.404*** for 
Wmp, 5.188*** for butter, 4.300*** for Whp and 4.136*** 
for Smp. The essence of linear systems theory is that any 
stochastic process can be separated into the sum of two 
processes – a deterministic one that is a linear function of 
its past values and a stochastic one that is a linear function 

of previous values of an uncorrelated random variable. 
However, based on the preliminary tests, the test results of 
linearity and structural breaks, the main conclusion is that the 
dairy commodity series may be best predicted using nonlinear 
models.
The model estimates are provided in Tables A3–A6. The BDS 
tests applied to the residuals of the best performing models 
according to MAPE and RMSE are provided in Table A7. The 
tests show that the hypothesis that they are iid is rejected for 
most combinations of m and ε at conventional significance 
levels. However, plots of the autocorrelation function (acf) and 
partial autocorrelation function (pacf) show that there is little 
correlation among them. Plots of the residuals also show that 
several models have problems with heteroscedasticity from 
the time of the breakpoints on, with clearly increased absolute 
values. The quantile plots also show mixed results as to 
whether the residuals are approximately normally distributed 
or not.

Commodity price forecasts for 2016
The MAPE and the RMSE of the different forecasting models 
for 2016 are shown in Figures 2–6.
From Figure 2 we can see that for cheese the forecasts 
become inaccurate after only a few months. However, after 
11–12 mo the AR recovers and yields an MAPE of around 12, 
which is reasonable.
From Figure 3 we can see that the AR yields the best price 
forecast for butter, with a reasonable MAPE up to 8–9 mo 
ahead. After 9 mo the SETAR and the LSTAR produce equally 
good forecasts.
The Smp price can be forecasted 12 mo ahead with an MAPE 
of 8 or below (Figure 4), which is pretty good. The flexible AAR 
produces the best forecast according to the MAPE and RMSE 
criteria and manages to capture the fluctuations in the Smp 
price quite well. The SETAR model also yields relatively good 
forecasts. Similarly, the AAR manages to forecast the Wmp 
price 8 mo ahead with an MAPE below 8, which is acceptable 

Table 2: The test statistics and P-values for the Tsay test and 
Teräsvirta tests of H0 that the price series are linear

Commodity Tsay test (order = 3) Teräsvirta test (lag = 3)

Cheese 1.793 2.537**

Butter 7.511*** 7.195***

Smp 12.66*** 5.648***

Wmp 5.161** 2.833***

Whp 1.605 3.225***

Significance code: **P = 0.01, ***P = 0.001.
Smp = skimmed milk powder; Whp = whey powder; Wmp = whole 
milk powder.

Table 3: The BDS test of linearity for the different series: test 
statistics and P-values for different combinations of m and ε

Commodity m ε = 1 ε = 4

Cheese 2 185.404*** 41.946***

5 1,535.229*** 41.224***

Butter 2 186.801*** 43.667***

5 1,311.1105*** 42.907***

Smp 2 102.250*** 33.019***

5 653.794*** 30.774***

Wmp 2 112.147*** 36.032***

5 735.973*** 34.281***

Whp 2 360.293*** 43.794***

5 2,519.527*** 43.156***

Significance code: ***P = 0.001.
BDS = Brock, Dechert and Scheinkman; Smp = skimmed milk 
powder; Whp = whey powder; Wmp = whole milk powder.

Table 4: The Chow test with the aveF test statistic for a possible 
structural break in the prices between 2006 and 2008

Commodity Breakpoint Test statistic

Whp February 2006 170.6***

Smp November 2006 135.49***

Wmp December 2006 168.69***

Cheese May 2007 271.56***

Butter June 2007 346.04***

Significance code: ***P = 0.001.
Smp = skimmed milk powder; Whp = whey powder; Wmp = whole 
milk powder. 
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Figure 2. MAPE (left panel) and RMSE (right panel) for cheese for the AR model.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

SETAR AR AAR LSTAR

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12

SETAR AR AAR LSTAR

Figure 3. MAPE (left panel) and RMSE (right panel) for butter for the different models.
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Figure 4. MAPE (upper panel) and RMSE (lower panel) for Smp for the different models.
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(Figure 5). Up to 8 mo the SETAR and the AAR produce 
equally good forecasts, but then the SETAR takes the lead, 
with an MAPE below 10 up to 10 mo ahead. However, one 
should keep in mind that the differences are small, and not 
significant according to the DM tests.
Finally, the LSTAR produces very good forecasts of the Whp 
price up to 7 mo ahead (Figure 6), with a MAPE of 6–7. After 
8–9 mo the AR and the AAR perform almost equally well.
In Table 5 we show the results from the DM tests of model 
comparisons.
In Table 5 we can see that the only significant difference 
between forecasts is the one between the AAR and AR 
forecasts for Smp. Thus, we can conclude from Figure 4 that 
for Smp the AAR performs significantly better than the AR.
The prediction intervals for the best models according to 
MAPE and RMSE are provided in Table A8. Wide intervals 
reflect a high uncertainty.

Discussion and conclusion

Taken together, the forecast results show that no single model 
produces by far the best forecast for all products throughout 
the whole forecasting period. Measured as the MAPE or 
RMSE several models may perform almost equally well for all 
products. A model which yields reasonably well in one period 
may be outperformed by other models in another. Thus, our 
findings are in line with Elliott & Timmermann (2016) and 
Bergmann et al. (2018) that there is almost never a single 
forecasting approach that uniformly dominates all other 
alternatives to forecasting. As the forecast horizon increases 
the forecast interval increases substantially, and what can be 
considered a reasonable prediction interval varies between 
products. Thus, the environment is highly dynamic, and 
all models struggle to catch up with rapid price changes. 
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Therefore, the forecaster should have several tools available 
in the forecasting toolbox.
An interesting question is what the prices and forecasts for 
both Smp and butter would have looked like without the use 
of market instruments, such as the intervention scheme in 
the Common Agricultural Policy (CAP). Although the prices 
analysed here are world market prices, intervention is 
likely to have had a stabilising effect on the prices of both 
butter and Smp. The results suggest that dry commodities 
or powders are relatively easy to forecast as compared to 
butter and particularly cheese. Of all prices, forecasting the 
Smp price seems to be the easiest task. Powders have a 
short production time and are easily tradable. Thus, changes 
in market prices are quickly transmitted to producer prices. 
Further, while cheese is a high-end product, powders and 
butter are both commonly used as regulatory products. This 
may explain why their prices show larger s.d. as compared to 
the world cheese price (Table 1). Cheese can be stored for 

several years until it reaches the market, and stock levels of 
cheese are among the highest for dairy products. Thus, for 
cheese price signals from the market have a significant time 
lag, which makes it more difficult for both farmers and dairies 
to adjust the production to current prices. The significant time 
lag may possibly explain why most models applied in this 
paper failed to forecast the cheese price. Further, changing 
consumption patterns to more processed food, and the fact 
that we use the price of cheddar only as representative for 
cheese may also make forecasting challenging. Thus, future 
studies could use, for example, weighted US and EU prices of 
the most traded cheeses instead. Finally, the fact that major 
cheese producing countries also import cheese may also 
influence prices. However, if one accepts a relatively high 
error rate, a simple AR model can be applied to forecast the 
cheese price 12 mo ahead.
For butter, according to the MAPE and RSME, the AR model 
performs the best. However, according to the DM test, the 
differences between models are not significant. Similarly, 
for Smp, the AAR model performs the best, and significantly 
better than the AR. However, the difference between the 
SETAR and the AAR models is small and not significant. The 
findings in our study supports the statement by Teräsvirta  
et al. (2011:362): “In some cases the nonlinear models clearly 
outperform the linear ones, but in other occasions they may 
be strongly inferior to the latter”. In this study, the simple AR 
(2) model works for all commodities and performs surprisingly 
well. Thus, the findings also support the statement in 
(Teräsvirta et al., 2011) that sometimes, even when the data-
generating process is nonlinear, a linear model can yield more 
accurate forecasts than the correctly specified nonlinear one. 
As is argued in Granger & Teräsvirta (1993), the prediction 
errors generated by a nonlinear model will be smaller only 
when the nonlinear feature modelled in-sample is also 
present in the forecasting sample. The success of nonlinear 
time series in producing better forecasts than linear models 
depends on how persistent the nonlinearities are in the data. 
In this dataset inspection of the price series shows many signs 
of nonlinearity. Nevertheless, the results show that applying 
an ensemble of different nonlinear and linear models is an 
efficient way to analyse statistical data, in line with the view 
held in the community of statistical learning (James et al., 
2017).
In contrast to the view held by Sumner & Matthews (2016), 
the findings reported here suggest that forecasting dairy 
commodity prices can be useful. For large dairy exporting 
regions or countries like the EU-28, the US and New Zealand, 
it is crucial to have an idea of how the world market prices of 
different commodities will develop. Similarly, large importers of 
dairy products like China, the Russian Federation, Mexico and 
Japan also have an interest in monitoring the world market 
prices to make optimal buying decisions. The world market 

Table 5: The Diebold–Mariano test statistic for comparisons of the 
different models for out of sample forecast 6 mo ahead

Models 
compared

DM test statistic

B Smp Wmp Whp

AR-LSTAR 1.077

LSTAR-AAR −0.236

LSTAR-SETAR −0.121

AR-AAR −0.088

AR-SETAR −0.043

AAR-SETAR 0.396

AAR-SETAR −0.183

AAR-AR −2.410*

SETAR-AR −1.172

AAR-SETAR −0.504

AR-SETAR −0.704

AR-AAR −0.946

AR-LSTAR −0.794

LSTAR-AAR 0.623

LSTAR-SETAR 0.353

AR-SETAR 0.522

SETAR-AAR 0.213

AAR-LSTAR −0.753

Significance code: *P = 0.05.
AR = autoregressive; AAR = additive autoregressive model;  
DM = Diebold–Mariano; LSTAR = logistic smooth transition 
autoregressive; MAPE = mean absolute percentage error; 
RMSE = root mean squared error; SETAR = self-exciting threshold 
autoregressive; Smp = skimmed milk powder; Whp = whey powder; 
Wmp = whole milk powder.

106



Hansen: Forecasting dairy commodity prices

prices are characterized by large fluctuations and the degree 
and timing of changes are different. Due to these changes, 
both sellers and buyers can suffer great losses.
A much wider disparity between the largest and smallest 
values after the breakpoints in 2006/2007 (Figure 1) is one 
possible reason why several models face problems with 
heteroscedasticity. Omitted explanatory variables in the models 
might be another reason. The dairy sector, from production to 
final use, including trade and inventory balance, is complex. 
For example, the issue of storage of dairy commodities raises 
the question of whether a new variable measuring stocks or 
stocks relative to demand could improve the forecasts. This 
could be particularly interesting for cheese. The growing 
importance of price cycles (Bergmann et al., 2015) could 
engage scholars to improve the forecasting models. Wavelet 
analysis could be one option worth exploring. Further, linear 
and nonlinear state space models, which accommodate the 
treatment of possible inter-relationships between multiple time 
series, could be another. In an agricultural context, forecast 
accuracy can also be improved by combining forecasts 
of individual models (Colino et al., 2012; Bergmann et al., 
2018). When combining forecasts weights based on inverse 
past forecast errors often outperform more complex methods 
(Timmermann, 2006). Finally, the predictive capacity of dairy 
commodity forecast models might also be improved by including 
the price information inherent in futures. Nevertheless, one 
should never forget that forecasting models that are simple 
enough to lend themselves to empirical estimation must be 
strongly condensed representations of a far more complex, 
and possibly changing, data-generating process. The correct 
perspective is therefore to regard all forecasting models as 
mis-specified.
The underlying presumption behind time series models that 
correlation between adjacent points in time is best explained 
in terms of a dependence of the current values on past values 
means that the models depend heavily on the time periods 
analysed. China’s role as a key importer of many traded dairy 
products is a key uncertainty in the future developments of 
world dairy markets. China’s milk production has increased, 
along with investments in processing capabilities. Further, 
environmental legislation can have strong impacts on the 
future development of dairy production. Water access and 
manure management are other areas where policy changes 
could have an impact. Major outbreaks of animal diseases 
or unusual weather events during the forecast period could 
also alter the setting. Finally, dairy demand and export 
opportunities could also be affected by the outcome of various 
free trade agreements currently under discussion. These 
considerations make it necessary to recalibrate and update 
the models regularly, in line with the recommendations of 
Stock & Watson (2003).

In conclusion, prices of dairy commodities reached a 
structural breakpoint in 2006/2007. A combination of linear 
and nonlinear models is useful in forecasting dairy commodity 
prices. The cheese price seems to be the most difficult to 
forecast, but the AR performs reasonably well after 1 yr. 
When evaluated by the MAPE and the RMSE, the butter price 
is best forecasted with a simple AR model. Similarly, an AAR 
model can be applied for Smp, an SETAR model for Wmp 
and an LSTAR model for Whp. However, an important finding 
is that several models can produce almost equally good 
results. Although some models outperform others according 
to the MAPE and the RMSE, one should keep in mind that 
the DM tests show that only one of the differences between 
models is significant. A drawback is of course that the DM 
tests are limited to the first 6 mo ahead. The Smp price is 
relatively easy to forecast 10–12 mo ahead. For the other 
commodities forecast errors are acceptable over a period of 
6–8 mo. The findings presented here could be of interest to 
the dairy industry.
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Appendix Table A1: The Elliott–Rothenberg–Stock point optimal 
test  TP

τ  of unit root with eight lags

Test and 
significance 
level

C B Smp Wmp Whp

Test statistics

Level 4.922 5.741 1.669 1.821 5.771

5% 3.17

10% 4.33

Trend 4.81 3.903 5.771 2.686 8.708

5% 5.66

10% 6.86

Smp = skimmed milk powder; Whp = whey powder; Wmp = whole 
milk powder.

Appendix Table A2: The KPSS test statistic of stationarity with eight 
lags

Test and 
significance 
level

C B Smp Wmp Whp

Test statistics

Level-

stationarity

1.175 1.323 0.773 0.867 1.011

5% level 0.463

10% level 0.347

Trend 

stationarity

0.197 0.189 0.142 0.210 0.115

5% level 0.146

10% level 0.119

KPSS = Kwiatkowski–Phillips–Schmidt–Shin; Smp = skimmed milk 
powder; Whp = whey powder; Wmp = whole milk powder.

Appendix Table A3: The parameters in the AR models

Constant φ
1

φ
2

Cheese

(s.e.)

85.386*

33.785

1.621***

0.059

−0.645***

0.059

Butter

(s.e.)

93.947*

43.463

1.312***

0.073

−0.342***

0.073

Smp

(s.e.)

105.262*

47.614

1.372***

0.071

−0.408***

0.071

Wmp

(s.e.)

118.124*

49.600

1.403***

0.070

−0.442***

0.070

Whp

(s.e.)

25.795*

12.378

1.501***

0.066

−0.527***

0.066

Significance codes: *P = 0.05, ***P = 0.001.
AR = autoregressive; Smp = skimmed milk powder; Whp = whey 
powder; Wmp = whole milk powder.
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Appendix Table A5: The parameters in the LSTAR models

Smoothing parameter Low regime High regime

Constant φ
1

φ
2

Constant φ
1

φ
2

Butter 

(s.e.)

14.206 −8.058

145.719

0.373*

0.208

0.655***

0.162

137.936

156.188

1.121***

0.220

−1.191***

0.176

Whp 

(s.e.)

13.3 35.625***

18.903

1.509***

0.067

−0.556***

0.064

170.166***

60.399

−0.105*

0.049

Significance codes: *P = 0.05, ***P = 0.001.
LSTAR = logistic smooth transition autoregressive; Whp = whey powder.

Appendix Table A6: The parameters in the AAR models, with coefficients for the intercept, together with estimated degrees of freedom (E df) 
for the two smoothing terms s1 and s2, and reference degrees of freedom (Ref df) for the F- test

Parametric intercept term Edf s1 Ref df s1 Edf s2 Ref df s2

Butter

(s.e.)

2,852.542***

15.818

4.004*** 4.970 4.955*** 6.010

Smp

(s.e.)

2,845.34***

14.44

6.547*** 7.574 2.593*** 3.368

Wmp

(s.e.)

2,987***

16.448

5.144*** 6.238 5.179*** 8.717

Whp

(s.e.)

970.831***

4.563

1.000*** 1.000 1.692*** 2.128

Significance code: ***P = 0.001.
Smp = skimmed milk powder; Whp = whey powder; Wmp = whole milk powder.

Appendix Table A4: The parameters in the SETAR models

Threshold Low regime High regime

Constant φ
1

φ
2

Constant φ
1

φ
2

Butter

(s.e.)

1,825 2.168

166.483

1.013***

0.116

185.947***

68.322

1.293***

0.074

−0.349***

0.073

Smp

(s.e.)

2,400 81.721

151.810

1.478***

0.223

−0.513*

0.207

327.469***

110.369

1.317***

0.077

−0.410***

0.075

Wmp

(s.e.)

2,550 77.182

152.743

1.561***

0.194

−0.587***

0.180

298.920*

120.004

1.345***

0.078

−0.428***

0.076

Whp

(s.e.)

735 10.649

37.413

1.409***

0.182

−0.415*

0.175

62.656*

26.670

1.497***

0.072

−0.551***

0.071

Significance codes: *P = 0.05, ***P = 0.001.
SETAR = self-exciting threshold autoregressive; Smp = skimmed milk powder; Whp = whey powder; Wmp = whole milk powder.
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Appendix Table A7: BDS tests of independence of the residuals 
from the best performing models according to the MAPE and RMSE: 

test statistics and P-values for different combinations of m and ε

Commodity m ε = 1 ε = 4

AR-cheese 2 1.121 0.973

3 2.297* 3.244**

AR-butter 2 6.448*** 2.080*

3 10.228*** 2.643*

AAR-Smp 2 8.286*** 4.180***

3 14.025*** 4.247***

SETAR-Wmp 2 6.255*** 2.152*

3 9.326*** 2.667**

LSTAR-Whp 2 3.889*** 4.799***

3 4.754*** 5.217***

Significance code: *P = 0.05, **P = 0.01, ***P = 0.001.
AR = autoregressive; AAR = additive autoregressive model;  
BDS = Brock, Dechert and Scheinkman; LSTAR = logistic smooth 
transition autoregressive; MAPE = mean absolute percentage error; 
RMSE = root mean squared error; SETAR = self-exciting threshold 
autoregressive; Smp = skimmed milk powder; Whp = whey powder; 
Wmp = whole milk powder. 

Appendix Table A8: Predicted prices with prediction intervals 6 and 
12 mo ahead for the best performing models according to the MAPE 

and RMSE

Commodity Months 
ahead

Predicted Lower 
5%

Upper 
95%

AR-cheese 3 3,196 2,759 3,616

6 3,245 2,315 4,113

12 3,307 2,187 4,456

AR-butter 3 3,170 2,743 3,674

6 3,135 2,430 3,849

12 3,094 2,084 4,286

AAR-Smp 3 1,870 1,294 2,350

6 1,981 832 3,084

12 2,286 427 4,433

SETAR-Wmp 3 2,175 1,603 2,860

6 2,324 1,232 3,424

12 2,459 930 4,103

LSTAR-Whp 3 715 559 846

6 712 402 975

12 721 237 1,242

AR = autoregressive; AAR = additive autoregressive model;  
LSTAR = logistic smooth transition autoregressive; MAPE = mean 
absolute percentage error; RMSE = root mean squared error; 
SETAR = self-exciting threshold autoregressive; Smp = skimmed 
milk powder; Whp = whey powder; Wmp = whole milk powder.
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