
Forecasting Run-Times of Secure Two-Party
Computation

Axel Schröpfer
SAP Research

Karlsruhe, Germany
Email: axel.schroepfer@sap.com

Florian Kerschbaum
SAP Research

Karlsruhe, Germany
Email: florian.kerschbaum@sap.com

Abstract—Secure computation (SC) are cryptographic proto-
cols that enable multiple parties to perform a joint computation
while retaining the privacy of their inputs. It is current practice
to evaluate the performance of SC protocols using complexity
approximations of computation and communication. Due to the
disparate complexity measures and constants this approach fails
at reliably predicting the performance.
We contribute a performance model (PM) for forecasting run-
times of secure two-party computations. We show the correctness
of our PM by an empirical study on the problem of secure
division which is relevant for many real world SCs, e.g., k-means
clustering or supply chain optimization. We show that our PM
can be used to make an optimal selection of an algorithm and
cryptographic protocol combination, as well as to determine the
implicit security tradeoffs. The predictions of our PM can be
used to design or select more efficient or more secure protocols.

Index Terms—Multi-party Computation Performance Model
Security

I. INTRODUCTION

Numerous implementations for secure computations (SC)
exist [1], [2], [3], [4], [5], [6]. Yet, for many applications –
even of moderate size – performance remains critical [7].

There is an abundance of specialized protocols for SCs
improving performance. Yet, theoretic developments compare
different performance metrics. There is computation complex-
ity for the number of computation steps, communication com-
plexity for the size of all messages and round complexity for
the number of communication rounds. For a given environment
and a given protocol it is almost always unknown which
complexity dominates the performance. As a result it is very
difficult to pick the best SC for a given problem.

In this paper we try to give some decision help and present
a performance model (PM). Our PM captures an algorithm
in abstract form and can then forecast a run-time based on
a benchmark. The benchmark is performed for an individual
environment and captures its basic computation and commu-
nication parameters.

We can cover a wide range of algorithms. The motivation
for this study was the problem of secure division in JELS
[8] or weighted average in secure k-means clustering [9]. We
therefore chose two division algorithms as an example [10],
[8]. We cover the SC protocols based on garbled circuits (GC)
[11] and homomorphic encryption (HE) [12], [13]. We also
cover different computation and network settings.

We verified the accuracy of our model in a large empirical
study. Then, we used the model to try to predict the future

development of performance of SCs. There are a number
of conflicting trends, such as increasing input-size and key-
lengths. Also different network settings and CPU architecture
have a significant impact. This difficulty in making informed
decisions underpins the need for an integrated model, such as
our PM capable of dealing with all those situations.

A future application of our model is an optimizing compiler
that supports both SC protocols, e.g. [5]. The compiler can
first transform the algorithm into our abstract model and then
select the best SC protocol options based on the forecasts of
our PM.

In summary this paper contributes
• an abstract model for algorithms in SCs
• a PM forecasting the run-time of a SC
• an accuracy assessment of the forecast
• a number of predictions for the evolvement of the per-

formance of different SCs
The remainder of the paper is structured as follows. Section

2 contains related work. In Section 3 we introduce the PM
which we evaluate for accuracy in Section 4. Section 5
contains a discussion. Section 6 compares PM vs. asymptotic
complexities and Section 7 concludes the paper.

II. RELATED WORK

Our work is related to practical SCs [14], [15], [7], [16],
secure division [10], [9], [17], [18], SC implementation [5],
[1], [4], [19], [3] and performance of cryptographic protocols
[20].

Several SCs have been brought to practice. In [14] the
authors present a SC for price bidding. The work presents
the first commercial SC, but rather states a general feasibility
result. In [15], [7] the authors present an experimental study
of a specific protocol for collaborative benchmarking. The
work discusses the impact of network conditions on SCs,
comparing SC run-times in LAN and WAN environments. The
authors show for a sub-class of SCs [7] that network can have
minor practical impact on the overall run-time of the protocol.
Another demonstration of practical feasible SC is the work
in [16], showing that AES can be performed as a SC in the
malicious model in practically acceptable time.

Our use-case example of secure division has been investaged
in scientific literature before. In [10] the authors present

secure division approaches for secure two-party and multi-
party computation. They use different arithmetic approaches,
like scaling and multiplication by the inverse. The inverse is
computed following the Newton Raphson approximation. In
[18] the authors propose a secure division founded on a sub-
protocol for oblivious polynomial evaluation. In [9] the authors
propose a secure division method following an adaption of
securely subtracting the denominator from the numerator as
many times as possible. In [17] the authors use fixed point
data representation and NR approx. to realize secure division.

A number of frameworks and tools for SCs have been pro-
posed including performance measurement. In [1] the authors
present FairPlay which was the first compiler implementing
SC. FairPlayMP [2] extends FairPlay to the multi-party setting.
It is based on the protocol of [21] which is also an extension
of [11] to the multi-party setting. In [4] the authors present
Sharemind, a framework built for experimenting with privacy-
preserving data mining. It implements the SC protocol from
[22]. It has been optimized for speed of simple operations,
such as vector products. In [3] the authors present VIFF, a
framework for SC which represents the basis for the first
commercial application of SC [14]. It implements multi-party
SC in the information-theoretic model [23].

Next to these implementations of one SC protocol imple-
mentations of mixed protocols have emerged. These combine
several protocols, such as GC and HE. The authors of [5]
present a tool which allows to express a computation whose
segments are translated in either GC or HE based sub-
protocols. The work evaluates an exemplary SC and shows
the performance improvement gained by mixing techniques.
In [19] the authors introduce a programming language for
cryptographic protocols which also allows expressing mixed
technique SC protocols. The authors also evaluate an exem-
plary SC, showing noticeable improvements in run-time using
a mixed approach of GC and HE. Our PM can, e.g., be used
to select optimal combinations.

There are also PMs for other cryptographic protocols. The
authors of [20] consider private information retrieval (PIR)
protocols for scenarios with a single server. They investigate
client access patterns in order to determine whether it is faster
to transfer the overall database and perform rich local compu-
tation or to run a protocol and to perform less computation.
Similarly to us, the authors propose an arithmetic approach to
predict an optimal choice.

III. PERFORMANCE MODEL

The PM captures input and output, algorithm, SC protocol
and system and allows for a given parameterization to estimate
the run-time of an execution.

A SC is implemented as cryptographic protocol and ulti-
mately executed as two interacting computer programs running
on two computers connected by a communication network.

We separate our model and its parameters into four layers.
The top-most layer captures parameters about inputs and
outputs. The second top-most layer captures the formalized
algorithm. The third layer captures parameters of the SC

protocol where we implement two sub-models, one expressing
a SC based on GC, the other one for SCs based on HE.
Finally, the SC is executed as a program on a computer system,
making OS calls for transmission which are captured in the
bottom layer. Tab. I gives an outline of all layers and contained
parameters. Once the parameters are set, the PM computes a
forecast of the run-time of the SC from the parameters.

A. Input/Output

The input layer of the PM captures the size and number
of inputs and outputs. We restrict the model to handle integer
values. Let l denote the number of bits of input and output
values. We use two-complement notation and the domain for
signed integers is

[
−2l−1, 2l−1 − 1

]
. The number of private

inputs of A is denoted αA and the number of private outputs
is denoted βA. Similarly, αB and βB denote the private inputs
and outputs of B. Consequently, there are l(αA + αB) input
bits and l(βA + βB) output bits.

B. Algorithm

The algorithm is written in a machine language-like format.
We use a single static assignment notation. The algorithm
is expressed as a sequential list O of n operations, O =
{o1, · · · , on}. An operation is represented by a tuple consist-
ing of left operand, operator and right operand, o =

(
l⃗, ◦, r⃗

)
.

Operands are scalars with the exception of the operator ⊙ϵ.
We implement the following operators:

• addition ⊕
• subtraction ⊖
• scalar multiplication ⊙ϵ with operands being vectors of

ϵ elements
• multiplication by a constant ⊙c

• division by a constant ⊘c

• left shift ≪
• right shift ≫
• less-or-equal ≤
We emphasize that the operators have been carefully chosen,

such that the underlying SC protocols can leverage their indi-
vidual advantages. For example, GC based SC performs well
for operators ≪ and ≫ since those operators are implemented
“for free” just by wiring the circuit. Also the ≤ operator can be
implemented very efficiently since it requires access to single
bit. On the other hand, for GC based SC, arithmetic operators
need to be implemented as more complex sub-circuits. HE
based SC implements arithmetic operations efficiently, in
particular ⊕, ⊖, ⊙ϵ and ⊙c. However, for operators which
need access to single bits, a costly decomposition (e.g., [24])
needs to be performed.

C. Secure Computation

The SC layer contains parameters of the cryptographic
protocol and combines all parameters into the forecast of the
overall SC. In our PM, we implement two SC protocols. The
first one is based on GC and uses the cryptographic protocol
of Yao [11]. The second one is based on HE and combines
protocols of [10], [13], [25] and additive sharing. Both SC

Parameter Description
Input/Output
l Bit-length of an input or output value
ρ Party with ρ ∈ {A,B}
αρ Number of private inputs of ρ
βρ Number of private outputs of ρ
Algorithm
o =

(⃗
l, ◦, r⃗

)
Operation on left-hand and right-hand operand vector

◦ ∈ {⊕,⊖,⊙ϵ,⊙c,⊘c,≪,≫,≤} Operator,sub-script c explicitly denotes operation on constant, |⃗l| =
|r⃗| = 1 + z, z =

{
ϵ− 1 if ◦ = ⊙ϵ

0 otherwise
O = {o1, · · · , on} List of operations
Secure Computation
kOT Key-length of Oblivious Transfer
kGC Key-length of GC
kHE Key-length of HE
System
tρRND(n) Time in [ms] to select n random bits
tρADD(n) Time in [ms] to add two n bit numbers
tρMUL(n) Time in [ms] to multiply two n bit numbers
tρPOW (n) Time in [ms] for one modular exponentiation of two n bit numbers
tρINV (n) Time in [ms] to compute modular inverse in a field of n bits
tρOWH(n) Time in [ms] for hash function for one n bit number
tρENC(n) Time in [ms] for homomorphic encryption with n bit key
tρDEC(n) Time in [ms] for homomorphic decryption with n bit key
tLAT Network latency in [ms]
b Network bandwidth in [Mbit/s]
rtLAT ,b(n) Transfer rate in [Mbit/s] for n bits (depending on bandwidth b and

latency tLAT)
mtu Maximum number of bits of payload per network packet

TABLE I
PARAMETERS OF THE PERFORMANCE MODEL

protocols require a common cryptographic protocol for 1-out
of-2 oblivious transfer (OT).

1) OT: For 1-out of-2 OT we use the efficient proto-
col of [26]. The protocol operates in a field of bit-length
kOT . Its operations are multiplication, modular exponentiation,
and inversion requiring time tρMUL(kOT), tρPOW (kOT) and
tρINV (kOT), respectively. In addition, the protocol makes calls
to a one-way hash function requiring time tρOWH(kOT) per
call. The time OT requires can be estimated as

tOT = 2tAMUL(kOT) + 5tAPOW (kOT) + 1tAINV (kOT) +

4tAOWH(kOT) + 1tBMUL(kOT) + 2tBPOW (kOT) +

1tBINV (kOT) + 2tBOWH(kOT) + 4tLAT

2) GC based SC: For Yao’s protocol, the algorithm rep-
resented as list of operations O needs to be translated into a
binary circuit C. From this binary circuit C we require its size,
i.e., number of gates ng in the circuit. Tab. II gives a translation
of algorithm operators into number of gates. The size of the
circuit can then be simply computed as the sum of all of its
operators. Note that this table is just as an estimation and states
an upper bound on the number of gates. Optimizations may
very well be applied, on the operators itself as well as on the
overall circuit, further reducing ng.

Yao’s protocol consists of five phases. We now present the
estimation for each phase.

The first phase consists of garbling the circuit. Each wire
of the circuit is assigned a random string of length k for each
possible value. Let nw = αA + αB + ng be the number of
wires (i.e., all input wires and all binary gate output wires).
Let tARND(κ) be the time for selecting κ random bits. We set

Operator ◦ Number of gates ng

⊕ 5l− 3
⊖ 11l − 6

⊙ϵ ϵ
(
6l2 − 8l+ 3

)
+ (ϵ− 1) (5l − 3)

⊘c

(
22l2 − 11l+ 5

)
≪ 0
≫ 0
≤ 5l− 3

TABLE II
NUMBER OF GATES ng OF ALGORITHM OPERATOR ◦ IN CORRELATION TO l

κ = kGC . The time of phase one can be computed as

t1 = 2nwt
A
RND(κ)

After garbling the wires, the output values of each truth
table are encrypted. Let tAOHW be the time for performing one
encryption. Considering binary gates, the total time of phase
two can be computed as

t2 = 4ngt
A
OWH(κ)

Phase three consists of encrypting and transmitting the
inputs of the B which is achieved using 1-out of-2 OT. There
is one OT for each of B’s αB inputs of l bits. Hence,

t3 = αBltOT

Afterwards, the encrypted circuit is transmitted from A to
B, as well as A’s encrypted inputs and the output keys. Let
nt denote the bits for the encrypted circuit, ni the bits for
A’s encrypted input bits and no the bits for the output keys
(reference of size kGC per possible value per wire of B’s
outputs). Let kGC denote the key-length of an encrypted entry
in the truth table. The total number of bits to transfer is ni +
nt + no for

ni = αAlκ

nt = 4ngkGC

and
no = 2βBlkGC

We use a look-up table which keeps transfer rates for given
bandwidth, delay and number of bits. We do so in order not
to model the complex effects of TCP/IP for large transfers, in
particular the sliding window mechanism. Let rtLAT ,b(n) be
the rate in the look-up table matching closest tLAT , b and n.
The run-time of the phase can be computed as

t4 = (ni + nt + no) · rtLAT ,b(ni + nt + no)

In phase five B evaluates the circuit at his site and returns
A’s encrypted outputs. Let tBOWH denote the time for the
operation to perform in order to compute the key of the next
gate. Let mtu denote the payload in bits per packet. The total
time of phase five can be computed as

t5 = ngt
B
OWH(κ) +

⌈
βAlκ

mtu

⌉
tLAT

The overall run-time for the GC based SC is the sum of all
phases, tGC =

∑5
i=1 ti.

3) HE based SC: In the SC sub-model based on HE we
combine the protocols of [10], [13], [25] and additive sharing
in order to implement the operations in O. All operations are
then executed sequentially updating the respective local secret
shares.

In order to implement SC on additive secret shares it would
suffice to implement multiplication securely. The secure dot
product protocol of [13] considers x⃗ and y⃗ to be shared
between A and B in a way that A knows all elements in
x⃗ while B knows all elements in y⃗. In order to sequentially
compose the operations, we, however, consider additively
shared elements, i.e., each element in both vectors is additively
shared. That is, A knows x⃗A = ⟨xA,1, · · · , xA,n⟩ and y⃗A =
⟨yA,1, · · · , yA,n⟩ while B knows x⃗B = ⟨xB,1, · · · , xB,n⟩ and
y⃗B = ⟨yB,1, · · · , yB,n⟩. We therefore use a slightly modified
variant. (For details we kindly refer to the full version of this
paper).

Some operations of the algorithm can be translated into local
operations while others have to be handled by sub-protocols.
The operations in the HE based SC sub-model are performed
in a field of size kHE bits.

At player ρ’s site local operation ⊕ requires time
tρADD(kHE). Local operation ⊖ is identical to ⊕ in a field,
hence requires the same time. Local operation ⊙c requires
time tρMUL(kHE). Local operation ≪ is identical to ⊙c, i.e.,
requires the same time.

Local operations specified in O are executed by both parties
simultanously. The time the operations takes therefore is bound
by the slower party. Hence,

t⊕ = max(tAADD(kHE), t
B
ADD(kHE))

and
t⊙c = max(tAMUL(kHE), t

B
MUL(kHE))

The remaining operations ⊙ϵ, ⊘c, ≤ and ≫ are imple-
mented by cryptographic sub-protocols. The run-time of the
operation includes time for local computation and communi-
cation. The protocols for ⊙ϵ by [13], ⊘c by [10] and ≤ by
[25] differ from the one of Yao [11] in their relation between
computation and communication. Yao’s protocol [11] performs
comprehensive computation (encryption), then transmits a
relatively (compared to the other protocols) large set of data at
one point in time, and finally performs again comprehensive
computation (evaluation). The considered HE based operations
exhibit a different behavior w.r.t. network usage; multiple
small messages are transmitted between the players rather
then a single chunk. We therefore compute the communication
time based on packets and latency rather than bandwidth and
transfer rate. Let tρENC(kHE) be the time ρ requires for one
encryption in the HE scheme, tρDEC(kHE) the time of one
decryption and tρPOW (kHE) the time of one exponentiation
in the field of the modulus of the HE scheme.

Let mtu denote the payload in bits per packet. We compute
from the protocol

t⊙ϵ = 2ϵ
(
tAENC(kHE) + tBPOW (2kHE)

)
+ tBENC(kHE) +

tADEC(kHE) +

(⌈
2ϵkHE

mtu

⌉
+ 1

)
tLAT

For operation ≤ we use the protocol from [25] which
presents the fasted HE based solution to the problem. Fur-
thermore, it enables us to use the same HE scheme as for
all other operations. The output of the protocol in its original
version is a random number which is either positive or negative
depending on a ≤ b being true or false. With an additional
step of computation and communication it is possible to output
an additively shared 0 or 1. We compute

t≤ = 3tAENC(kHE) + 2tADEC(kHE) + 5tBENC(kHE) +

3tBPOW (2kHE) + 5tLAT

For operation ⊘c we use the protocol of [10]. An additively
shared value is divided by a constant by dividing both shares
by the constant and checking whether a possible wrap-around
in the corresponding field has occurred. The overflow can be
determined by using an 1-out of-2 OT. Furthermore it requires
one ≤ operation in order to correct potential rounding error.
We compute

t⊘c = tOT + t≤

Operation ≫ can be reduced to ⊘c, i.e., requires the same
time.

D. System

The system layer captures the parameters representing the
run-time of local computations and network communication.

We estimate these parameters by benchmarking them on the
actual systems the SC will be performed. There are operations
that are called infrequently while others, like encryption in
the GC, are called many times in batch mode. Unfortunately,
the overall run-time of the batch execution is not linear in
the number of calls due to run-time optimization effects on

compiler (JIT) and processor (cache) level [27], [28]. The
average per operation is relatively high if the batch of the
benchmark is relatively small. It decreases with increasing size
of the batch. A bound of nc iterations exists after which the
average changes only unnoticably. We recommend for tρOWH

to benchmark the time for nc calls. The actual number of calls
is greater than nc even for simple circuit constructions [29],
[8].

A benchmark then measures the overall time between the
first and after the last operation. The time of a basic operation
parameter is the arithmetic average.

For all local operations not operating in a batch mode, we
propose to perform a fixed low number of iterations (e.g.,
100) and assigning the median in order to receive an accurate
representative.

The system layer also captures the settings of the commu-
nication network. These are the network packet delay tLAT

and the transfer rate rtLAT ,b(n). The transfer rate depends on
tLAT and b and varies with the number of bits to transfer n.
The network parameter mtu captures the size of the payload
per packet in bits and can be inferred from the network setup.
For small, bursty data transfers we use mtu to determine the
number of packets and then measure the time for transmitting
each packet. For large data transfer we use the transfer rate to
estimate the transmission time.

For benchmarking the network parameters we first perform
a ping procedure. We send one network packet to the other
computer who echoes back this one network packet. This way
we can measure the time for a round-trip which is roughly
2tLAT .

We then determine the transfer rate rtLAT ,b(n) for the
current network setup. We propose the following approach. A
simple look-up table can be created by sending a staggered set
of values for n. The set of values needs to be chosen carefully
preferably adapted to the considered algorithms, since the
spectrum of the look-up table and the time consumed for
calibration evidently are a tradeoff.

IV. ACCURACY EVALUATION

A. Experiment Setup

In this section we present an accuracy evaluation of the PM.
We measure the consumed run-time of an actual implementa-
tion and compare it against the forecast made by the PM. We
ran a large number of SCs covering the range of parameters.

We present the choice of values for the single parameters
layer by layer. Tab. III gives an overview of the parameter
values.

Parameter Values Metric
l {8, 16, 32} bit
Algorithm LD, NR
κOT {128, 160, 192} bit
κGC {160, 256} bit
κHE {768, 1024, 1536} bit
b {0.5, 1, 5, 10, 100} Mbit/s
tLAT {0, 12.5, 25, 50, 75} ms
mtu 1500 bytes

TABLE III
PARAMETERIZATION FOR EXPERIMENTS

We first consider input/output and algorithm layer. We aim
to cover the various operations of the algorithm layer. We first
fix the basic functionality to secure two-party division – a
common problem for several SC problems. We then select
two algorithms for division for l ∈ {8, 16, 32} bits inputs
(resp., outputs) each. The two algorithms are long division
(LD) and Netwon-Raphson approximation (NR). Tab. IV gives
an overview on the quantity of operations in the algorithm
layer required by those algorithms.

Operation LD NR
⊕ (2B + 1) δ − 1
⊖ (2B + 1) δ − 2 γ
⊙ϵ=1 (2B − 2) δ 2γ + 1
⊙c γ
⊘c γ + 1
≪ 4δ − 1
≫ 2δ
≤ Bδ − 1

TABLE IV
OVERVIEW ON THE QUANTITY OF OPERATIONS REQUIRED TO PERFORM
DIVISION ALGORITHM (IN RELATION TO BASIS B, NUMBER OF DIGITS

δ = logB
(
2l − 1

)
AND γ ITERATIONS OF APPROXIMATION INVARIANT)

In the SC layer we have two SC protocols: GC and HE. We
receive by cross-combination four basic SCs: LDGC, LDHE,
NRGC and NRHE.

From the initial value we can derive the number of required
iterations. Let {l → γ} denote the pair of input-length l and
number of iterations γ. For an initial value 2 we receive {8 →
12}, {16 → 28} and {32 → 60}.

LDGC and NRGC only differ in the number of gates of the
circuit. Using sub-circuits described in [8], we receive circuits
with 1325, 5461 and 22181 gates for LDGC with input-lengths
of 8, 16 and 32 bits. In contrast, we receive 132977 gates for
NRGC with input-length of 8 bits. Consequently, the run-time
for NRGC with 16 and 32 bits input-lengths is infeasibly long
and therefore we only conduct experiments with l = 8 bits for
NRGC.

We use different parameters for the key-lengths. For OT we
use κOT ∈ {128, 160, 192} bits and SHA1 as one-way hash
function. Depending of the one way hashing algorithm we
have different key-lengths for κGC . Using one-way hashing
functions SHA1 we have κGC = 160 bits and using SHA2-
256 we have κGC = 256 bits. For HE we use key-lengths 768,
1024 and 1536 bits.

In the system layer we use two identical, real computer
systems connected by a network. In order to simulate different
computation vs. communication tradeoffs we vary the network
performance via a WAN simulator. We simulate various band-
widths (0.5, 1, 5, 10, 100 Mbit/s) and latencies (0, 12.5, 25,
50, 75 ms) representing typical values for LAN and WAN
connections. We leave the MTU to its Ethernet default value
of mtu = 1500 byte. The timings of basic operations in the
system layer are obtained via our benchmark routine.

We implement the four SCs in a programming language for
cryptographic protocols, L1 [19]. The L1 compiler translates
source code written in L1 language into Java source code.
In one measurement we execute two Java programs which

communicate with each other using plain TCP/IP sockets. As
hardware we use servers hosting four AMD Opteron 885 dual-
core 64-bit CPUs and 16 GB RAM.

The machines are linked by a 1 Gbit/s connection to an
intermediate PC, which runs Dummynet [30]. Dummynet is a
WAN network emulator which allows us to emulate network
latency and bandwidth.

We parameterize the PM according to the values depicted
in Tab. III and the values received by the benchmark routine.
Applying a permutation of all parameters in Tab. III we end
up with 600 settings for the GC and 1350 for the HE based
protocol, i.e., 1950 in total. In order to receive statistically
valid results, we perform 25 runs per setting, i.e., 48750 tests.

B. Experimental Results

We group analysis into two parts: results related to GC and
those related to HE.

1) Results for GC: We show in Fig. 1 for each experimental
setting the ratio between run-time forecast of the PM and
measured absolute run-time of the experiment. The x-Axis
contains all 600 experimental settings for GC, grouped by
bandwidth b. Regarding Tab. III, an interval of 120 entries
belongs to one value of b. Each bandwidth interval is sub-
grouped into five sub-intervals, one for each latency tLAT ,
i.e., 24 experiment settings per sub-interval.

We conclude from Fig. 1 that the PM deviates from the
measured absolute run-time values in a range of −27.6% until
+9.5%. The bandwidth has the foremost influence on the error.
We receive a smaller error range from −14.1% until +3.7%
for lower bandwidths (e.g., b = 0.5 Mbit/s), while we receive a
broader range from −27.6% until 9.5% for higher bandwidths
(e.g., b = 100 Mbit/s).

Moreover, for bandwidth values b ≥ 5 the error spreads
most for small latency values tLAT . Eventually, for highest
bandwidth b = 100 Mbit/s and lowest latency tLAT = 0 ms
the error of the PM spreads most (−27.6% until +9.5%). tLAT

is the second most relevant parameter determining the error
range.

This is further supported by Fig. 2 which shows the average
of the absolute value of the relative error per bandwidth
and latency. One can see from the diagram that the error
spreads more (i.e., its absolute value is higher) the higher the
bandwidth and the lower the latency is.

The accuracy of the PM gets noticeably better considering
WAN values, e.g., connections having arbitrary bandwidth
values from Tab. III and tLAT ≥ 25 ms. The error for such
WAN cases spreads between −14, 4% and +5, 6%.

Finally, we show by Fig. 3 the correlation between the
relative error and the absolute run-time of the SC. The figure
shows that the error is particularly high for small run-times.
The error becomes smaller the higher the run-time.

2) Results for HE: The results for HE-based experiments
are slightly different.

Similar to the GC, we show in Fig. 4 the relative value
between the PM forecast and the measured run-time. Anal-
ogously to Fig. 1, the diagram is grouped into bandwidth

Fig. 1. Rel. value between run-time forecasts and measured run-time of
GC-based experiments - grouped by bandwith

Fig. 2. Avg. per tLAT -b-group of rel. error between run-time forecasts
and measured run-time of GC-based experiments

intervals. Regarding Tab. III, an interval of 270 entries belongs
to one bandwidth b. Again, each bandwidth interval is grouped
into five sub-intervals, one for each latency tLAT , i.e., 54
experiment settings per sub-interval. From Fig. 4 we see that
the PM spreads in a range of −14.6% until +17.9%. In terms
of largest deviation, the diagram reveals that for small latency
values (e.g., tLAT ≤ 25) ms there are a number of outliers.
More precisely, considering the metric of absolute value of
relative error for tLAT = 0 ms we have a value of 26.8%,
while for all other latency values the error is in a range
from 18.1% until 21.3%. Considering WAN scenarios (e.g.,
connections with tLAT ≥ 25) ms, the PM has an error in a
range of −14.6% until +7.6%.

In contrast to the GC-based settings, bandwidth does not
play an equally important role with respect to the overall
accuracy of the PM. Looking at Fig. 5 underlines this as-
sessment. Fig. 5 is constructed similar to Fig. 2, i.e., it depicts
the average per bandwidth and latency of the absolute value
of the relative error. Opposite to GC, we cannot determine a
significant development of the error depending on bandwidth
or latency. Therefore, latency turns out to be most relevant
parameter. That is not surprising, since the HE sub-model
realizes operators of the PM by cryptographic sub-protocols
which frequently exchange smaller messages. For such a

Fig. 3. Rel. value between run-time forecasts and measured run-time of
GC-based experiments - sorted by run-time

Fig. 4. Rel. error between run-time forecasts and measured run-time of
HE-based experiments - grouped by bandwidth

communication pattern, latency of transmitting a message is
highly relevant (rather than the bandwidth). We leverage the
fact that modeling network packet transmission is easier and
more accurate than modeling small local operations. The more
packets are to be transmitted and the higher the latency is, the
more accurate is the forecast for a cryptographic protocol.

We show in Fig. 6 also for HE the correlation of forecast
error and run-time. For large run-time values, the error con-
verges to a small band of 2.5% to 7.5%.

The evaluation showed that our PM is accurate. The PM is
in particular accurate for practical latencies (tLAT ≥ 25) ms
exposing an overall deviation of not more than 22.2%.

V. DISCUSSION

We next discuss some predictions made possible by the PM.
We try to answer the following questions

• Which algorithm and SC protocol performs best?
• What is the security trade-off?
• What is more important – network or computation per-

formance?
• What is the impact of unbalanced devices?

A. Algorithm/SC combination

We first want to figure out which algorithm and SC yields
the best option. There are four options for secure division:

Fig. 5. Avg. per tLAT -b-group of rel. error between run-time forecasts
and measured run-time of GC-based experiments

Fig. 6. Rel. error between run-time forecasts and measured run-time of
HE-based experiments - sorted by run-time

LDGC, LDHE, NRGC and NRHE. We consider the exemplary
parameter setting l = 8 bits, b = 5 Mbit/s and tLAT = 50 ms.
Key-lengths are set to kOT = 160 bits, kGC = 128 bits and
kHE = 1024 bits. Fig. 7 shows the run-time forecasts of our
PM. For the selected parameters LDGC represents the best
choice, followed by NRHE. LDHE and NRGC are far behind.

We can conclude that is not possible to solely determine a
best algorithm – LD or NR, since using GC for LD is faster
than NR and using HE for NR is faster than LD. We can
also conclude that is not possible to solely determine a best
SC protocol – GC or HE, since for the LD algorithm GC is
faster than HE and for the NE algorithm HE is faster than GC.
Performance comparison makes only sense for a combination
of algorithm and SC protocol.

We next investigate the impact of the input-length for
LDGC and NRHE – our two best combinations – setting
l ∈ {8, 16, 32}. The diagram in Fig. 8 shows, that LDGC
outperforms NRHE for l ∈ {8, 16}. For l = 32, however,
NRHE performs noticeably better than LDGC.

We can conclude that between the two best options – LDGC
and NRHE – there is no always best option. In this case the
better computation complexity of NRHE makes the predicted
difference for larger inputs. As input-lengths increase NRHE
will outperform LDGC.

Fig. 7. Run-time of secure division with l = 8 bits, kHE = 1024 bits,
kGC = 128 bits, b = 5 Mbit/s and tLAT = 50 ms.

Fig. 8. Run-time of secure division with l ∈ {8, 16, 32} bits, kHE = 1024
bits, kGC = 128, b = 5 Mbit/s and tLAT = 50 ms.

B. Security

Determining the security of encryption is a parameter of
the key-length. The longer the key, the longer the security is
supposed to last. Furthermore, with increasing computational
performance key-lengths are required to increase as well
in order to withstand computational attacks. In [31] key-
lengths were recommended for a security horizon for the
coming years. We vary the key-length parameters to assess
the performance within the next ten years.

We can only set the key-length kHE of Paillier’s HE
system to the recommendations in [31]. We cannot simply
set intermediate values for kGC , since this would require
modifying the hashing algorithm. We rather set the hash-length
to kGC = 256 bits by using SHA-256, by far exceeding the
recommendation.

We fix the other parameters to l = 32 bits, b = 5 Mbit/s
and tLAT = 50 ms. Fig. 9 shows the development of run-
time depending on the recommended key-length. For the first
years, starting with 2010, LDGC and NRHE yield almost iden-
tical run-times. Following recommendations for 2016, LDGC
clearly performs over NRHE. Considering the former Fig. 8
(which represents by kHE = 1024 bits a recommendation
for 2002) NRHE could once outperform LDGC - following
recommendations after 2015, LDGC outperforms NRHE.

Fig. 9. Run-time of secure division with l = 32 bits, kGC = 256 bits,
b = 5 Mbit/s and tLAT = 50 ms.

Fig. 10. Run-time of secure division with l = 32 bits, kHE = 1416 bits,
kGC = 128 bits, b = {5, 10} Mbit/s and tLAT = {25, 50} ms.

We can conclude: As security requirements rise LDGC will
outperform NRHE. Furthermore, since security requirements
are to rise with computational performance, we can also
conclude: As computational performance increases LDGC will
outperform NRHE.

C. Network

A common question in judging SC performance is whether
computation or communication complexity is more important.
Using our PM we can make an integrated forecast and
determine whether a performance is rather computation or
communication bound.

Keeping the setting of l = 32 bits and kHE = 1416 bits
(matching the recommendation for the year 2011), we next
vary the network performance. Both, computation and network
performance are likely to increase over the coming years. The
difficult question is to predict which one will rise faster.

We simply assume – without further research, guarantee or
loss of generality – that network performance is to increase
faster and improve the corresponding parameters while keep-
ing computation parameters fixed. We consider an improve-
ment of tLAT = 50 ms to 25 ms and b = 5 Mbit/s to 10 Mbit/s.

Fig. 10 depicts four cases, using fixed values l = 32 bits,
kHE = 1024 bits and kGC = 128 bits: the baseline setting
with tLAT = 50 ms and b = 5 Mbit/s, a decrease of latency

only to tLAT = 25 ms, an increase of bandwidth only to
b = 10 Mbit/s and the best case with decrease of latency and
increase of bandwidth. Fig. 10 shows that the influence on
LDGC and NRHE differs. LDGC reduces run-time noticeably
by reducing the latency and slightly by raising bandwidth.
NRHE slightly reduces run-time only for reduced latency.

We can conclude: If network performance is to rise faster
than computation performance, LDGC will outperform NRHE.

D. Heterogeneous Devices

We finally consider the impact of heterogeneous devices,
i.e., settings with PA and PB running devices with differ-
ent computational power. The considerations can be used
to investigate the effect of changing usage patterns, e.g.,
from scenarios between enterprise informations systems (i.e.,
computational powerful servers) to scenarios with mobile users
running netbooks or smartphones. It may also be used to
simulate effects of the development of computational power
using battery optimized (weak) devices.

We consider the same setup as for Fig. 8, i.e., l ∈ {8, 16, 32}
bits, tLAT = 50 ms, b = 5 Mbit/s, kHE = 1024 bits and
kGC = 128 bits. We first adapt one player to run a netbook
rather than a server. We use a netbook a which is equipped
with a 1.6 GHz N270 Intel Atom CPU and 1 GB RAM.

Considering the setup of two differently computational
strong devices, we recommend PA to run the faster device. The
reason is that the GC protocol requires more computational
work to be done (i.e., encryption of each truthtable entry) by
the first player.

Comparing the diagram in Fig. 11 to the one in Fig. 8,
run-times of LDGC and NRHE change non-uniformly. While
LDGC does not expose any noticeable change, NRHE re-
markably increases. More precisely, the run-time of NRHE
increases by a factor of 10 for all values of l.

The conclusion is difficult to draw, but the CPU architecture
seems to have a significant impact on SC performance.

Finally, we have both players run a netbook. We present
in Fig. 12 the corresponding forecast. Comparing the results
from the diagram to those of Fig. 8 (both players running
servers), we see that LDGC does not noticeably change run-
time. NRHE, however, further extends the former factor of 10
to 20, for all values of l.

This underpins our conclusion that the CPU architecture has
significant impact on SC performance.

VI. COMPARISON TO COMPLEXITY

Comparing the output of the PM against asymptotic com-
plexity measures, we obtain the results depicted in Tab. V.

Algorithm/ Computation Comm- Rounds
Protocol Exp. OWH unication
LDGC O(l) O(l2) O(l2) O(1)
NRGC O(l) O(l3) O(l3) O(1)
LDHE O(l) O(l) O(l) O(l)
NRHE O(l) O(l) O(l) O(l)

TABLE V
ASYMPTOTIC COMPLEXITIES

Fig. 11. Absolute run-time of secure division SCs with kHE = 1024 bits,
kGC = 128 bits, b = 5 Mbit/s and tLAT = 50 ms.

Fig. 12. Absolute run-time of secure division SCs with kHE = 1024 bits,
kGC = 128 bits, b = 5 Mbit/s and tLAT = 50 ms.

As already mentioned in the introduction, in theoretical
analysis cryptographic protocols are assessed w.r.t. their com-
puation, communication and round complexities. Computation
complexity is sometimes only assessed for the most costly
operations of modular exponentiations disregarding less costly
operations, such as OWH functions.

The complexities depicted in Tab. V are reflected in the
PM and are composed as follows. GC requires αB 1-out of-
2 OTs. Using the OT protocol of [26], each OT requires
a constant number of OWH calls and exponentiations, as
well as a constant number of messages of constant size.
The computation and communication complexity therefore is
O(1) for a single OT, and O(l) for the OTs alltogether. The
transmission of all OTs can be done in parallel such that the
round complexity is O(1). Preparing and evaluating the circuit
requires O(ng) OWH calls (refering to Tab. II that is O(l2) for
LD and O(γ · l2) = O(l3) for NR), as well as transmission of
O(ng) bytes in a constant number of rounds. Communication
complexity therefore is identical to computation complexity
and round complexity is O(1).

For the sub-protocols used in HE based SC we observe the
following complexities. Each respective operation shown in
Tab. IV requires O(1) number of exponentiations, communi-
cation and rounds (if ϵ = O(1)). LD performs O(δ) and NR

performs O(γ) such operations. Since δ = O(l) and γ = O(l),
we obtain the depicted complexities of O(l) for LDHE and
NRHE.

In Tab. V we have normalized all complexities to the input
length l. We conclude that the HE based SCs have lower
computation and communication complexity than the GC
variants. However, the opposite is true w.r.t. round complexity.
w.r.t. to the algorithms there are similar problems: In the HE
protocols LD and NR have the same complexity, while in the
GC model LD is less complex than NR. We already see that a
conclusive decision which is the best protocol is not feasible
from the complexity measures.

VII. CONCLUSION

We introduced a PM for secure two-party computation. We
empirically evaluated the accuracy of our PM. We further
discussed several predictions made possible by the PM consid-
ering secure division as a potential use-case. We demonstrated
varying several parameters in the PM how difficult it can
be to select the best SC. The forecasts made by our PM
can help to make informed decisions, e.g. in an optimizing
compiler. Our PM integrates various complexity measures,
such as computation, communication and round complexity.
It furthermore provides constants for its terms resulting in a
run-time forecast.

Considering the use-case of secure devision, an assessment
for future development remains hard. Clearly, LDGC and
NRHE represent the best options, but there are conflicting
future trends, e.g. for input-length and key-length. Considering
our current parameters we choose LDGC as the best option,
today and in the foreseeable future, for the JELS application
of [8].

The conclusion of our PM compared to theoretical com-
plexity measures highlights its benefits. Without exposing the
hidden constants, it is not feasible to determine the best of the
two candidates LDHE and NRHE. Moreover, the situation is
significantly complicated in the diverse system environments
our PM caters for.

Our work therefore underpins that a PM enables improved
performance assessment of secure computations in practice.

REFERENCES

[1] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - a secure
two-party computation system,” in Proceedings of the USENIX security
symposium, 2004, pp. 287–302.

[2] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” in CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications security, 2008, pp.
257–266.

[3] Virtual Ideal Functionality Framework, “http://www.viff.sk.”
[4] Sharemind, “http://sharemind.cs.ut.ee/wiki/.”
[5] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,

“Tasty: tool for automating secure two-party computations,” in Proceed-
ings of the 17th ACM conference on Computer and communications
security, ser. CCS ’10. New York, NY, USA: ACM, 2010, pp. 451–
462.

[6] J. Bethencourt, “http://acsc.cs.utexas.edu/libpaillier/.”
[7] F. Kerschbaum, D. Dahlmeier, A. Schröpfer, and D. Biswas, “On the

practical importance of communication complexity for secure multi-
party computation protocols,” in SAC, 2009, pp. 2008–2015.

[8] R. Pibernik, Y. Zhang, F. Kerschbaum, and A. Schröpfer, “Secure
collaborative supply chain planning and inverse optimization – the jels
model,” in European Journal of Operational Research, to appear, 2010.

[9] P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in
Proceedings of the 14th ACM conference on Computer and communi-
cations security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp.
486–497.

[10] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private
collaborative forecasting and benchmarking,” in Proceedings of the ACM
Workshop on Privacy in an Electronic Society, 2004, pp. 103–114.

[11] A. Yao, “How to generate and exchange secrets,” in In Proceedings of
the 27th IEEE Symposium on Foundations of Computer Science, 1986,
pp. 162–167.

[12] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of EUROCRYPT, Lecture Notes in
Computer Science 1592, 1999, pp. 223–238.

[13] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen, “On private
scalar product computation for privacy-preserving data mining,” in 7th
International Conference on Information Security and Cryptology, 2004.

[14] P. Bogetoft, D. L. Christensen, I. Damgard, M. Geisler, T. Jakobsen,
M. Kroigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft, “Secure multiparty computation goes
live,” in 13th International Conference on Financial Cryptography and
Data Security, 2009.

[15] F. Kerschbaum, “Practical privacy-preserving benchmarking,” in 23rd
IFIP International Information Security Conference, 2008.

[16] B. Pinkas, T. Schneider, N. Smart, and S. Williams, “Secure two-party
computation is practical,” in Advances in Cryptology ASIACRYPT 2009,
ser. Lecture Notes in Computer Science, M. Matsui, Ed. Springer Berlin
/ Heidelberg, 2009, vol. 5912, pp. 250–267.

[17] O. Catrina and C. Dragulin, “Multiparty computation of fixed-point
multiplication and reciprocal,” in DEXA Workshops, 2009, pp. 107–111.

[18] E. Kiltz, G. Leander, and J. Malone-Lee, “Secure computation of the
mean and related statistics,” in Proceedings of Theory of Cryptography
Conference, Lecture Notes in Computer Science 3378, 2005, pp. 283–
302.

[19] A. Schröpfer, F. Kerschbaum, and G. Müller, “L1 - an intermediate
language for mixed-protocol secure computation,” in Proceedings of the
34th Annual IEEE International Computer Software and Applications
Conference, COMPSAC, 2011.

[20] R. Sion and B. Carbunar, “On the computational practicality of private
information retrieval,” in In Proceedings of the 14th ISOC Network and
Distributed Systems Security Symposium, 2007.

[21] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in STOC ’90: Proceedings of the twenty-second annual ACM
symposium on Theory of computing, 1990, pp. 503–513.

[22] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault tolerant distributed computation,” in Proc.
of 20th ACM Symposium on Theory of Computing (STOC), 1988, pp.
1–10.

[23] R. Cramer, I. Damgard, and U. Maurer, “General secure multi-party
computation from any linear secret sharing scheme,” in Eurocrypt, 2000.

[24] T. Reistad and T. Toft, “Linear, constant-rounds bit-decomposition,” in
ICISC, 2009, pp. 245–257.

[25] F. Kerschbaum, D. Biswas, and S. de Hoogh, “Performance comparison
of secure comparison protocols,” 2009, pp. 133 –136.

[26] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics, 2001, pp. 448–457.

[27] J. Henning, “Spec cpu2000: measuring cpu performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28 –35, 2000.

[28] S. Pieper, J. Paul, and M. Schulte, “A new era of performance evalua-
tion,” Computer, vol. 40, no. 9, pp. 23 –30, sep. 2007.

[29] I. Wegener, Effiziente Algorithmen für grundlegende Funktionen. Teub-
ner, 1996.

[30] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput.
Commun. Rev., vol. 40, no. 2, pp. 12–20, 2010.

[31] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,”
J. Cryptology, vol. 14, no. 4, pp. 255–293, 2001.

