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Abstract

Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings
and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to
rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events.
We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording
continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic
regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the
band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of
125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When
considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance
predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters
were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures
separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm
parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the
feasibility of long-term seizure forecasting using iEEG monitoring.
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Introduction

Epilepsy is a common neurological disorder affecting 0.5–1% of

the world’s population [1], and according to the World Health

Organization accounts for nearly 1% of the entire global burden of

disease [2]. Pharmacotherapy with anti-epileptic drugs is the

mainstay of epilepsy treatment, but 20–40% of patients continue

to have seizures despite medications [3]. A significant, if not the

most important, cause of epilepsy related disability for patients is

the uncertainty of when seizures occur [4–6]. Even patients with

infrequent seizures report persistent anxiety about when their next

seizure will strike [6]. In addition, patients take medications daily

that produce cognitive and physical side effects for events that may

occur infrequently. The ability to forecast seizures would make

individualized epilepsy treatment possible, and patients could be

warned of their impending seizures and take medications only

when needed to prevent seizures. Because of the potential clinical

impact, seizure forecasting has stimulated intense interest [7].

Multiple lines of investigation support the hypothesis that

ictogenesis, the process of seizure generation, is not random. The

recurrent seizures that define focal epilepsy originate from a

localized brain region, and in most patients are associated with a

stereotypic electroencephalography (EEG) discharge with charac-

teristic spectral pattern [8,9]. The spatial reproducibility of seizure

onsets is the basis of successful epilepsy surgery, where focal

resection of the brain tissue generating seizures can cure epilepsy

[10]. The stereotypical pattern of seizure onset recorded with

intracranial EEG (iEEG) is critical for 1st generation devices that
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use algorithms to detect focal seizures and deliver responsive

stimulation to abort them [11]. In addition to the spatial and

spectral reproducibility of seizures, multiple studies show that

seizures tend to cluster in time [12,13] and exhibit underlying

periodicities [14,15]. This spatiotemporal clustering of seizures

suggests a fixed network generating seizures and the potential for

spatial and temporal seizure forecasting. Successful seizure

forecasting requires the existence of a pre-ictal state associated

with an increased probability of seizure generation and a

physiological signal that distinguishes the pre-ictal (ictogenic) state

from the inter-ictal state [15–17]. Physiological evidence that

spontaneous seizures arise from periods of increased seizure

probability, i.e. a pre-ictal state, comes from multiple lines of

investigation. Some of the earliest clinical descriptions of epilepsy

reported on precursory symptoms extending for hours and even

days prior to seizures [18]. Subsequent studies have shown that in

some patients, self-reported prodromes forecast seizures better

than chance [19]. Physiological changes reported to occur prior to

seizures include changes in cerebral blood flow [20,21], blood

oxygenation [22], blood oxygen-level dependent signal [23], and

cortical excitability [24,25]. The vast majority of seizure forecast-

ing investigations have used EEG for quantifying interictal and

pre-ictal brain states(for reviews see Mormann et al. [16];

Andrzejak et al. [26]).

Seizure forecasting, however, has remained controversial. Many

early studies investigating seizure forecasting with intracranial

EEG (iEEG) were later demonstrated to be statistically flawed

[16,26]. However, when using appropriate statistical tests some

patients continued to show evidence for a pre-ictal state [27–29].

In many patients seizures are relatively rare events, and large data

sets with multiple seizures and associated long inter-ictal periods

are needed to rigorously evaluate forecasting algorithms

[16,29,30]. The surgical evaluation of drug resistant epilepsy

using intracranial electrodes provides a unique opportunity to

directly investigate the generation of spontaneous seizures.

Unfortunately, iEEG data sets from patients undergoing evalua-

tion for epilepsy surgery are of relatively short duration and

compromised by the acute effect of surgery and relatively rapid

drug tapers used to capture adequate seizures for localization

within a short period of time. Most of these clinical recordings only

span a few days to a week. The inability to record long-term

continuous electrophysiology and spontaneous seizures has signif-

icantly hindered progress in seizure forecasting. A similar data

limitation complicates other areas of science directed at forecasting

rare events, such as earthquakes [31], that also require long

recordings to get adequate number of events.

We previously described an implantable device capable of

acquisition of high quality, continuous iEEG over many months in

dogs with naturally occurring epilepsy [32,33]. The same device

has recently been used in a first-in-human trial in Australia [7,29].

Canine epilepsy [34] appears to be a good model of human

epilepsy with similar epidemiology, clinical features, electrophys-

iology [35,36], and response to anti-epileptic drugs [37].

Approximately 65% of canine seizures are characterized as focal

onset with or without secondary generalization [38], and

approximately 25% of dogs are not controlled with medications

[39–42].

Here we evaluate a computationally simple seizure forecasting

algorithm based on iEEG spectral power in multiple bands. Three

dogs with naturally occurring epilepsy were instrumented with an

implanted device recording 16 channels of continuous iEEG.

Spontaneously occurring seizures were automatically detected and

visually verified to create accurate long-term seizure catalogs.

Long-term, continuous, iEEG records (ranging from 6.5 to 15

months) containing multiple seizures (15–83 events) were evalu-

ated. A seizure forecasting algorithm using multiple spectral iEEG

power band features and a variable seizure warning time was

demonstrated to forecast seizures significantly better than chance.

The results support the feasibility of long-term seizure forecasting

in naturally occurring canine epilepsy. The ability to forecast

seizures in canine epilepsy will allow exploration of new

therapeutic approaches to epilepsy, such as responsive therapy to

prevent seizures before they occur.

Subjects and Methods

All studies had prior approval of the University of Minnesota

Institutional Animal Care and Use Committee where the animals

are maintained.

Subjects
Seven mixed hounds with naturally occurring epilepsy and

spontaneous seizures were implanted with the NeuroVista Seizure

Advisory System previously described [32,33]. All dogs had

normal neurological examinations and MRI. The dogs were

housed in the University of Minnesota canine epilepsy monitoring

unit and continuously monitored (24 hours/day) with video and

iEEG. The dogs were maintained on anti-epileptic medications

during this study. Three dogs had an adequate number of seizures

and prolonged interictal recordings suitable for analysis (Table 1).

Surgical protocol
As described previously [32], dogs were anesthetized using a

standardized protocol for intracranial surgery. Bilateral craniec-

tomies were performed using standard aseptic procedures and two

silicone strip electrodes each containing 4 contacts were placed

bilaterally in the subdural space (Figure 1A). Lead tails were

tunneled subcutaneously to the telemetry unit implanted in a

dorsal tissue pocket on the dog.

Device (Figure 1A)
A custom implantable iEEG acquisition system was used to

acquire long-term continuous iEEG in three dogs [32,33]. The

system has three major components: (1) Implantable Lead

Assembly (ILA) consisting of four silicone strips each containing

four platinum-iridium contacts (4 mm2 surface area) separated by

20 mm; (2) Implantable Telemetry Unit (ITU); and (3) external

Personal Advisory Device (PAD). The iEEG signals are recorded

from the ILA contacts, filtered, amplified, and digitized (sampling

rate 400 Hz) within the ITU and then wirelessly transmitted to the

external PAD device. The ITU is charged daily for approximately

1 hour via an external battery powered device. The PAD was kept

on the dog’s back within a harness, and collected continuous iEEG

data wirelessly from the ITU. The PAD has embedded seizure

detection algorithms, and includes a user interface with functional

lights for seizure warning, audible alarms, text messaging, and

email algorithm outputs [33].

Data curation: For each dog 16-channel iEEG recordings

(Figure 1B) were wirelessly transmitted to the PAD and stored

on a flash memory card. Continuous video and iEEG data were

archived to a central storage each week. A high sensitivity

automated seizure detection algorithm was used to detect

candidate seizures [43]. All candidate detections were visually

reviewed and correlated with the continuous video to verify

clinical seizure activity. The entire iEEG record was annotated by

expert readers and all subclinical and clinical seizures verified.

Canine data from this study are freely available on the iEEG

portal (https://www.ieeg.org/).

Seizure Forecasting in Dogs
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Table 1. Subject IDs, imaging results, and specifics of iEEG records for three canines with naturally occurring epilepsy implanted
with the NeuroVista Seizure Advisory System.

Subject ID (Breed) MRI Brain Recording duration, days Number all seizures Number lead seizures

002 Normal 197* 27 27

Mixed

004 Normal 330 15 8

Mixed

007 Normal 451 83 18

Mixed

Group totals (mean 6 std) 978 125 53

(3266127) (41.7636.3) (17.769.5)

Lead seizures were defined as seizures preceded by at least 4 hours of non-seizure.
*Full record was 475 days in duration; only final 197 days used for forecasting to avoid post-surgical non-stationarities in iEEG.
doi:10.1371/journal.pone.0081920.t001

Figure 1. Seizure Advisory System (SAS) in Canines with Epilepsy. (A) The implantable device for recording and storing continuous iEEG
includes: Implantable Lead Assembly (ILA) placed in the subdural space (right), Implantable Telemetry Unit (ITU), and Personal Advisory Device (PAD).
The system acquires 16 channels of iEEG and wirelessly transmits the data to the PAD. Data is stored on a flash drive and uploaded weekly via internet
to a central data storage site. (B) Sixteen channels of intracranial EEG recorded with SAS. A focal onset, secondarily generalized seizure is shown. The
top 1–8 channels are from the left hemisphere and 9–16 from the right hemisphere, as shown on the brain schematic above. The onset of the seizure
is from left hemisphere (underlined) electrodes 3 & 4. (C) Schematic of temporal profile of forecast seizure probability and threshold defining the pre-
ictal state, i.e. period of increased seizure probability. When the forecast probability exceeds the defined threshold a fixed duration warning is
triggered. Consecutive warnings that occur within the duration of a prior warning are combined, allowing for variable duration warnings. i) Single
warning triggered without seizure (false positive warning). ii) Multiple consecutive warnings combined into prolonged warning without seizure (false
positive warning). iii) Compounded warning prior to seizure onset (true positive seizure warning prior to electrographic seizure onset).
doi:10.1371/journal.pone.0081920.g001
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Feature extraction
Seizure forecasting requires a physiological signal that is

characteristic of the hypothesized pre-ictal state. Here we

investigated the spectral power of multichannel iEEG as a source

of candidate features to distinguish the pre-ictal and inter-ictal

states. Average reference iEEG was used for computation. In each

of the 16 iEEG channels, the iEEG record (sampling rate 400 Hz)

was partitioned into non-overlapping 1-minute blocks, each block

Fourier transformed, and the resulting power spectrum (0.1–

200 Hz) divided into 6 frequency bands: delta (0.1–4 Hz), theta

(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–

70 Hz), and high-gamma (70–180 Hz). Within each frequency

band the power was summed over band frequencies to produce a

power-in-band (PIB) feature. These features were aggregated into a

feature vector containing 96 PIB values (16 channels66 bands)

(Figures 2.1, 2.2, 2.3). The resulting feature vectors, one per 1-

minute block in the original record, were collected over both pre-

ictal and inter-ictal periods to form the training and testing data

sets for the algorithm.

Classifier training and testing
Logistic regression classifiers were trained to discriminate

labeled pre-ictal and inter-ictal blocks using combinations of PIB

features. For training purposes, blocks between 90 minutes

preceding a seizure and the seizure itself were given a pre-ictal

label, and all other blocks were labeled as inter-ictal. When applied

to test data, the output of the trained classifier was a relative

seizure risk for each test block on a continuous scale between 0 and

1 (Figures 3.1, 3.2). Classifier performance was assessed via 10-fold

cross-validation, where folds were formed by dividing the entire

record into 10 contiguous sub-records.

Forecasting algorithm
The seizure forecasting algorithm triggers a seizure warning

when the classifier output exceeds a defined seizure risk threshold.

The threshold is chosen adaptively so that total time in warning

approximately matches a predefined target time in warning. Once

triggered, the warning persists for a defined period of 90 minutes.

Additional warnings that begin prior to termination of the

previous warning are combined with it into a single variable

duration warning period (Figure 1C). The variable duration of

warning prior to a seizure encompasses the concept that the pre-

ictal state is a period of increased seizure probability, and that

seizures may occur at any time during the warning period [27,29].

To distinguish seizure forecasting from simple seizure detection, a

5 minute forecast horizon is used. The beginning of the warning

period must precede the seizure by the forecast horizon for it to be

a valid forecast. That is, seizures not preceded by a warning

beginning at least 5 minutes prior to seizure onset are false

negative forecasts. If a seizure does not occur at some point during

the warning period the warning is counted as a false positive

forecast.

Statistical analysis
Performance of the seizure forecasting algorithm was statisti-

cally evaluated using a Poisson-process chance prediction

algorithm, as described previously by Snyder et al. [27]. The

Poisson-process algorithm generates chance predictions for direct

comparison to a candidate seizure forecasting algorithm. The

Poisson-process algorithm uses the same parameters, including

warning duration time, warning persistence rules, and forecasting

horizon, as the candidate algorithm, and is constrained to have

same total time in warning to control for specificity. A candidate

algorithm must perform significantly (p,0.05) better than a

matched chance predictor in order to claim evidence for seizure

forecasting [44,27].

Results

In three dogs, continuous, long-term iEEG recordings were

obtained and all clinical and subclinical seizure activity annotated.

Table 1 shows the recording duration and number of seizures. The

average duration of recordings was 3266127 days with a total of

125 seizures (41.7636.3). Seizures separated by at least 4 hours

from any preceding seizure were labeled lead seizures.

A simple forecasting algorithm using multiple spectral power

bands as features to classify inter-ictal and pre-ictal data segments

was tested on the three large datasets. The forecasting sensitivity,

duration of recording spent in warning, number of false positive

per day, and p-values are shown in Table 2. With the forecasting

horizon set to 5 minutes, and triggered seizure warning duration

of 90 minutes, forecasting runs with a range of different target

total time in warning (0.1 to 0.5 of record) were evaluated

(Table 2). The algorithm demonstrated seizure forecasting better

than chance (p,0.05) for a range of total warning times for all 3

dogs when considering all seizures. Seizure clusters were observed

in all 3 dogs (e.g. Figure 2.1). If the effect of clusters was decreased

by considering only lead seizures, the forecasting performance

remained better than chance for a subset of algorithm parameters.

Dog 002 in particular showed very good seizure forecasting (74%

of seizures forecasted, average false positives (FP) 2.8/day,

p,0.00005, at total warning time= 0.3). Higher sensitivity was

achieved at the expense of additional FP (e.g. 90% of seizures

forecasted, average FP 3.0/day, and p,0.00005 at total warning

time= 0.4). For Dog 004 seizure forecasting was better than

chance when considering all seizures (73% of seizures forecasted,

average FP 2.0/day, and p,0.0007 at total warning time= 0.3),

but when considering only lead seizures, the performance did not

reach significance. For Dog 007 seizure forecasting was signifi-

cantly better than chance for both all seizures and lead seizures

only, at total warning time= 0.3 (89% and 56% of seizures

forecasted, with p,0.00005 and p,0.05 respectively; average FP

1.4/day).

Discussion

In 3 canines with naturally occurring epilepsy we investigated

the feasibility of long-term seizure forecasting using iEEG. The

Figure 2. Temporal profile of seizures. (A) Full temporal record for canine 002, showing time of occurrence of the 27 clinically verified seizures
(vertical red lines). The seizures fall into 5 clusters; each cluster is annotated with the number of seizures in the cluster. (B) Temporal profile of 96
power-in-band (PIB) features for canine 002, spanning approximately 2.8 days in the vicinity of seizure cluster 2 in (A). Each grouping of 6 traces
shows the 6 PIB features derived from one iEEG recording channel; from bottom to top these features capture the power-in-band of the delta (d: 0.1–
4 Hz), theta (h: 4–8 Hz), alpha (a: 8–12 Hz), beta (b: 12–30 Hz), gamma-low (c-low: 30–70 Hz) and gamma-high (c–high: 70–180 Hz) frequency bands,
respectively. The grouping for channel 1 is at the bottom of the figure, and channel 16 at the top. Vertical red lines locate the occurrence of individual
seizures. Light red shading indicates the 90-minute period preceding each seizure, which was labeled as pre-ictal for training purposes; everything
else (white background) was treated as the inter-ictal state. (C) Expansion of traces for channels 9–12 in (B.
doi:10.1371/journal.pone.0081920.g002
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Figure 3. Seizure probability versus time. (A) The seizure probability for 1-minute blocks of full iEEG record of canine 002, as predicted by a
logistic regression classifier trained on 96 power-in-band (PIB) features. Green and red dots indicate blocks labeled inter-ictal and pre-ictal,
respectively, for classifier training, and vertical blue lines indicate occurrences of clinically verified seizures. Gaps in the plot correspond to periods of
invalid data. The staircase underneath the plot delineates the 10 cross-validation partitions used during classifier training and testing. (B) Seizure
probabilities for 1-minute blocks of iEEG record of canine 002 in vicinity of seizure cluster 2 (second from left in Figure 3 (A)), as predicted by a logistic
regression classifier trained on 96 power-in-band (PIB) features. Green and red dots indicate blocks labeled inter-ictal and pre-ictal, respectively, for
classifier training, and vertical blue lines indicate occurrences of clinically verified seizures.
doi:10.1371/journal.pone.0081920.g003
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ability to record, annotate, curate, and analyze large iEEG data

sets spanning multiple months was demonstrated. In each of the

three dogs studied, the results demonstrate seizure forecasting

significantly better than would be expected by chance (using a

generic Poisson-process algorithm) when considering all seizures.

The analysis was performed on a massive high fidelity data set of

978 days of iEEG containing 125 recorded seizures. The large

volume of interictal data and seizures made it possible to

rigorously validate a simple seizure forecasting algorithm utilizing

iEEG spectral power to classify brain states, and differentiate inter-

ictal from pre-ictal states. A key component of the algorithm is the

use of variable duration seizure warnings, rather than rigidly

defining the duration of pre-ictal states [27]. The variable duration

warning results from a simple technique that consolidates multiple

overlapping warnings into a single longer duration warning

(Figure 1C). The seizure forecasting algorithm performance was

rigorously tested by benchmarking the performance against a

chance prediction model, constrained to have an equal proportion

of time spent in warning [27,44]. Even when restricting the

analysis to include only seizures separated by at least 4 hours (lead

seizures), which diminishes statistical power by reducing the

number of seizures from 125 to 53, seizure forecasting at levels

better than chance was demonstrated in 2 of the 3 dogs.

As recently reviewed by Mormann, et al [16], previous studies

have often failed to adequately evaluate the performance of

proposed algorithms. Significant limitations of previous studies

were the small data sets with few seizures and limited interictal

iEEG. In the current study care was taken to avoid common

pitfalls [16]: 1) The forecasting algorithm was tested on,

continuous long-term recordings spanning multiple months. The

long records contain adequate inter-ictal data and seizure numbers

to definitively evaluate forecasting performance. 2) The sensitivity

and specificity were rigorously tested and directly compared to a

chance prediction algorithm constrained to have the same

persistence parameters, forecasting horizon, and total time in

warning. 3) Algorithm parameters were selected prior to analysis,

and utilized across all animals. 4) The forecasting algorithm was

optimized on training data (in-sample), but algorithm performance

was calculated only on independent data (out-of-sample).

The results from three dogs demonstrate seizure forecasting

performance at levels significantly better than chance when

considering all seizures recorded (Table 2). The results show that

canine epileptic seizures are not random events, and support the

feasibility of seizure forecasting. The optimized level of perfor-

mance for each dog (Table 2) supports the claim that clinically

relevant seizure forecasting may be possible in humans, but

highlights the need for long continuous iEEG recordings to

capture an adequate number of seizures.

Seizure forecasting performance can likely be improved in the

future. For example, the optimal recording bandwidth for

differentiating interictal and pre-ictal states is not known. The

current device has a relatively narrow bandwidth (sampling rate

400 Hz), but recent research has shown that the dynamic range of

EEG activity generated from human brain spans a much wider

spectrum, DC – 1000 Hz [45]. In addition, in this study we did

not know the seizure onset zone location. The electrodes were

placed according to a standardized protocol, similar to the

approach in the recent human trial [29]. Previous studies have

shown, however, that the EEG activity within and around the

seizure onset zone is different [46]. Electrodes in the seizure onset

zone could potentially improve seizure forecasting performance,

and this is an area of ongoing research.

How this technology will translate to human subjects with

epilepsy was recently evaluated in a clinical trial with encouraging

results [29]. The optimal parameters for a clinical application of

seizure forecasting likely depends on the application. For example,

if seizure forecasting is used to trigger a therapy that does not

disturb normal brain function (say low dose drug or sub-threshold

stimulation, as used in the Neuropace investigational device [11]),

then the algorithm could be adjusted for high sensitivity and a low

false negative rate. This would lead to more false positives and

more time in warning, but if the approach is able to prevent

seizures with low levels of therapy without side effects it would be

useful. This approach could reduce the exposure to the cognitive

and physical side effects of anti-epileptic medications and render

the drugs more efficacious. More challenging is a device solely for

seizure warning, i.e. providing patients with a warning about

impending seizures in order to reduce the potential for injury, and

limiting social anxieties associated with the persistent fear of not

knowing when the next seizure will strike. In this scenario, patients

would likely demand a very high sensitivity (low false negative

rate), because any missed seizure would be very disruptive. The

device could prove dangerous if patients use the device to guide

their ability to participate in certain activities, e.g. driving.

Conversely, patients may not tolerate frequent false positive

Table 2. Seizure forecasting results for three canines with
naturally occurring epilepsy implanted with the NeuroVista
Seizure Advisory System.

ID TIW Sn p Sn-lead pn-lead False Positive/day

002 0.1 0.482 0.0000 0.482 0.0000 1.293

002 0.15 0.593 0.0000 0.593 0.0000 1.818

002 0.2 0.667 0.0000 0.667 0.0000 2.257

002 0.3 0.741 0.0000 0.741 0.0000 2.792

002 0.35 0.741 0.0001 0.741 0.0001 2.910

002 0.4 0.889 0.0000 0.889 0.0000 3.074

002 0.5 0.889 0.0001 0.889 0.0001 3.186

004 0.1 0.000 0.2435 0.000 0.6081 0.811

004 0.15 0.133 1.0000 0.125 1.0000 0.794

004 0.2 0.467 0.0141 0.250 1.0000 1.079

004 0.3 0.733 0.0007 0.500 0.2534 1.954

004 0.35 0.733 0.0035 0.500 0.4691 2.335

004 0.4 0.733 0.0183 0.500 0.7290 2.670

004 0.5 0.800 0.0700 0.625 0.7407 3.026

007 0.1 0.759 0.0000 0.222 0.7548 0.658

007 0.15 0.819 0.0000 0.278 0.5582 0.791

007 0.2 0.843 0.0000 0.389 0.1658 0.991

007 0.3 0.892 0.0000 0.556 0.0421 1.427

007 0.35 0.892 0.0000 0.556 0.0895 1.617

007 0.4 0.904 0.0000 0.556 0.2270 1.695

007 0.5 0.916 0.0000 0.611 0.2459 1.927

A logistic regression classifier was trained and used to predict iEEG data
(1 minute blocks) as either pre-ictal or inter-ictal, using power-in-band (PIB)
features. Each classifier used 10 of 96 available PIB features, chosen during the
training process via forward selection. Forecasts and subsequent statistical
analyses were based on different target proportions of total time in warning,
ranging from 0.1 to 0.5. A 10-fold cross-validation scheme was used for all
phases of feature selection, classifier training, seizure forecasting, and statistical
analysis. For each dog a range of values for time in warning (TIW) are
considered. The Sensitivity (Sn) and p-value (p) are reported separately for all
seizures and for lead seizures only (Sn-lead, pn-lead) and have been adjusted to
account for the performance of the chance prediction algorithm.
doi:10.1371/journal.pone.0081920.t002
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warnings as this would adversely affect their ability to participate

in activities and could increase anxiety. Thus patients relying on a

seizure forecasting device would likely have a low tolerance for

missed seizures, i.e. false negatives, as well as frequent false

positives. These possibilities are areas of current research.
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