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Abstract
Management of drug resistant focal epilepsy would be greatly assisted by a reliable warning

system capable of alerting patients prior to seizures to allow the patient to adjust activities or

medication. Such a system requires successful identification of a preictal, or seizure-prone

state. Identification of preictal states in continuous long- duration intracranial electroenceph-

alographic (iEEG) recordings of dogs with naturally occurring epilepsy was investigated

using a support vector machine (SVM) algorithm. The dogs studied were implanted with a

16-channel ambulatory iEEG recording device with average channel reference for a mean

(st. dev.) of 380.4 (+87.5) days producing 220.2 (+104.1) days of intracranial EEG recorded

at 400 Hz for analysis. The iEEG records had 51.6 (+52.8) seizures identified, of which

35.8 (+30.4) seizures were preceded by more than 4 hours of seizure-free data. Recorded

iEEG data were stratified into 11 contiguous, non-overlapping frequency bands and binned

into one-minute synchrony features for analysis. Performance of the SVM classifier was

assessed using a 5-fold cross validation approach, where preictal training data were taken

from 90 minute windows with a 5 minute pre-seizure offset. Analysis of the optimal preictal

training time was performed by repeating the cross validation over a range of preictal win-

dows and comparing results. We show that the optimization of feature selection varies for

each subject, i.e. algorithms are subject specific, but achieve prediction performance signifi-

cantly better than a time-matched Poisson random predictor (p<0.05) in 5/5 dogs analyzed.
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Introduction
Epilepsy afflicts over 50 million people worldwide, and is second in prevalence only to stroke
among debilitating neurological conditions [1, 2]. Many people with epilepsy (PWE) do not
achieve complete seizure control with medication, and even following resective epilepsy sur-
gery seizures may persist. The constant threat of an unexpected, seizure often prevents PWE
from participating in many daily activities [3]. This, in addition to the potential psychological
impact makes it challenging for PWE without complete seizure control to live fully satisfying
lives.

An accurate seizure warning system (SWS) could allow patients to modify activities to avoid
risk, or take additional medications to prevent seizures. In order to predict seizures, robust
methods for identifying iEEG patterns that precede a patient's habitual seizures are needed.
There is emerging evidence for a consistent sequence of local field potential (LFP) patterns pre-
ceding and leading into seizures in some patients[4], and it has been hypothesized that seizures
may arise from identifiable brain states. Numerous clinical studies describe patients self-report-
ing seizure prone states hours or days prior to seizure [5] at a rate greater than random chance
[6]. Changes in cerebral blood flow, oxygenation, and cortical excitability have also been mea-
sured preceding seizures [7–11].

While many early seizure prediction studies suffered from inadequate statistical rigor,
[6, 12], more recent reports have been successful using more rigorous statistical approaches
[13–18]. A persistent difficulty in assessing seizure prediction algorithms is the scarcity of long
duration recordings with an adequate number of spontaneous seizures and duration of interic-
tal data. Presurgical human iEEG recordings typically last less than 10 days due to the discom-
fort and risk associated with invasive iEEG recordings [19, 20]. These recordings exhibit iEEG
changes due to rapid tapering of antiepileptic drugs (AED) [21, 22], and they rarely contain an
adequate number of seizures separated by sufficient time to permit adequate statistical charac-
terization of both the preictal and interictal periods. Longer-duration iEEG recordings are
possible in animals, though typically from models of epilepsy where an epileptic focus has been
artificially created by introduction of a systemic or topical pharmacological agent, [23] or trau-
matic injury [24]. The applicability of these induced animal models to forecasting habitual sei-
zures in naturally occurring human epilepsy is unclear.

Naturally occurring canine epilepsy is an excellent model for human epilepsy [25, 26].
Canine epilepsy occurs at the same rate and is resistant to drug therapy at the same rate as
human epilepsy [26]. The clinical [27] and electrophysiological [28, 29] characteristics of
canine epilepsy are very similar to focal human epilepsy, and canine and human iEEG of focal
onset seizures essentially indistinguishable [30]. Many medications used to treat human epi-
lepsy, e.g. phenobarbitol and leviteracitam, are also effective in canines at similar serum levels
[31–34]. Canines are large enough to test devices designed for humans [30, 35], are capable of
safely tolerating electrode implantation [36], and are a widely available and inexpensive animal
model for research [26]. Canine epilepsy represents a close analog to human epilepsy, and is
capable of providing prolonged ambulatory iEEG recordings under tightly controlled condi-
tions not possible with human subjects.

Recently a clinical pilot study of seizure forecasting was performed by researchers in Austra-
lia and NeuroVista Inc. using chronic ambulatory recordings in 15 human patients [15] [30,
35]. The patient cohort in this study had between 2 and 12 seizures per month and the device
achieved greater than 65% sensitivity in 11/15 patients during the training phase with a mean
(standard deviation) 27.8 (±11.6)% of time spent in high-likelihood seizure warning. Perfor-
mance degraded during the 4-month prospective portion of the study to 4/14 patients with sei-
zure forecasting sensitivity greater than 65% with 23.0 (±11.2)% of the total time in seizure
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warning. This study successfully demonstrated the safety and practical feasibility of seizure
forecasting in some humans with focal epilepsy [37], although continued improvement in fore-
casting sensitivity and specificity (time in warning) are likely needed to make the system clini-
cally useful.

Subsequently, our group in conjunction with the NeuroVista team reported successful sei-
zure forecasting in three dogs with naturally occurring epilepsy implanted with the same Neu-
roVista SAS device [18]. This study used a logistic regression machine learning algorithm with
spectral power in the traditional Berger bands as features, and achieved lead (> 4 hour separa-
tion) seizure prediction rates greater than a time-matched chance predictor [13] in 2/3 dogs.
The present study extends and expands these results in a larger cohort of dogs. This manuscript
describes the development and validation of a support vector machines (SVM) approach to sei-
zure forecasting using power in band (PIB) and inter-electrode synchrony features calculated
from prolonged, ambulatory iEEG recordings from canines with naturally occurring epilepsy
[18, 35]. The optimal preictal time window for seizure forecasting was investigated, and analy-
sis of the impact of multiple PIB features and individual electrode pairs on inter-electrode syn-
chrony features was performed. We show that the optimal iEEG feature set varies for each
subject, i.e. algorithms are subject specific, but that prediction performance significantly better
than a time-matched Poisson random predictor (p<0.05) was possible in all 5 of the dogs
analyzed.

Materials and Methods
This study involved eight canines with naturally occurring epilepsy implanted with mobile
intracranial EEG monitoring devices described previously [30, 35]. The implanted telemetry
device records iEEG data at 400Hz from a bilateral array of sixteen electrodes (Fig 1) with an
average reference, and transmits data wirelessly to a data storage device in a vest worn by the
dog. Demographic and technical details describing the canine recordings are presented in
Table 1. Of the eight canines three were excluded from analysis due to an inadequate number
of recorded seizures. Canines were housed and cared for at the Veterinary Medical Centers at
the University of Minnesota and University of Pennsylvania. None of the dogs were on antiepi-
leptic medication at the start of the study. For device implantation canines were given estab-
lished doses of acepromazine, morphine, and propafol for anesthesia, with fentanyl provided
for additional pain control. Dopamine (to increase blood pressure and increase cerebral blood
flow) and lactated Ringer’s solution was given intraoperatively as needed. Cefazolin was

Fig 1. Approximate placement and numbering of sixteen implanted electrode contacts relative to the canine cortical anatomy.

doi:10.1371/journal.pone.0133900.g001
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administered for infection control before and after surgery. Electrode strips were placed via
bilateral craniectomies and anchored caudally with a silicone lead anchor. Lead wires were tun-
neled through caudal holes in the craniectomies, looped anteriorly and anchored to the frontal
bone with a titanium screw, and then tunneled under the skin to the telemetry unit placed
under the latissimus dorsi muscle. Polymethyl methacrylate gelfoam was used to seal any cra-
nial openings. Postoperatively radiographs were acquired to confirm proper electrode place-
ment, buprenorphine was administered as needed for pain control, and acepromazine sedation
was given as needed to prevent self-injury. After nearly one year of continuous data acquisition
one canine was humanely euthanized following observation of progressive ataxia and neuro-
logical decline followed by respiratory arrest. Postmortem examination revealed bleeding near
a secondary implant surgery that had recently been performed. Dogs in the study were moni-
tored continually [35], and all canine care and treatment protocols used in this study were
approved by IACUC review boards at Mayo Clinic, University of Minnesota, and University of
Pennsylvania.

Recorded iEEG on the data storage device were transferred to a central repository via a cloud-
based data storage service. Data were translated into multiscale electrophysiology format (MEF)
[19] and bandpass filtered into 11 non-overlapping contiguous frequency bands (0.61–3.8 Hz,
3.8–9.7 Hz, 9.7–18.2 Hz, 18.2–29.5 Hz, 29.5–43.5 Hz, 43.5–60.2 Hz, 60.2–79.5 Hz, 79.5–101.6
Hz, 101.6–126.4 Hz, 126.4–153.9 Hz, 153.9–184.1 Hz) using a finite impulse response Bartlett-
Hanning window with 4194304 points. Frequency bands were chosen in order to characterize
the frequency response of correlation across the relevant range of recordable frequencies with
this device at finer frequency resolution than the conventional EEG frequency bands used in
prior studies [14, 18, 46]. Frequency bands between 184.1 Hz and the Nyquist limit appeared to
have some sampling artifact contamination and were avoided. Correlations between physically
adjacent contacts within each 4-contact strip (Fig 1) were calculated on the filtered signals and
summed into one-minute bins. This produced 12 correlations per dog (3 per strip) in each of the
11 frequency bands, creating a classification space of 132 features. We also computed univariate
spectral power in frequency band features as described in [18] [18](0.1–4 Hz, 8–12 Hz, 12–30
Hz, 30–70 Hz, 70–180 Hz) and tested these features separately using an SVM classifier for com-
parison. For all dogs the data recorded within 70 days of electrode implantation was excluded
from analysis due to observed large-scale non-stationarity in the iEEG following surgery.

Table 1. Testing data.

Dog
Number

Dog
Name

Date
Implanted

Recording
Begin Date

Recording
End Date

recording
duration (days)

recording duration
without gaps (days)

annotated
seizures

lead
seizures

1 Buck 7/30/09 7/30/09 11/18/10 476 342 47 40

2 Tanner 7/15/09 7/15/09 11/18/10 398 255 2 2

3 Drools 8/27/09 8/27/09 11/22/10 452 213 104 18

4 Foster 5/7/12 5/8/12 6/5/13 393 298 29 27

5 Gus 5/8/12 5/9/12 4/12/13 338 29 0 0

6 Joseph 5/14/12 5/15/12 2/26/13 287 168 144 86

7 Ripley 5/15/12 5/16/12 3/6/13 294 80 22 8

8 Sakic 5/16/12 5/22/12 3/8/13 290 126 0 0

Eight mixed-breed canines with naturally occurring epilepsy were implanted with a mobile iEEG recording device and monitored continuously for multiple

months. Four dogs had an inadequate number of seizures for algorithm training and testing. Lead seizures are defined as seizures separated by a

minimum of 4 hours. Dogs with fewer than 5 lead seizures (italicized) were excluded from analysis. Dog 1 (Buck) died after approximately a year of iEEG

monitoring.

doi:10.1371/journal.pone.0133900.t001
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Classification of interictal and preictal epochs was performed using PIB and inter-electrode syn-
chrony iEEG features and the open-source libSVM implementation [38] of the support vector
machines (SVM) machine learning algorithm. We used the C-SVC SVM type with a linear ker-
nel, and category weights inversely proportional to the ratio of the number of training samples.
The kernel function gamma and cost parameters were tuned using a small excerpt of canine
training data with a grid search python utility supplied with the libSVM distribution.

An overlapping window approach was used to aggregate individual one-minute bin classifi-
cations and trigger seizure warnings. Preictal bin classifications within a moving window equal
in length to the preictal duration (typically 90 minutes) are summed, and a seizure warning
equal in duration to the preictal window is initiated if the number of preictal bins exceeds a
tunable threshold. [39] A five-fold cross validation method was applied, where the available
iEEG data was divided into five equal-length portions, four of which were used for training,
with one segment held out for assessment. Each data segment was held out in turn for testing,
and testing results were assembled to provide an assessment covering the entire recording. We
generated receiver operating characteristic (ROC) curves by varying the window threshold. In
this application, sensitivity is simply the proportion of lead seizures that occur while the algo-
rithm is in a warning state. Previous authors have formulated specificity rigorously as the pro-
portion of monitored time not spent in a warning state [13], and we follow that convention
here. Hence we describe the independent axis (1-specificity) by the term "time in warning"
(TIW), representing the proportion of the recording in a warning state. Statistical significance
was determined at a p<0.05 level calculating p-values relative to a time-matched Poisson ran-
dom predictor as described in [13].

The preictal window used for classification has varied among prior studies with little physio-
logical justification given. In the present study a 90-minute preictal period was initially used
for comparison with prior long-duration iEEG studies, after which the preictal data interval
was increased from 10 to 240 minutes by 10 minute intervals. We hypothesize that the algor-
ithm's performance will be optimized when the preictal classification window most closely
matches the length of the true physiological preictal signature, as this maximizes available
training data without including interictal data points in the preictal training set. Results for this
experiment are reported as seizure prediction sensitivity at 30% TIW to maintain a consistent
comparison.

Prior studies have followed the traditional frequency ranges with only minor variation.
While this system separates frequency components into clinically familar ranges, there is little
empirical or theoretical justification for this system being relevant to seizure forecasting. We
hypothesize that the preictal signature is composed of specific frequency components, and that
removal of extraneous frequency components will improve classifier performance by reducing
overfitting [40]. To test this hypothesis we tracked classification performance for each individ-
ual frequency band, while omitting single frequency bands, and while including increasing fre-
quency bands from near 0.6 Hz to the Nyquist limit. Our highly specific choice of frequency
bands permits finer sampling especially in the high frequency ranges, as these high frequency
features were often significant in prior studies [14]. Results for this experiment are also
reported as sensitivity at 30% TIW.

The sixteen-channel implanted electrodes provide good general coverage of the canine
brain, but no data exists addressing the number and arrangement of electrodes needed for ade-
quate seizure forecasting. To investigate this we repeated the basic seizure forecasting experi-
ment on inter-electrode pairs from different hemispheres. Given the sparse placement of
electrodes we were unable to identify a clear seizure onset zone from the dogs’ iEEG, and there-
fore no attempt was made to analyze seizure onset electrodes separately or in relation to other
electrodes.

Forecasting Seizures Using iEEGMeasures and SVM
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Results
Receiver operating characteristic (ROC) curves using a 90-minute preictal window with 16
electrodes and all frequency bands were generated by varying the window threshold after SVM
classification (Fig 2). Mean area under the curve (AUC) was 0.72. Using the adjacent inter-elec-
trode correlation feature at 30% TIW the results were statistically significant for all dogs except
for dog 3. Results using spectral band power were also significant at 30% TIW for the same
four dogs, with better lead seizure sensitivity than correlation in 3 dogs and worse sensitivity in
2 dogs. (Table 2) The optimal seizure forecasting performance was obtained with the use of
inter-electrode correlations that spanned both hemispheres (Table 3).

The dependence of preictal window size at which the classifier achieved peak performance
(Fig 3) varied between different subjects, and many of the dogs (e.g. 3,7) exhibited bimodal or
multimodal performance. Interestingly, Dog 6 showed very little variation with preictal win-
dow size, while Dog 7’s variation spanned the entire range of sensitivity.

The results of analysis of single frequency bands are shown in Fig 4. The best performing
correlation frequency range was dog-specific, but frequencies below 43.5 Hz performed well
for all dogs.

For dogs 1, 3, and 4 at least one set of bilateral correlation pairs resulted in better forecasting
performance than the entire set of electrodes (Table 3). For dog 6 forecasting performance

Fig 2. Receiver-operating characteristic curves for the five analyzed canines.Curves were generated
by varying the threshold required to initiate a seizure warning.

doi:10.1371/journal.pone.0133900.g002
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declined slightly, while for dog 7 performance was unchanged. Forecasting for all dogs with the
best bilateral electrode set was significantly better than a time-matched chance predictor [13].

Discussion
This study expands upon work previously reported by our group [18] using univariate power-
in-band features with a logistic regression classifier in three canines. Using a support vector
machines classifier provides a more powerful machine learning approach for incorporating
multiple features [41] for the seizure forecasting problem [42–44]. Bivariate features have
shown promising results in prior seizure forecasting studies [45] and have been shown to be a
biomarker of seizure onset zone [46]. The results of the present study support the idea that
inter-electrode correlation may be an indicator of seizure generation in focal epilepsy. While it
seems possible to improve performance by analyzing inter-electrode synchrony in relation to
the seizure onset zone, we were unable to delineate a clear and consistent seizure onset zone in
any of the dogs studied which is likely due to the generic placement of electrodes. In future
studies it may prove useful to perform imaging and iEEG studies to identify seizure onset zone
prior to prolonged, ambulatory iEEG monitoring. The variation in bilateral pair performance
and single frequency band correlation performance highlights the variation between subjects in
preictal iEEG characteristics and, from a data-analytic perspective, the need for subject specific
predictive models. Comparison with the spectral power features suggests that correlation and
spectral power may both be valuable for seizure forecasting, and the relative performance of

Table 2. 90 minute preictal window targeting 30% time in warning.

Dog Correlation Power In Band

TIW FP/D DWW Lead Sn p TIW FP/D DWW Lead Sn p

1 0.25 0.90 86 0.76 < 0.001 0.29 1.40 79 0.80 < 0.001

3 0.29 0.64 109 0.46 0.115 0.29 0.42 130 0.30 0.496

4 0.28 1.04 74 0.53 0.025 0.30 1.16 97 0.81 < 0.001

6 0.29 0.19 63 0.73 < 0.001 0.30 0.19 60 0.66 < 0.001

7 0.28 0.84 38 0.63 0.038 0.30 0.96 37 1.0 0.019

Results of SVM classification of correlation (left) and spectral power in band (right) features for the five canines with adequate data and number of

seizures to permit training and testing. To facilitate comparison the algorithm was tuned to approach 30% time in warning. TIW (time in warning)

represents the proportion of the recording the algorithm labeled as preictal. FP/D (false positives per day) describes the mean number preictal warnings

that did not produce seizures. DWW (days without warning) represents the number of 24-hour periods in which no preictal warning occurred. Lead Sn

(sensitivity) represents the proportion of lead (>4 hour separation) seizures successfully predicted by the algorithm. The p-value was calculated using the

formulation in [13].

doi:10.1371/journal.pone.0133900.t002

Table 3. Bilateral electrode pairs improve performance.

Dog Location TIW FP/D Days w/o warn Sensitivity p

1 Ant-inf 0.300 1.735 55 0.857 0.000

3 Post-inf 0.300 0.606 122 0.571 0.022

4 Center-sup 0.297 1.427 53 0.696 0.000

6 Center-sup 0.299 0.293 61 0.706 0.000

7 Post-inf 0.283 1.452 20 0.625 0.038

Lead seizure sensitivity at 30% TIW with correlation features improves if the classifier is restricted to specific bilateral electrode pairs, suggesting the iEEG

preictal signature is not homogeneously distributed across the brain.

doi:10.1371/journal.pone.0133900.t003
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the two feature sets also appears to be subject dependent. These results suggest subject-specific
tuning of the prediction model to specific features may be useful for reducing the dimensional-
ity of the classification space.

In order to be reliable enough for patients to plan and schedule daily activities, seizure fore-
casting must attain high sensitivity while maintaining a reasonably low rate of false positives.
In this study we tuned our algorithm to maintain approximately 30% TIW to facilitate compar-
ison between experiments. TIW is an imperfect metric of specificity, as it counts warnings that
preceded seizures against specificity, and doesn’t entirely represent the potential impact of false
positives on a patient’s lifestyle. For example, multiple single false warnings distributed over a
few days are likely to be more disruptive than a single continuous false warning that persists
for multiple hours on a single day. Tables 2 and 3 report results including “Days Without
Warning” (DWW), which is the number of 24-hour periods in which no seizure warning
occurred. This represents the number of days during the study in which a patient may not have
needed to take medications, reducing overall AED dose and attendant side effects [47, 48].

This manuscript describes seizure forecasting results better than a time-matched Poisson
random predictor [13] in long duration iEEG recordings from dogs with naturally occurring
epilepsy. While the iEEG datasets described in this manuscript are unparalleled in length and
quality, the limited data sampling rate (400 Hz) restricts the analysis to conventional frequency
bands and precludes studying the potential value of ripple and fast ripple oscillations [49, 50]
in seizure forecasting. A fundamental limitation of the current study is the benchmark against

Fig 3. Performance of the SVM-correlation seizure predictionmethod varies with the choice of the
preictal training window. The horizontal axis scales the preictal analysis window in minutes, and the vertical
axis shows lead seizure sensitivity for the algorithm, if the algorithm threshold is tuned to maintain time in
warning at 30%.

doi:10.1371/journal.pone.0133900.g003
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a Poisson predictor. Seizures often cluster and there may be temporal dependencies that extend
beyond our requirement that all analyzed seizures were at least 4 hours apart. In addition, the
known diurnal variation of the iEEG and association of seizures with the sleep wake cycle are
not addressed in the current study. An additional challenge in the analysis of this data is the
potential diurnal inductive noise in the data resulting from the need to charge the recording
unit's battery daily. Because the exact timing and duration of battery charging was not avail-
able, we were unable to correct or filter this effect. Further, due to inevitable occasional equip-
ment maintenance and failures, some data loss, showing up as gaps in the recording, occurred
in these recordings. While most of these data gaps are small (on the order of a few minutes or a
few hours) in a few cases gaps of multiple weeks occur in the data. In our analysis any recording
gaps greater than one hour were treated as potential seizure events, and the one week exclusion
for interictal data was applied.

A major challenge in seizure forecasting studies is statistical validation of methods, in par-
ticular assessment of false positive rates on long interictal data segments [12], driven by the
scarcity of long-duration high quality iEEG recordings. The long duration canine iEEG data
described in this manuscript represents a valuable asset for assessing the performance of sei-
zure forecasting algorithms, and we are committed to making it available to other investigators.
In August, 2014 the American Epilepsy Society and the National Institutes of Health sponsored

Fig 4. Performance of the SVM-correlation seizure predictionmethod varies with changes in the
frequency band analyzed. The horizontal axis shows the frequency band analyzed in hertz, while the
vertical axis shows lead seizure sensitivity for the algorithm, if the algorithm threshold is tuned to maintain
time in warning at 30%.

doi:10.1371/journal.pone.0133900.g004

Forecasting Seizures Using iEEGMeasures and SVM

PLOSONE | DOI:10.1371/journal.pone.0133900 August 4, 2015 9 / 12



a seizure forecasting competition through Kaggle.com (http://www.kaggle.com/c/seizure-
prediction) using preictal and interictal data clips from these canine data sets. Upon comple-
tion of the competition, the full data records and the best performing algorithms will be made
publicly available on the International Epilepsy EEG Portal (http://ieeg.org).
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