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Abstract

Efficient resource management in data centers is of central importance to content service

providers as 90 percent of the network traffic is expected to go through them in the coming

years. In this context we propose the use of convolutional neural networks (CNNs) to fore-

cast short-term changes in the amount of traffic crossing a data center network. This value

is an indicator of virtual machine activity and can be utilized to shape the data center infra-

structure accordingly. The behaviour of network traffic at the seconds scale is highly chaotic

and therefore traditional time-series-analysis approaches such as ARIMA fail to obtain accu-

rate forecasts. We show that our convolutional neural network approach can exploit the

non-linear regularities of network traffic, providing significant improvements with respect to

the mean absolute and standard deviation of the data, and outperforming ARIMA by an

increasingly significant margin as the forecasting granularity is above the 16-second resolu-

tion. In order to increase the accuracy of the forecasting model, we exploit the architecture

of the CNNs using multiresolution input distributed among separate channels of the first con-

volutional layer. We validate our approach with an extensive set of experiments using a data

set collected at the core network of an Internet Service Provider over a period of 5 months,

totalling 70 days of traffic at the one-second resolution.

Introduction

Nowadays, there is a general consensus in the Information and Communications Technol-

ogy (ICT) industry regarding the higher demands in network bandwidth and speed that

Internet and mobile systems will have to meet in comparison with today’s networks. Addi-

tionally, cloud and virtualization technologies are enabling applications and networks to

abstract away from their underlying physical infrastructure, and therefore to programmati-

cally provide networking as a service. Analysts predict that more than 90 percent of the Inter-

net traffic will go through data centers in the short term. Therefore, it is of unquestionable

interest to cloud providers to research and develop forecasting mechanisms for resource

demand prediction for their application to the management of data center infrastructures

and resources. Thanks to the dynamicity with which these management tasks can be done
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today, the amount of resources a cloud provider can devote to the servicing of its customers’

demands can be adjusted in near-real time, depending on their actual needs. If the ability to

easily scale up and down network and data center resources is combined with reliable fore-

casts of demand patterns, service and infrastructure providers could become able to obtain

significant savings in energy consumption, as well as to avoid performance degradation due

to resource shortages. In this context, a growing trend is to not just react to network changes,

but anticipate them as much as possible by forecasting the evolution of network and infra-

structure conditions in data centers. Around this topic, considerable research activity has

emerged in the last years. In section 1 we present a landscape of the most important works in

this research area.

In this context we propose the application of artificial feed forward neural networks

(ANNs), and in particular, convolutional neural networks (CNNs) for forecasting short-term

changes in network traffic dynamics. Specifically, we want to forecast the number of user ses-

sions (i.e., transport level connections or flows) expected to be crossing a network link in the

range of seconds, using as input a time series signal comprised by the previous observations of

this value sampled at one-second intervals. From an applicability perspective, the number of

user sessions that are crossing the core network of a data center can be considered as an indica-

tor of virtual machine activity. For example, if a network and infrastructure orchestrator in a

data center can compute a reliable estimate of the number of user sessions that will be active in

the following seconds or minutes, it will be able to shape its infrastructure accordingly (e.g.

anticipating decisions for switching on and off physical machines) to avoid the energy ineffi-

ciencies and costs incurred by overprovisioning or poor performance due to overwhelmed

machines. Virtual machines typically have a startup time of a few seconds to a minute, [1], so

anticipating significant load changes in this time scale should be helpful to make placement

decisions. To the best of our knowledge the majority of the previously investigated solutions

address the long-term prediction of global Internet traffic dynamics, and in particular, no solu-

tions have been proposed for predicting the short-term network dynamics of data centers. The

behaviour of network traffic in the short-term scale is highly chaotic, and so far it has been

unclear whether any meaningful structure can be exploited to make reliable forecasts. We

hypothesize that there may exist meaningful non-linear dependencies between present and

past events. Traditional approaches for time series analysis and forecasting, such as ARIMA

and GARCH, are not likely to benefit from such dependencies. We therefore propose to use

ANNs, and in particular CNNs, because of the ability of these methods to model non-linear

relationships in the input data. In addition, CNNs have been revealed successful and efficient

in the exploitation of the temporal nature of the data.

In order to improve the quality of the forecasts we propose a combination of three differ-

ent techniques. First, we adopt a multiresolution strategy, taking as input a vector compris-

ing past observations at different levels of granularity. The aim of this strategy is to increase

the amount of contextual information (i.e. past observed values) without compromising the

scalability of the model. Second, although the values of the time series we consider are sam-

pled at the one-second frequency, we also explore the problem of producing coarse-grained

forecasts (up to the 64 second-resolution) in order to mitigate the amount of noise observed

in the signal at the original resolution. Nowadays, actuation subsystems in a data center

involve anticipatory decisions in the range of 60–90 seconds and therefore, coarse-grained

forecasts up to 64 seconds are directly applicable in such scenarios. Finally, we feed each res-

olution of the input vector to a different convolutional channel in the CNN. Each channel

will thus learn a different set of filters for each input resolution. As these channels are added

together, the relationship between different resolutions (i.e. channels) is learned and mod-

elled by the neural network.

Forecasting short-term data center network traffic load with convolutional neural networks
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In order to validate our proposal, we carried out an extensive and in-depth set of experi-

ments on a real traffic data set collected at the core network of a medium-sized Spanish Inter-

net Service Provider (ISP) over a period of three years. This network processes around 200,000

packets per second, which we aggregated and transformed into a time series representing the

number of active user sessions (i.e., TCP connections) per second. We selected and analysed

five months of data, and kept two consecutive weeks of each. This resulted in five times series

of 1,209,600 data points each, totalling over 6 millions of data points for the 5 months. To eval-

uate the performance of our proposal we trained different ANN, CNN and ARIMAmodels for

each available time series, and evaluated their ability to produce forecasts on the time series of

the next month. Time series for weekdays and weekends were considered separately because

we experimentally observed significant differences in their structure. In addition, we consid-

ered using a naive approach as a baseline, consisting simply in using the last observed value as

prediction. For each experiment and model, mean squared (MSE) and mean absolute (MAE)

errors were computed to measure the quality of predictions.

We ran a first set of experiments to compare the accuracy of the CNN, ANN and ARIMA

models by computing MAE and MSE errors per month, week period (weekday or weekend)

and forecasting granularity (1, 2, 4, 8, 16, 32 and 64 seconds). The obtained results show that

CNNmodels outperform both ANN and ARIMA by an increasingly significant margin as the

forecasting granularity is above the 16-second resolution. In particular, ARIMAmodels do not

seem to obtain better results than the naive approach at any resolution. These results suggest

that the analysed time series exhibit meaningful non-linear structure that can be efficiently

captured by the proposed CNNmodels. Two additional sets of experiments were set up (1) to

highlight the positive effect of including the multiresolution context (i.e. past observed values

with different levels of granularity) in ANNs and in particular in CNNs, which can take further

advantage of this approach through their multiple channels, and (2) to show the durability of

the models, testing their ability to forecast the time series of increasingly distant future months.

In this context, and given that the training procedures only take about one hour using a mod-

ern GPU, it is feasible to retrain CNNmodels monthly or even weekly. In addition, CNN

and ANN predictions can be made in about 1e-5 seconds as opposed to ARIMA predictions,

which take around 0.16 seconds. These times jointly with the observed durability of CNN

models make them perfectly suitable for use in real-time scenarios and in particular to forecast

the number of user sessions expected to be crossing a data center network each second.

The rest of this paper is structured as follows. Section 1 provides an overview of related

research. Section 2 describes the problem setting. Section 3 presents the forecasting models we

have utilized and section 4 details our proposal for improving the quality of the forecasts. Sec-

tion 5 shows our experimental results and section 6 summarizes concluding remarks along

with future lines of research.

1 Related work

The field of time series forecasting has attracted interest in many domains of application for

decades. Examples of uses can be found in areas as varied as econometrics, weather forecasting

and information and communication technology.

An application that has sparked significant interest in the last decades is the prediction of

prices and demands in the energy market. Examples can be found in [2], where ARIMA and

GARCH are combined with the wavelet transform, or [3], where a simple nearest-neighbour

approach is employed. Given their ability to approximate arbitrarily complex functions, the

effectiveness of neural networks as a forecasting method has been studied in different occa-

sions. For instance, in [4], neural networks are combined with wavelets and ARIMA to predict

Forecasting short-term data center network traffic load with convolutional neural networks
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wind speed, which can be of use in wind energy farms. The prediction of electricity prices has

also been analyzed with neural networks, as in [5], where radial basis function networks are

combined with ARIMA, or [6] where a special type of wavelet neural network is used. In [7],

authors propose ARIMA and GARCH combined with wavelets and neural networks to predict

gas prices, limiting their analysis to a time series comprised of 600 points.

Recently, a research trend called anticipatory networking has emerged. Briefly, it consists in

leveraging the knowledge of the evolution of a network in order to support its optimization

and improve its operation through the prediction of future network states. In particular,

research works addressing link and traffic context prediction (e.g., network load, throughput,

physical resource utilization) have gained momentum in the last two decades. In [8], the

authors propose a combined approach using feed forward artificial neural networks, Support

Vector Machines (SVMs) and dimensionality reduction techniques for path loss prediction in

urban environments. In [9], a linear regression model to adjust the routing metrics in ad hoc

wireless networks is presented. AutoRegressive and Moving Average (ARMA) time series fil-

tering techniques are applied in [10] to predict near term link quality for a resource allocation

algorithm for mobile networks. In the context of the prediction of Internet traffic dynamics of

cellular devices, [11] proposed a combined approach using in a first stage unsupervised clus-

tering techniques and then markov models correlating the spatio-temporal relations in order

to capture the volume dynamics of aggregate Internet traffic in each cluster. With the aim of

avoiding network congestion while improving the performance of applications, the authors of

[12] proposed some link-level metrics suitable for application/TCP layer control jointly with

an ARIMAmodel for their prediction. Some works propose network infrastructure optimiza-

tion based on predicting the network throughput. The authors of [13] proposed ARIMAmod-

els for long term predictions to effectively forecast data rates up to 6 months in advance with a

12-hour granularity. Complementarily, in [14] and [15] shorter time scales are considered

using ARIMA and GARCH. In [16], authors analyse the relation of different time scales in

ARMA and FARIMA time series when applied to the prediction of network traffic dynamics.

Their results show that these time series models perform better under the medium scale (min-

ute) than under small time scales (millisecond and second), and that the performance of the

FARIMAmodel shows no advantage over other models.

The dawn of virtualized services has enabled unprecedented flexibility in cloud and data

center resource allocation. The increasing volume of Internet traffic that traverses data centers

(more than 90 percent in the near term) has also made it necessary to adequately predict and

shape resources in advance, in order to achieve good efficiency without compromising perfor-

mance. In [17], a series of services are proposed to distribute workloads between servers. Fore-

casts are made by analyzing the patterns in historic traces and generating synthetic future

workloads that exhibit the same dynamics. In [18], neural networks and an auto-regressive

model are used to predict load demands in a cloud computing environment. In [19], the

authors make use of ARIMA to predict load demands and adjust resource provisioning. The

authors of [20] have recently proposed a deep convolutional neural network for detecting a

phenomenon called noisy neighbour, a term used to describe a situation typical of data centers,

in which several virtual machines located in the same physical machine disturb each other sig-

nificantly decreasing their performance.

The soaring popularity of deep learning has spurred the development of specific methods

for time series analysis and forecasting. Time sequences are commonly modeled using recur-

rent neural networks (RNN) [21], whose units use their own output as input at the next iter-

ation in order to model short-term temporal relationships. A type of recurrent unit that

has proved successful in different domains is the one known as long short term memory

(LSTM) [22]. Deep RNNs now achieve the best results in speech recognition tasks [23],
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replacing the hand-crafted feature extraction methods previously employed. Another

approach to time series modeling in the deep learning community is based on variations of

restricted Boltzmann machines (RBM) [24], such as conditional and temporal RBMs [25].

These methods have found applications in the field of motion capture [26]. Finally, convolu-

tional neural networks (CNN) [27] have been one of the most widely used models by the

deep learning community in various domains. They are particularly useful and efficient for

data with some sort of topological structure in the feature space. For that reason, they have

been instrumental in achieving state-of-the-art results in computer vision [28]. However,

they have also been successfully applied to sequential data like speech [29], sentences [30]

and time series [31, 32]. Convolutional neural networks are particularly interesting in

domains where large amounts of data need to be processed. CNNs employ sets of shared

weights across the whole input, which is efficient both statistically and computationally. In

addition, convolution operations are very well optimized for GPU architectures. In the

domain of network traffic analysis, data are likely to be abundant and their behavior can

change over time. Therefore, models should ideally be retrained periodically. To the best

of our knowledge, the effectiveness of CNNs for the problem of short-term network traffic

volume forecasting has not been explored. Therefore, in this paper we study the perfor-

mance of this technique in this problem when compared to other methods. We describe

CNNs in more detail in section 3.2.

2 Problem setting

We are interested in forecast short-term network traffic dynamics in a data center. Specifically,

we want to forecast the number of user sessions (i.e., transport level TCP connections)

expected to be crossing a network link in the range of seconds, using as input a time series sig-

nal comprised by the previous observations of this value sampled at one-second intervals.

We consider time series of the form x1, . . ., xn where xk, k = 1, . . ., n represents the number

of transport level connections active at time k in the analyzed network link with a granularity

of one second. That is, we have one measurement every second for all the processed time peri-

ods. We consider the following generalized problem framework:

Definition 1 Generalized time series forecasting

Given a time series of the form x1, . . ., xn, two numbers l; h 2 N, a function g : Rh ! R, and
an error function E, find a function f : Rl ! R such that

X

i

E f ðxi1 ; . . . ; xilÞ; gðxilþ1
; . . . ; xilþh

Þ
� �

is minimized.

In its simplest incarnation, our generalized framework takes the form of standard time

series forecasting: given a set of l consecutive entries, xi1, . . ., xil, predict the value of xil+1. In that

case, g is the identity and h = 1. However, we also consider aggregation functions of multiple

future entries of the time series to evaluate the performance of our forecasting models at differ-

ent levels of granularity. For instance, one might want to forecast the average value of the next

60 entries in the time series, which could be accomplished by setting g to be the arithmetic

mean and h = 60. Details are given in section 4.

A successful method for this task is undoubtedly useful for cloud, data center and content

service providers. For instance, it could help in detecting anomalous behavior or, if changes

in demand patterns can be predicted, in adequately provisioning resources so as to optimize

costs without compromising availability.

Forecasting short-term data center network traffic load with convolutional neural networks
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3 Forecasting models

There exists a wide variety of methods for time series forecasting. Among these, ARIMA is per-

haps the most well-established one, due to its efficiency and simplicity of use. When the data

exhibit complex nonlinearities, however, ARIMA may fail to produce a good model.

We therefore propose the use of three methods for time series forecasting. In order to

examine the presence of meaningful non-linear dependencies in the data, we use artificial neu-

ral networks, due to their flexibility and ability to arbitrarily approximate continuous func-

tions. We also employ convolutional neural networks, which can provide models for data with

meaningful topology (such as time series) in an efficient manner, both statistically and compu-

tationally. We employ ARIMA as a baseline model. In this section we briefly describe these

methods.

3.1 Artificial neural networks

Feedforward artificial neural networks (ANN) are a widely used method for pattern recogni-

tion. In essence, ANNs consist of stacked layers of linear maps followed by non-linear transfor-

mations. Layer i of an ANN can be represented as follows:

sðWix þ biÞ

whereWi 2 Rmi�ni , x 2 Rni , bi 2 Rmi , and s : Rmi ! Rmi is an entry-wise non-linear function.

Here, x is the input to the layer. If the layer is not the first in the network, x is the output of the

previous layer. The dimensionality of the input, ni, is determined either by the dimensionality

of the data or by the output of the previous layer. The dimensionality of the output of each

layer,mi, can be chosen by the user. The output of each layer is fed to the next, and the final

output of the network can be specified depending on the learned task (regression, binary or

multiclass classification, etc). The values ofWi and bi are usually estimated by some variation

of the gradient descent optimization algorithm.

In recent years, ANNs have enjoyed soaring popularity due to breakthroughs in under-

standing how to train deep networks [33], which exhibit extraordinary expressiveness and can

be used for automated feature extraction [34].

3.2 Convolutional neural networks

Convolutional neural networks [27] are a specialized type of ANN featuring convolutional lay-

ers. Instead of the linear maps learned by ANNs, convolutional layers use convolutional filters.

Convolutional filters are linear functions that are applied to the input data in a sliding-window

fashion. For instance, let us denote some filter by θ = (θ1, . . ., θw). Note that θ is a linear func-

tion mapping Rw to R. Given an input vector x 2 Rn, the i-th entry of the output y resulting

from the transformation of x by filter θ is

yi ¼ f ð
X

w

k¼1

ykxiþkÞ

where f : R! R is a non-linear function. Filters are usually only applied where the borders

of the input data permit it, resulting in a reduction of dimensionality. This reduction can be

avoided using zero-padding. There exist numerous online resources for understanding convo-

lutional networks.

The fact that the filter is applied unchanged throughout the whole feature space requires

the input to have some meaningful topology, as is the case of images or time series. Convolu-

tional networks have proved to be extremely effective for tasks such as image and speech
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recognition [28, 29]. Recently, the authors of this work proposed a method based on convolu-

tional neural networks to detect noisy neighbors in cloud infrastructure which was shown to

outperform other approaches [20].

In addition to their ability to exploit the topology of the input data, convolutional neural

networks are efficient thanks to weight-sharing, that is, the use of the same filter weights

throughout the whole input space, which helps reduce the number of parameters to be

estimated.

Fig 1 shows a typical convolutional network architecture for image recognition. The image

is first processed using the convolutional filters learned by the training algorithm. This pro-

duces a set of new feature maps, or filtered versions of the image. In computer vision, filters

usually learn to extract useful features such as edges in different orientations. The resulting pix-

els normally undergo a non-linear transformation. Another operation that is typically used in

computer vision is subsampling or pooling. The rationale is that subsampled images can still

convey much of the most relevant information. The number of stacked convolutional and sub-

sampling layers can be chosen by the user. Afterwards, the final feature maps can be flattened

into a high-dimensional vector that can be fed to a classifier, e.g. a fully-connected neural net-

work. The way we use convolutional networks for time-series processing is described in sec-

tion 4.3.

3.3 ARIMA

Autoregressive integrated moving average (ARIMA) models are a well-established method for

time series analysis and forecasting. ARIMAmodels enjoy widespread use due to their effi-

ciency and simplicity of use following established methodologies. Successful applications can

be found in various domains, in particular in network traffic modelling and prediction [15, 35,

36].

An ARIMA(p, d, q) model can be characterized by the following equation:

x
ðdÞ
t ¼ mþ

X

p

i¼1

�ix
ðdÞ
t�i þ �t þ

X

q

i¼1

yi�t�i

where

• p is the number of autoregressive terms

• d is the number of times the series must be differenced before it becomes stationary. x
ðdÞ
t rep-

resents the value at time t of the time series after differencing d times.

Fig 1. Typical convolutional network architecture for image recognition.

https://doi.org/10.1371/journal.pone.0191939.g001
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• q is the number of lagged errors in the model

• �i; yj inR, i = 1, . . .p, j = 1, . . .q are the coefficients to be inferred.

In our experiments we employ ARIMA as a baseline in order to determine if our approach

yields any improvements when compared with traditional linear models.

4 Improving the quality of the forecasts

One of the main interests of network infrastructure and service providers is the possibility of

making reliable forecasts of the dynamics of network traffic. In this paper we set out to deter-

mine the extent to which the short-term behavior of network traffic, namely the number of

traffic flows crossing the core network of an ISP, can be predicted. In the proposed setting

(see section 2), at the one-second resolution, the behaviour of traffic is often very noisy, which

makes it nearly impossible to forecast the number of flows significantly better than a random

guess. To improve the quality of the forecasts in this scenario, we adopt three approaches:

• An efficient method to incorporate multiresolution long-range context into the input data

for the forecasting models.

• Aggregation of future values to produce more coarse-grained but more accurate forecasts.

• The use of multiple-channel convolutions to incorporate multiresolution context

We now describe these approaches in more detail.

4.1 Multiresolution input for modelling exponentially wide context
efficiently

The most straightforward approach to forecasting is to take a vector comprising the last obser-

vations as input to the function responsible for producing a prediction. One shortcoming of

this approach is that we are only taking into account the most immediate events, but ignoring

the context of long-term dynamics. To increase the amount of contextual information one can

simply increase the size of the sample used to predict, i.e., instead of 60 observations we can

take 120. Unfortunately, this approach doubles the dimensionality of the input data, which can

have significant impacts on computational and statistical efficiency, providing only context for

a period twice as long as the previous one.

To tackle this problem we propose the following approach. We work under the hypothesis

that as we look further back into the past, the most relevant elements of the information

become more coarse-grained. Therefore, we can aggregate data from the distant past to pro-

duce lower resolution time series segments and, presumably, obtain almost as much informa-

tion as we would by taking all observations into account. More precisely, to predict the value

xt, we enrich data instances with sets of values in the following form:

fgð½xt�1�ðiþ1Þ�2c ; xt�1�i�2c �Þ : i ¼ 1; . . . ;wg

where

• g : I ! R (where I is the set of intervals of consecutive observations) is an aggregation func-

tion, which maps intervals of the form [xa, xb] for some a� b to an aggregation of the values

contained therein.

• w is the size of the input window, that is, the number of observations that we use as input at

each level of aggregation.
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• c is the exponential context degree, which we define as the base-2 logarithm of the width of

the interval aggregated by f.

This way we can incorporate exponentially wide time windows into the input of our predic-

tors using a linear amount of data. As an example, consider we want to take a window of length

60 and enrich it with exponential context degrees of 1, 2 and 3. Then, a single data instance of

our input data will be comprised of the following entries.

xt�60
; . . . ; xt�3

; xt�2
; xt�1

gð½xt�120
; xt�119

�Þ; . . . ; gð½xt�4
; xt�3

�Þ; gð½xt�2
; xt�1

�Þ
gð½xt�240

; xt�237
�Þ; . . . ; gð½xt�8

; xt�5
�Þ; gð½xt�4

; xt�1
�Þ

gð½xt�480
; xt�473

�Þ; . . . ; gð½xt�16
; xt�9

�Þ; gð½xt�8
; xt�1

�Þ

That is, with 240 data we are modeling the events up to 480 seconds in the past, which would

require 480 data if we used all elements of the time series. This saving is significant if we take

into account the effects of the curse of dimensionality, that is, the need for an exponentially

greater amount of data to learn a function as the dimensionality of the input increases linearly.

4.2 Coarse-grained long-term forecasts

Our preliminary observations show that complex methods for time series forecasting at

the one-second resolution in the domain described in section 2 do not outperform naive

approaches (i.e., simply forecasting the last observation) by a wide margin. The reason for this

is most likely the amount of noise present in the signal sampled at the one-second frequency.

Our intuition is that part of this noise could be explained via exogenous variables related to

the virtual and physical machines running on the data center (e.g. CPU and memory usage, or

inbound and outbound network packets of the corresponding virtual machines). As a future

extension of this work, it would be interesting to analyze whether a richer time series with this

information could help to improve the quality of fine-grained forecasts.

To deal with this problem we propose to explore the predictability of our data at wider time

ranges, by trying to forecast the mean values over a time period. The prospects of this approach

are supported by both intuition and theory. Intuitively, the behavior of network traffic is

expected to be more structured in the long term, where randomness plays a lesser part in the

dynamics. Theoretically, the scale of aggregated observations increases linearly in the number

of components, while the standard deviation of a sum of independent Gaussian random vari-

ables increases as a fractional power.

Formally, if �i, i = 1, . . ., n are n i.i.d. Gaussian variables such that �i � N ðm; s2Þ for all i, then
X

i

�i � N ðnm; ns2Þ

A single scaled Gaussian variable �i
n
, however, is distributed as

�i
n
� N ðm

n
;
s2

n2
Þ

Therefore,

1

n

X

i

�i � N ðm;s
2

n
Þ
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If we assume that our time series has a noise component of i.i.d. Gaussian variables and we

take the mean of n separate values, the standard deviation of the noise of n aggregated values

will thus be s
ffiffi

n
p . That is, the standard deviation of the noise will be attenuated as we aggregate

values, or equivalently, increase the time scale of the predictions.

To take advantage of this result, we train our models not only to predict the exact value of

the time series one or more seconds ahead, but also to predict the average value 2, 4, 8, 16, 32

and 64 seconds in advance. This of course results in more coarse-grained forecasts and there-

fore larger absolute errors, but as we show in our experiments, the error with respect to the

variability of the data is drastically decreased. We limit our aggregation to the one-minute

time scale, as forecasts in this range might be very valuable for certain applications that arise in

data center contexts, such as real-time resource provisioning optimization [1].

4.3 Multiple-channel convolutions for incorporating context

In order to take further advantage of the multiresolution context added as explained in section

4.1, we feed each of the aggregated series into a different channel of the first layer of our convo-

lutional network models. Convolutional networks learn a separate filter for each input chan-

nel. The output after processing the input with these separate filters is added together. This

way, the relationship between the different channels is modeled by the network.

The way we employ convolutional networks is this: a set of convolutional filters, whose

number and width are manually chosen, are learned for each sub-time series (see section 4.1),

which are regarded as separate input channels. After traversing all convolutional layers (whose

number is also manually chosen), the input undergoes the transformations learned by a fully

connected neural network. The resulting forecast is the value of a single, linear output unit.

The first convolutional layer uses a set of three-channel (exponential context degrees of 0, 1

and 2) convolution filters of size c. We zero-pad the input data to preserve its dimensionality.

The resulting vectors are further processed by similar convolutional layers, with as many chan-

nels as convolution filters in the previous layer. We can therefore define the entries output by

filter f of convolutional layer l at position i given an input record x as

a
ðlÞ
f ;i ¼

r
P

3

j¼1

Pc

k¼1
y
ðlÞ
f jkxj;iþk�bc=2c þ bf l

� �

if l ¼ 1

r
Pnðl�1Þ

j¼1

Pc

k¼1
y
ðlÞ
f jka

ðl�1Þ
j;iþk�bc=2c þ bf l

� �

otherwise

8

>

>

<

>

>

:

• xj, i is the value of channel j at position i of the input record (if i is non-positive or greater

than the input window, then xj, i = 0).

• y
ðlÞ
f jk is the value of channel j of convolution filter f of layer l at position k, and bfl is the bias of

filter f at layer l.

• c is the width of the convolution filters

• n(l) is the number of convolution filters at layer l.

• ρ is the non-linear activation function.

Fig 2 shows a depiction of our convolutional network architecture for time series forecast-

ing. Each of the input sub-time series will be processed by a multiple-channel convolution fil-

ter, each of which will produce a new time series. The resulting set of time series can then be

processed by a new convolutional layer as a new multiple-channel time series. In this paper,
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however, we limit the network to one convolutional layer to determine whether this is enough

to outperform other models.

5 Experiments

In order to validate the performance of our proposed models we carried out a series of experi-

ments on a real traffic data set described in section 5.1. Our main goals were the following:

• To determine whether the multiresolution context helps improve the quality of the forecasts.

• To determine whether our approach based on convolutional networks (CNNs) offers any

advantage over ARIMA and feed forward fully connected neural networks (ANNs).

• To determine the time scale at which forecasts can be made with good results.

Our experiments were also intended to shed light on one of the main questions posed in

this paper: can neural networks, and convolutional networks in particular, provide a robust

forecasting model in a complex real-time scenario where traditional methods like ARIMA

would require significant preprocessing and analysis?

In the rest of this section we describe the employed data set, the approaches taken to run

the experiments, and finally we discuss the obtained results.

5.1 Data

The data used in our experiments is a subset of the ONTS data set, a network traffic trace col-

lected at the core network of a medium-sized Spanish Internet Service Provider over a period

of three years in the context of the FP7-ONTIC research project (http://ict-ontic.eu). This net-

work processes an average of 200,000 packets per second. ONTIC project was funded by the

Seventh Framework Programme of the European Commission and access to the ONTS data

set can be requested at http://ict-ontic.eu/index.php/onts-data/onts-request-access.

The collected raw data set consists of network packets in PCAP format (https://en.wikipedia.

org/wiki/Pcap). We processed the data in order to transform them into a time series represent-

ing the number of active TCP (Transport Control Protocol) flows at each second. This resulted

in a time series of 86,400 values per day. To accomplish this, the raw packets were aggregated

into 5-tuple flows (that is, groups of packets sharing source and destination IP address and

ports, as well as transport protocol) using Tstat tool version 3.0 (http://tstat.polito.it/). We only

Fig 2. Our convolutional network architecture for time series forecasting.

https://doi.org/10.1371/journal.pone.0191939.g002
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kept TCP flows as they constituted the dominant protocol. The resulting records were pro-

cessed to count the number of flows active at each second. This part of the process was done in

parallel using Apache Spark, a distributed computing platform based on Resilient Distributed

Datasets [37]. The time required to process the data corresponding to one month was three

days. In total we analyzed 5 months of traffic data, out of which we extracted 75 days (2 weeks

per month) to generate the data for our experiments. The whole preprocessing process there-

fore took over two weeks to complete and resulted in a time series representation of approxi-

mately 1,300 million flows, at an average of 18.7 million flows per day. Figs 3 and 4 exemplify a

plot of the time series corresponding to a weekend from the month of February and a working

week from the month of March. The long term regularities are evident, save for a few peaks or

valleys probably due to attacks or service downtime.

In order to obtain a representative sample of the behaviour of the traffic, we employed data

from February 2016 to July 2016 and for each month we used two weeks of data chosen at ran-

dom among the available. We omitted the month of May due to a significant gap caused by a

temporary breakdown of the traffic collection system.

To evaluate the performance of our ANN and CNNmodels we trained them on data from

one time period (i.e., one month) and tested their ability to make predictions on data from a

different one. In the case of ARIMA, in order to make a forecast of a time series at time t, we

Fig 3. The time series from a weekend in February.

https://doi.org/10.1371/journal.pone.0191939.g003
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simply fit the model on past values of the series and had it forecast one value. The approaches

taken to model training and fitting are explained in more detail in section 5.2. We partitioned

our data set into various partitions, named P1, P2, ‥P10, in order to evaluate our models on

different periods of time. The results training-test pairs are listed in Table 1. Given the signifi-

cant differences in the behavior of network traffic during weekdays and weekends, we treated

these two cases separately.

In addition to the raw time series data, we also tested the abilities of the models to make

forecasts at different time scales by aggregating data as explained in section 4.2. Specifically, we

transformed the original time series to generate six new time series, in which each entry repre-

sents the mean of 2, 4, 8, 16, 32 and 64 steps ahead respectively. The tasks therefore amount to

a total of 70 (7 time series for each training-test pair).

Finally, we analyzed the intrinsic variability of the data to determine the extent to which

our forecasts are better than simply random guessing. Tables 2 and 3 show the variance and

Fig 4. The time series from five weekdays in March.

https://doi.org/10.1371/journal.pone.0191939.g004

Table 1. Training-test pairs used to train neural networks.

Partition Training set Test set

P1 Weekend February Weekend March

P2 Weekend March Weekend April

P3 Weekend April Weekend June

P4 Weekend June Weekend July

P5 Weekend July Weekend February

P6 Weekdays February Weekdays March

P7 Weekdays March Weekdays April

P8 Weekdays April Weekdays June

P9 Weekdays June Weekdays July

P10 Weekdays July Weekdays February

https://doi.org/10.1371/journal.pone.0191939.t001
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the mean absolute deviation respectively of the 1st-differenced time series for each period.

These values can be compared to the mean squared error (MSE) and mean absolute error

(MAE) attained by our models. Each month should be compared to the results obtained using

it as test set. For instance, the MAE of partition P1 should be compared to the mean absolute

deviation of March weekends, and the MSE of partition P2 should be compared to the variance

of April weekends

5.2 Model fitting

In this subsection we explain how each of the models was fitted and evaluated.

5.2.1 Neural networks. The approach for training and evaluation was the same for both

fully connected (ANNs) and convolutional neural networks (CNNs). We trained two different

ANNs and two different CNNs for each time period, one with and one without multiresolution

input (see section 4.1). The networks without multiresolution input simply take the previous

time series values (60 and 240 in two different experiments) as input to produce a forecast. On

the other hand, the input to multiresolution networks incorporated past data with exponential

context degrees of 0, 1 and 2. This resulted in a 180-dimensional vector representing data from

up to 240 seconds in the past. While the reduction in dimensionality from 240 to 180 might

seem small, it should be noted that the amount of data needed to learn a function can increase

exponentially in the number of dimensions. Therefore, every reduction is valuable. In the case

of ANNs, the input was flattened into a 180-dimensional vector (60 values for each degree),

Table 2. Variance of the time series after first difference for each month.

Month 1 2 4 8 16 32 64

Weekends March 3591.60 6606.43 14937.72 31830.12 52047.85 66718.89 68507.82

Weekends April 2655.34 3873.81 7999.51 16098.53 26722.44 33981.23 36699.06

Weekends June 1733.05 2862.25 5688.17 11898.44 21269.30 28821.85 33730.99

Weekends July 1643.49 2531.09 4734.81 9714.07 17106.02 22215.90 25453.01

Weekends February 3211.48 5447.91 12067.02 28510.32 55535.63 76269.86 82409.18

Weekdays March 12843.68 29425.97 73799.15 159208.98 256177.69 273978.96 242211.62

Weekdays April 9302.60 19196.10 40268.44 72689.55 104464.70 107800.58 110882.34

Weekdays June 9820.81 16200.19 34540.22 62475.00 92136.53 101665.32 102451.20

Weekdays July 9223.68 16391.68 34210.20 59340.96 87267.06 99300.61 100134.27

Weekdays February 14566.07 31719.60 75482.06 148872.50 230102.49 253723.76 235419.03

https://doi.org/10.1371/journal.pone.0191939.t002

Table 3. Mean absolute deviation of the time series after first difference for each month.

Month 1 2 4 8 16 32 64

Weekends March 37.77 49.61 74.00 109.65 141.68 166.80 187.46

Weekends April 29.21 37.60 55.42 80.40 104.00 122.16 138.38

Weekends June 27.26 33.68 45.63 64.79 89.26 113.14 135.00

Weekends July 27.53 33.57 44.79 62.58 84.60 101.51 113.29

Weekends February 33.57 41.41 58.52 88.85 131.59 172.03 201.93

Weekdays March 48.98 67.69 105.07 166.29 242.79 302.19 335.65

Weekdays April 36.36 52.41 80.65 122.51 165.78 199.52 227.96

Weekdays June 41.68 54.19 77.98 113.34 154.60 188.89 217.43

Weekdays July 45.46 55.00 78.08 113.53 156.44 192.19 218.99

Weekdays February 50.49 68.44 104.05 161.17 233.19 293.99 337.44

https://doi.org/10.1371/journal.pone.0191939.t003
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while in the case of CNNs, each of the 3 resulting sub-time series was fed into a different chan-

nel (see section 4.3 for details).

We trained the networks to minimize the mean squared error between their predictions

and the true future observations. We used different models to predict future time steps at dif-

ferent levels of aggregation (always aggregating by taking the mean), specifically at 1, 2, 4, 8,

16, 32 and 64. In our generalized time series forecasting framework (see section 2), this would

correspond to the function g representing the arithmetic mean and h taking the values from 1

up to 64.

A separate model was trained for each of the above described approaches for each time

period, resulting in 140 ANN and 140 CNNmodels in total (2 ANNs and 2 CNNs per parti-

tion). In each case, a random subset containing 10% of the data was kept for validation, unused

for training. The training process went on until no improvement on the validation split was

observed for 50 epochs. Afterwards, the weights that yielded the best validation error were

kept. We tuned the hyperparameters of the networks via random search. We monitored the

error on the validation set in order to choose the hyperparameters. Afterwards, we employed

these hyperparameters to train the network (again monitoring validation error to decide when

to stop) and evaluated the error obtained on the test set, consisting of data from an different

period of time. In the end, we chose a set of hyperparameters that exhibited small errors on

the validation set but that allowed us train the networks in a reasonable time (around 1 hour

approximately). The resulting hyperparameters are specified below separately for ANNs and

CNNs. The employed training algorithm was Adam [38].

The networks were designed and trained using the keras (https://keras.io/ library with the

Theano deep learning framework as backend. The training was done on an Asus ROG Strix

Geforce GTX 1080 8GB GDDR5X GPU equipped with 2500 CUDA cores and 8GB of RAM.

The whole training process took around 10 days.

Feed-forward fully connected neural networks (ANNs)We used a network of one inter-

mediate layer of 60 units with ReLU activation, and a final single linear unit for the prediction.

The ReLU activation function can be defined as

r : R! Rþ ð1Þ

x 7! maxf0; xg ð2Þ

All weights were slightly regularized using l2-norm penalty terms of λ = 3.619e − 08. Drop-

out, a regularization method which is usually very effective for classification, was problematic

for this task, so it was not used.

It should be noted that we ran extensive tests with larger networks, adding more layers and

units, but we did not observe noticeable improvements. We therefore employed this configu-

ration, which exhibited good performance while maintaining training times within reasonable

limits.

Convolutional neural networks (CNNs)We used a single convolutional layer with 30

filters of width 15. We used zero-padding, so the transformed time series did not lose any

dimensionality. The weights were regularized with an l2-norm penalty of λ = 2.477e − 08.

The output of the convolutional layer was flattened into a high dimensional vector, then

processed by a single fully connected layer like the one used for the artificial neural network

model, with 60 units and an l2-norm penalty of λ = 3.619e − 08.

For the tasks of predicting 32 aggregated steps ahead, we noticed that in some cases the

CNNmodels presented large MSE values, while the MAE remained at acceptable levels. This

is likely due to the presence of rare events either in the training or in the test data. The higher
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complexity of the CNNmodels makes them more sensitive to overfitting, causing them to

potentially produce large errors given certain inputs. Even if those flawed out puts are rare,

their large magnitude can have a dramatic impact on the MSE, which accentuates errors

quadratically. To prevent this from happening, we increased the regularization penalty in the

CNNmodels for predicting 32 aggregated steps ahead, and set it to λ = 2.477e − 06 at convolu-

tional layers and λ = 3.619e − 06 at fully-connected layers.

5.2.2 ARIMA. The ARIMA(p, d, q) model was fit in a different fashion from what was

done with ANNs and CNNs. The reason is that fitting an ARIMAmodel is much more effi-

cient and, as opposed to neural networks, it can benefit from the availability of new data in real

time. An AR model (which is what we used in our experiments) can be fitted to a series of

thousands of entries and produce a forecast in under a second on moderately powerful hard-

ware, while updating (i.e., re-training) an ANN or CNNmodel with a newly arrived batch of

thousands of instances for producing a real-time forecast is infeasible.

We followed the Box-Jenkins methodology to fit linear time series models [39]. To obtain a

prediction by ARIMA at time t, we fit the model to the previous k values, that is, to the sub-

time series comprised of the values in the time interval [xt − k, xt − 1]. We determined experi-

mentally that k = 4,000 produced good results. In order to get an estimate of how this approach

is expected to perform, for each time period (e.g. weekends in February) we took 30,000 such

sub-time series sampled at random without replacement, and measured the error of the 30,000

resulting forecasts with respect to the corresponding actual values. This way we could obtain

an accurate estimate of the expected error while keeping the experiments manageable on our

hardware.

We determined the values of p, d and q based on the data corresponding to weekends in

February. We first choose the value of d, i.e., the degree of differencing. The raw data (Figs 3

and 4) shows clear non-stationarity, an insight that is reinforced by the autocorrelation func-

tion plot (ACF) in Fig 5. After applying one degree of differencing, the series becomes station-

ary, and the autocorrelation becomes small at all steps, as shown in Fig 6. We therefore set

d = 1. Neither the autocorrelation (ACF) nor the partial autocorrelation (PACF) functions

(Fig 6) exhibit significant peaks, which is consistent with the intuition that at the one-second

scale, the series is highly noisy. Therefore, no significant improvements can be expected from

using a model other than ARIMA(0, 1, 0). Nevertheless, since the PACF plot shows a notice-

able difference between the first and second lags, we also fit an ARIMA(1, 1, 0) model to check

Fig 5. ACF (left) and PACF (right) of the raw data.

https://doi.org/10.1371/journal.pone.0191939.g005
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whether it would provide any performance improvement. Preliminary experiments with other

choices of p, d, q did not show clear advantages.

In order to determine whether ARIMA is suitable for these data at a higher time scale, we

examine the ACF and PACF of the series at the 64-second resolution. These plots (Fig 7) reveal

a similar behaviour to the one exhibited at the 1-second scale. After differencing, the series

shows no significant autocorrelation (Fig 8). This observation is crucial, as it suggests that

ARIMA is not a viable model for these data even at the 64-second scale.

In order to predict an aggregation of n future values, as explained in section 4.2, we consid-

ered two approaches.

1. In the first approach, we simply aggregated the input series at the corresponding time scale

by taking the mean value every 2, 4, 8, 16, 32 or 64 entries, and then fitted an ARIMA

model to the aggregated series.

2. In the second approach, we fitted the ARIMAmodels to the time series at the one-second

time scale, and had them produce n forecasts. We then took the mean of the produced fore-

casts and measured its error with respect to the mean of the true n future values in the time

series.

Fig 6. ACF (left) and PACF (right) after first difference.

https://doi.org/10.1371/journal.pone.0191939.g006

Fig 7. ACF (left) and PACF (right) of the raw data at the 64-second resolution.

https://doi.org/10.1371/journal.pone.0191939.g007
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None of the two approaches showed clear superiority over the other, so we adopted

approach 2 as it exhibited slightly higher stability.

5.3 Results

In addition to ARIMA, ANNs and CNNs, we evaluated a naive approach, which consisted sim-

ply in using the last observed value as a prediction. This allowed us to evaluate how much of an

improvement our methods yield with respect to a straightforward, nearly zero-cost approach.

We measured both the mean squared error (MSE) and the mean absolute error (MAE) of

the predictions output by the different models. The metrics are defined as follows. Given a

time series (x1, . . ., xn) and a series of forecasts ðx̂1
; . . . ; x̂nÞ,

MSE ¼ 1

n

X

n

i¼1

ðxi � x̂ iÞ
2

MAE ¼ 1

n

X

n

i¼1

jxi � x̂ ij

Recall that we partitioned our data set into various partitions in order to evaluate our mod-

els on different periods of time and generated 10 training-test pairs (Table 1). Figs 9–12 show

the MAE and the MSE for the three models (ARIMA, ANNs with multiresolution context and

CNNs with multiresolution context) and the naive approach on each training-test pair.

These results provide interesting insights. First of all, we can see that at very short-term

forecasts ANNs and CNNs are approximately on par with ARIMA and the naive approach.

This suggests, as we previously hypothesized, that the amount of noise at this time scale is too

high, which would render the attempts to make reliable forecasts futile. Second, at wider time

scales, the improvement yielded by ANNs and CNNs is much more significant, suggesting that

anticipatory decisions could be taken in our data center around the 30-seconds scale. Third,

even though, contrary to our expectations, CNNs do not always outperform ANNs. A closer

look at the plots reveals that this seems to be the case mostly for weekend data (Figs 9 and 10),

whereas in weekdays (Figs 11 and 12) CNNs do perform significantly better than ANNs. The

reason for this might be the fact that the employed time series, coming from the core network

of an Internet Service Provider, are more structured during weekdays than weekends. The

Fig 8. ACF (left) and PACF (right) after first difference at the 64-second resolution.

https://doi.org/10.1371/journal.pone.0191939.g008
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Fig 9. Model tests (February, March and April).Naive, ARIMA and ANN and CNN with multiresolution context. Weekends.

https://doi.org/10.1371/journal.pone.0191939.g009
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absence of such structure would hamper the ability of any model, no matter how sophisticated,

to improve upon the performance exhibited by a simple ANN. This is the reason that on week-

ends, even though the CNN-c still performs slightly better, and ANNs and CNNs seem to be

able to capture the structure of the data at wide time scales better than the naive approach,

the margin is small and thus we cannot make conclusive statements about its superiority. On

weekdays, however, the margin of superiority of the CNN-c model is much more significant

and extremely unlikely to be due to pure randomness. Therefore, the use of CNNs with multi-

resolution seems clearly beneficial, at least in the case of weekday data.

5.3.1 The effect of context. To assess whether the multiresolution input helps improve

the quality of the forecasts we conducted three additional experiments. In the first experiment,

we trained and evaluated neural networks without the added context -that is, just with 60 con-

secutive past observations as input- on the same training-test data pairs as above and compared

with CNNs with multiresolution layout. In the second experiment, we trained and evaluated

ANNs and CNNs with 240 past observations as input, without a multiresolution layout. This

way, we give the models access to the same information as the ones trained with multiresolu-

tion input. Finally, in the third experiment we trained CNNs with only a 60-dimensional input

Fig 10. Model tests (June and July).Naive, ARIMA and ANN and CNNwith multiresolution context. Weekends.

https://doi.org/10.1371/journal.pone.0191939.g010

Forecasting short-term data center network traffic load with convolutional neural networks

PLOSONE | https://doi.org/10.1371/journal.pone.0191939 February 6, 2018 20 / 31

https://doi.org/10.1371/journal.pone.0191939.g010
https://doi.org/10.1371/journal.pone.0191939


Fig 11. Model tests (February, March and April).Naive, ARIMA and ANN and CNNwith multiresolution context. Weekdays.

https://doi.org/10.1371/journal.pone.0191939.g011
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with an exponential degree of 2 (i.e., 240 observations aggregated every 40 steps) in order to

explore the relevance of high exponential context degrees for coarse-grained predictions.

Experiment 1. We trained and evaluated neural networks without the added context using

60 consecutive past observations as input and compared with CNNs with multiresolution lay-

out and ARIMAmodels. Tables A through F in S1 File show the results obtained by ANNs and

CNNs. Relative errors with respect to the variance and mean absolute deviation of each period

(that is, MSE
s2

and MAE
MAD

) are shown in Tables G through L in S1 File. These results are compared to

the errors obtained by the ARIMAmodels. Tables A, C and E in S1 File show the results for

the networks without context (that is, with an input consisting simply of the last 60 observa-

tions), denoted by ANN and CNN. Tables B, D and F in S1 File show the results obtained by

the networks using context, that is, with exponential context degrees of 0, 1 and 2, denoted by

ANN-c and CNN-c. Table 4, in turn, shows the relative improvement of each model with

respect to the naive baseline, measured as 1� model error

naive error
. We report the average error over data

Fig 12. Model tests (June and July).Naive, ARIMA and ANN and CNNwith multiresolution context. Weekdays.

https://doi.org/10.1371/journal.pone.0191939.g012
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partitions for each task, (i.e. each number of aggregated steps ahead), for both MSE and MAE.

At the one-second scale, all models seem to perform similarly. However, as the aggregation

scale increases, convolutional networks are clearly superior, especially when incorporating

multiresolution input. This is consistent with intuition, as one expects coarse events at a large

scale to be correlated with coarse events relatively far back in the past. Absolute error values in

Tables B, D and F, and relative ones in Tables H, J and L in S1 File show that the edge of CNNs

over the rest of the models is significant.

Experiment 2. We trained and evaluated ANNs and CNNs models using the 240 consecu-

tive past observations as input (i.e., without a multiresolution layout) to give the models access

to the same information as the ones trained with multiresolution input. The results are shown

in Table M in S1 File. This experiment was only carried out for forecasts 32 and 64 steps

ahead, where model sophistication has a more noticeable impact on forecast accuracy. In the

case of weekend data, the CNN with multiresolution is superior, although by a smaller margin.

However, In the case of weekday data, the CNN-c model is clearly superior to the rest of the

approaches. This results suggest that whenever the data are sufficiently structured, the multire-

solution input in combination with the CNN is clearly helpful in improving the quality of the

forecasts. This is consistent with our previous observations in which weekday traffic appears

to be more structured than that of weekends, and so more complex models can exploit these

apparent regularities to make better forecasts. We can therefore conclude that the multiresolu-

tion approach indeed shows better performance in general. In addition, it should be noted that

increasing the dimensionality of the input data is not always necessarily helpful for the learning

procedure. Our approach to multiresolution context modeling, however, seems to offer a good

trade-off between additional information and statistical efficiency.

Experiment 3. Finally, it could be argued that only the input data with a high exponential

context degree is relevant for coarse-grained predictions. For instance, for predicting 64 aggre-

gated steps ahead, one might think that taking a 60-dimensional input with an exponential

context degree of 2 (that is, 240 observations aggregated every 4 steps) could be enough. To

assess this we trained CNNs in this fashion (that is, only with exponential context degree of 2

Table 4. Average percentage of improvement of each model over naive approach.

Steps ahead Error ANN CNN ANN-c CNN-c ARIMA(0, 1, 0) ARIMA(1, 1, 0)

1 MAE 0.32 1.00 0.76 0.62 0.04 0.12

2 4.12 5.04 3.23 4.68 3.79 4.36

4 9.62 10.80 8.99 11.30 7.83 7.98

8 8.04 9.25 7.60 8.70 4.31 4.84

16 8.51 8.65 7.57 8.82 1.32 1.71

32 9.28 10.77 10.47 12.85 0.01 0.34

64 12.52 14.89 17.23 21.45 1.43 1.74

Avg. 5.24 6.04 5.43 6.72 1.57 1.67

1 MSE 4.83 6.65 3.20 5.33 4.46 11.43

2 13.87 15.18 13.82 15.37 2.09 2.24

4 23.34 23.83 22.68 25.60 17.08 15.76

8 18.38 17.65 18.39 18.81 8.79 11.90

16 19.50 18.15 20.87 20.03 1.33 4.16

32 25.77 18.37 29.44 28.71 0.52 0.11

64 34.32 33.56 40.65 45.90 2.91 5.16

Avg. 14.00 13.34 14.90 15.97 3.13 1.28

https://doi.org/10.1371/journal.pone.0191939.t004
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as input) for all partitions at 32 and 64 aggregated steps. Table 5 shows the results with granu-

larities of 32 and 64 aggregated steps ahead (SA). In the case of 32 aggregated steps ahead, it

can be seen that the performance of these networks is generally slightly worse than that of the

CNN-c models (particularly in the case of MAE), that is, the ones with exponential context

degrees of 0, 1 and 2. This supports the hypothesis that multiple convolution channels repre-

senting previous observations at different levels of resolution are helpful for improving the

quality of the forecasts. In the case of 64 aggregated steps ahead, the superiority is not clear.

The difference between both cases could be related to the fact that high-resolution input (that

is, with an exponential degree of 0) might be more relevant to 32-step forecasts. However, it

would be interesting to assess the usefulness of the multiresolution input with more experi-

ments and using larger timescales as input.

5.4 Durability of the models

The previous experiments have shown that ANNs and CNNs can provide significantly better

forecasts than ARIMA as the time scale increases. However, in all tests (except for partitions

P5 and P10 that were trained with the last month data) we trained the models on the most

recent period available prior to the test data. An equivalent approach in a real-world scenario

would require the user to retrain the models every month. We ran an additional set of experi-

ments to try to determine whether a model trained on data from one month would remain

robust enough after a few months have passed. Specifically, we trained models for the different

time scales on data from February and March and tested them on the rest of the months.

Figs 13 and 14 show the error plots obtained with models trained on different periods. In

general, the models trained on more recent periods seem to perform slightly better than those

Table 5. Errors obtained by convolutional neural networks with single resolution input.

Partition SA CNN-context_degree:2

MSE MAE

P1 32 40118.02 129.01

P2 41068.72 98.38

P3 16215.16 88.10

P4 14751.86 78.73

P5 43957.34 126.39

P6 133141.97 209.99

P7 67727.29 170.55

P8 57288.46 147.50

P9 52363.79 140.19

P10 135754.95 211.87

P1 64 39980.17 142.40

P2 26743.76 106.82

P3 18202.85 98.75

P4 16545.59 88.68

P5 50503.30 151.79

P6 107604.68 218.14

P7 67874.94 182.11

P8 54931.68 165.23

P9 48656.83 151.79

P10 119045.86 233.71

https://doi.org/10.1371/journal.pone.0191939.t005
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Fig 13. Model durability tests.Naive, ARIMA and ANN and CNN with multiresolution context. Weekends.

https://doi.org/10.1371/journal.pone.0191939.g013
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Fig 14. Model durability tests.Naive, ARIMA and ANN and CNN with multiresolution context. Weekdays.

https://doi.org/10.1371/journal.pone.0191939.g014
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trained on earlier months. This is consistent with the intuition that the dynamics of traffic

change slowly over time, which makes it convenient to periodically retrain the models. In

some cases, the trained models did overfit severely and produced bad results (e.g., April week-

days, 32 aggregated steps). This was solved again by retraining with stronger regularization

penalties (λ = 2.477e − 06 for convolutional layers and λ = 3.619e − 06 for fully-connected

layers).

5.4.1 Prediction speed. Since short-term time series forecasting is a real-time task, the

time necessary to produce a prediction with each of the models is vital. We measured the time

required by the different models to produce a forecast. All the models were fitted and evaluated

on a 12-core Intel Xeon CPU at 2.60GHz with a Geforce GTX 1080 8GB GDDR5X GPU card.

The ARIMAmodels took about 0.16 seconds for each produced value and both ANNs and

CNNs required between 1e-5 and 1e-6 for each prediction. It should be noted that a more

efficient approach could be adopted for the ARIMAmodels, like fitting a model a priori and

using it to make predictions on new data. However, as the obtained results were not quite

good, we took the approach that we deemed best suited for the task at hand in terms of the

quality of the forecasts.

5.4.2 Remarks. Our remarks after running these experiments can be summarized as follows.

• First of all, a discussion on the cost of training neural networks is necessary. Other approaches,

while probably less effective, would have taken seconds to train, whereas each of our networks

took about one hour using proper -though admittedly not the most powerful available- hard-

ware. Initially, it is time consuming to validate hypotheses regarding the hyperparameters

and the network architecture. However, once the networks are properly tuned, they seem to

exhibit robust behaviour when trained once a month, and therefore one or even a few hours

of training should be admissible.

• Model complexity, if not properly regularized, can be very risky, as it can occasionally pro-

duce large errors. It is therefore essential to extensively validate hyperparameter choices.

• Convolutional layers seem to help improve forecasts when the input data are sufficiently

structured, as can be observed in the results on weekday data in comparison to weekends.

6 Conclusions & future work

We have investigated the problem of forecasting short-term changes in data center network

traffic load. We discovered that the behaviour of network traffic at the one-second scale is

highly chaotic. So far it has been unclear whether any meaningful structure could be exploited

to make reliable forecasts. Moreover, our analysis corresponding to the ARIMAmodel in sub-

section 5.2.2 reveals the lack of structure, which clearly shows that the problem is hard to solve

from a traditional time-series-analysis perspective.

To the best of our knowledge, there are no previous attempts to solve this problem reported

in the literature. Therefore, we have employed ARIMA as a baseline method to compare the

effectiveness of our contribution.

In this context, we propose the use of convolutional neural networks (CNNs) -a type

of neural network that can exploit the temporal nature of the data efficiently- in order to

verify whether there exist highly non-linear regularities that can be learned by models more

complex than traditional time-series-analysis methods. Additionally, we investigated different

approaches to improve the quality of the forecasts -multiresolution context and coarse-grained

forecasts. The main conclusion of this work is that the improvements exhibited by our CNN

models with multiresolution input confirm that the highly non-linear regularities present in
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network traffic load can be captured and learned by CNNs. Moreover, the proposed CNN

models can be trained monthly in a reasonable amount of time showing a quite long durability

and can produce forecasts fast enough for real-time use. These properties encourage the utili-

zation of CNNs for use in real-time data center scenarios.

We tested the ability of the models to forecast the number of active TCP flows in a network

traffic trace collected at the core network of a medium-sized Spanish ISP that processes about

18.7 million TCP flows per day on average. The trace was taken from a period spanning 5

months, totalling 70 days of traffic at the one-second resolution. We aggregated and trans-

formed this trace in a time series representing the number of active TCP flows (user sessions)

per second, totalling over 6 millions of data points. The short-term behavior of these data

(one-second resolution) is very noisy making very short-term forecasts seemingly impossible

to improve with respect to naive methods, even using state-of-the-art approaches. We there-

fore run experiments on increased time scales to determine if any improvements could be

obtained. It should be noted that part of the noise present in the analyzed data might not be

completely random and could perhaps be explained via exogenous variables related to the ser-

vices and protocols running on the network (e.g. CPU and memory usage, or inbound and

outbound network packets of the corresponding virtual machines). In the future it would be

interesting to analyze whether a richer time series with this information could help to improve

the quality of the forecasts.

We have shown that ANNs and especially CNNs, can make forecasts with a mean absolute

error significantly below the mean absolute deviation of the differenced data at time scales of

64 seconds and below (i.e., our errors are smaller than the intrinsic variability of the data).

Simple ARIMAmodels, however, do not seem to obtain better results than a naive approach.

This suggests that the time series exhibits meaningful non-linear structure from the 16-second

scale and above that can be captured by ANN and CNNmodels. Certain problems that arise in

cloud and data center infrastructure, such as resource placement, require anticipatory deci-

sions to be made within 60–120 seconds approximately. Therefore, our approach could prove

useful for this purpose.

CNNmodels outperform both ARIMA and ANNs by an increasingly significant margin as

the time scale increases, in both mean squared error and mean absolute error. Additionally,

our efficient approach to context modeling via multiresolution input seems to enable promis-

ing performance improvements as well above the 16-second scale. This suggests that the time

series exhibits long-term non-linear correlations that can be exploited for short-term forecast-

ing. Moreover, the multi-resolution approach can be exploited efficiently using the multiple

channels of a conventional convolutional neural network architecture.

A slight drawback of ANN and CNNmodels is the training procedure, which is generally

slower than other methods (e.g. random forests for regression). However, modern GPU

cards help to accelerate the training phase. Our proposed neural networks were trained in

about an hour on a moderately powerful GPU, which is feasible if the models are to be

retrained monthly or even weekly. Moreover, the trained models exhibit robust performance

and durability. In addition, predictions can be made in about 1e-5 seconds, as opposed to the

0.16 seconds that our ARIMA-based approach required. These times jointly with the observed

durability of our CNNmodels, make these models suitable for use in the real-time scenarios

that are likely to arise in data center management.

In the future we plan to take additional steps to further improve the quality of the forecasts.

First, we plan to test different scales of multiresolution input to incorporate more context for

medium-term forecasts. It would also be interesting to enrich the present time series with

exogenous variables such as the services and protocols running on the infrastructure and the

topology of the network. Finally, we will attempt to evaluate whether these methods can be
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used on the actuation side to improve the efficiency of cloud infrastructure management tasks

like resource scaling. The promising results obtained with convolutional networks motivate

further research in this direction. In particular, it would be interesting to run experiments with

deeper models, as this strategy has been successful in various application domains. It would

also be interesting to evaluate the performance of recurrent neural networks and in particular

long short term memory units, which while less efficient than convolutional networks, are par-

ticularly well suited to time series settings. This motivates a particularly compelling research

question. Deep networks have replaced and outperformed the manual feature extraction pro-

cedures based on hand-crafted filters or signal transforms traditionally used by domain experts

for computer vision and speech recognition. Traditional approaches for time series analysis

and forecasting rely on a set of preprocessing techniques, such as identification of stationarity

and seasonality, detrending, etc. Can deep models replace these methods and successfully ana-

lyse raw time series data for forecasting?
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