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Abstract: In the world, energy demand continues to grow incessantly. At the same time, there is a growing need to

reduce CO2 emissions, greenhouse effects and pollution in our cities. A viable solution consists in producing

energy by exploiting renewable sources, such as solar energy. However, for the efficient use of this energy,

accurate estimation methods are needed. Indeed, applications like Demand/Response require prediction tools

to estimate the generation profiles of renewable energy sources.

This paper presents an innovative methodology for short-term (e.g. 15 minutes) forecasting of Global Hor-

izontal Solar Irradiance (GHI). The proposed methodology is based on a Non-linear Autoregressive neural

network. This neural network has been trained and validated with a dataset consisting of solar radiation sam-

ples collected for four years by a real weather station. Then GHI forecast, the output of the neural network, is

given as input to our Photovoltaic simulator to predict energy production in short-term time periods. Finally,

experimental results for both GHI forecast and Photovoltaic energy prediction are presented and discussed.

1 INTRODUCTION

The widespread development of Renewable Energy

Sources (RES) in our cities, such as Photovoltaic (PV)

systems, is changing the electrical energy produc-

tion, consumption and distribution. Our society is

facing the transition from centralized and hierarchi-

cal power distribution systems to distributed and co-

operative ones, generally called Smart Grids. Smart

Grid technologies are opening the electrical market-

place to new actors (e.g. prosumers and energy ag-

gregators). Currently, power grid stability is achieved

by classic generation plants using primary and sec-

ondary reserve at large-scale. Whilst, in a Smart Grid

scenario, such a new actors can actively contribute to

load balancing by fostering novel services for network

management and stability. Demand/Response (Siano,

2014) is an example of application for Smart Grid

management. It permits achieving a temporary vir-

tual power plant (Vardakas et al., 2015) by chang-

ing the energy consumption pattern of consumers to

match RES energy production or to fulfil grid opera-

tion requirements. This process is generally done ev-

ery 15 minutes. To achieve these goals, prediction

tools for both RES energy generation and consump-

tion are needed.

In this work, we present a methodology for Pho-

tovoltaic energy prediction starting from forecasting

short-term solar radiation. The forecast of solar radi-

ation is obtained exploiting a Nonlinear Autoregres-

sive neural network. We trained and validated this

neural network with a dataset consisting of four years

of Global Horizontal Solar Irradiance (GHI) samples

collected by a real weather station. The neural net-

work is a Multilayer Perceptron exploiting a high

number of regressors to predict GHI in 15 minutes

up to 2 hours range. Then, GHI forecast is given

as input to our PV simulator that exploits GIS tools

for simulating energy production. The rest of the pa-

per is organized as follows. Section 2 reviews liter-

ature solution on solar radiation forecast. Section 3

introduces the followed methodology to define a neu-

ral network for short-term solar radiation forecasting.

Section 4 details all the steps performed to initialize,

train and validate our neural network. Section 5 dis-

cusses the results on solar radiation forecast. Sec-

tion 6 describes the adopted Photovoltaic simulator.

Section 6 presents also results and accuracy on PV



energy generation that exploits foretasted solar radi-

ation given by the proposed neural network. Finally,

Section 7 discusses concluding remarks.

2 RELATED WORK

Nowadays, solar energy represents a very attractive

solution to produce green and clean energy. How-

ever, for an efficient conversion and utilization of so-

lar power, solar radiation should be estimated and

forecasted through accurate methods and tools. For

example in Demand/Response applications (Siano,

2014), the amount of available energy must be known

in advance to optimize the production of power

plants (Aghaei and Alizadeh, 2013) and to match en-

ergy production with consumption. Hence, several

studies were proposed in the literature to find math-

ematical and physical models to estimate and forecast

the solar radiation, such as stochastic models based

on time series (Kaplanis and Kaplani, 2016), (Voy-

ant et al., 2014) and (Badescu, 2014). Moreover,

classical linear time series models, like autoregres-

sive moving average, have been widely used (Brock-

well and Davis, 2016). However, it has been proven

that these methodologies often are not sufficient in

the analysis and prediction of solar radiation. This is

due to the non-stationary and non-linearity of the so-

lar radiation time series data (Madanchi et al., 2017),

(Nazaripouya et al., 2016). Furthermore, stochastic

models are based on the probability estimation. This

leads to a difficult forecast of the solar radiation time

series.

To overcome these limits, non-linear approaches,

such as artificial neural networks (ANNs), were con-

sidered by many researchers as powerful methodolo-

gies to predict phenomenons, such as solar radia-

tion (Voyant et al., 2017). Generally, ANNs do not re-

quire knowledge of internal system parameters. Fur-

thermore, these models offer a compact solution for

multiple variable problem (Qazi et al., 2015). How-

ever, also the use of an ANN to forecast a phe-

nomenon introduces an error, the so-called prediction

error (Yadav and Chandel, 2014). As a result, these

models need optimizations to reduce this error.

With respect to literature solutions, the scientific

novelty of the proposed methodology consists in us-

ing a neural network based on the Multilayer Percep-

tron to forecast solar radiation. Generally, most liter-

ature methodologies rely on the single past value to

perform the forecast (Box et al., 2015). Whilst, the

proposed solution allows to reduce significantly the

prediction error by using a high number of regressors

to perform predictions. In addition, we perform the

forecast of solar radiation in short- and medium-term,

i.e. from future 15 minutes up to next 2 hours.

3 METHODOLOGY

A time series identifies an ordered sequence of values

of a variable at equally spaced time intervals (Hamil-

ton, 1994). The usage of time series models brings

two great benefits: i) understanding the underlying

forces and structure that produced the observed data

and ii) fitting a model and proceeding to forecast

and monitor or even feedback and feed-forward con-

trol (Oancea and Ciucu, 2014).

3.1 The Multilayer Perceptron

Generally, one of the most effective methods for pre-

diction based on time series consists in neural net-

work (Montgomery et al., 2015), such as the Multi-

layer Perceptron (MLP), which is the artificial neu-

ral network most used in applications (Demuth et al.,

2014). It is composed of units, called nodes or neu-

rons, and organized in a layer of inputs, one or more

hidden layers and an output layer. It is a feed-forward

network with full connection between layers. The

connections are characterized by adjustable parame-

ters called weights. Hence, a weight refers to the

strength of a connection between two nodes (Kubat,

2017). Each neuron computes a function of the sum

of the weighted inputs. This function is called activa-

tion function.

In this work, we use an MLP-network architec-

ture characterized by i) one hidden layer of neurons

with hyperbolic tangent activation function f and ii)

an output layer with a linear activation function F .

The functional model is given by:

ŷi(w,W ) = Fi(
q

∑
j=1

Wi jh j +Wi0) =

= Fi(
q

∑
j=0

Wi j f j(
m

∑
l=1

w jlul +w j0)+Wi0)

(1)

The weights are specified by the matrix W = [Wi j] and

by the matrix w = [w jl ], where Wi j scales the connec-

tion between the hidden unit j and the output unit i

and w jl scales the connection between the hidden unit

j and the input unit l. Wi0 and w j0 are the correspond-

ing biases. All this weights can be vectorized in a

vector θ. The input units are represented by the vec-

tor u(t) and the hidden neuron outputs are represented

by the vector h. The outputs of the network, ŷi, are

estimated by Eq. 1. The parameters are determined



during the training process, which requires a training

set ZN , composed of a set of inputs, u(t), and corre-

sponding desired outputs, y(t), specified by:

ZN = [u(t),y(t)], t = 1, ...,N (2)

The training phase allows to determine a mapping

from the set of training data to the set of possible

weights:

ZN → θ̂ (3)

so that the network can produce prediction ŷ(t), to be

compared to the true output y(t).

The prediction error approach is instead based on

the introduction of a measure of closeness in terms of

a mean square error criterion, as specified by:

VN(θ,Z
N)=

1

2N

N

∑
t=1

[y(t)− ŷ(t|θ)]T [y(t)− ŷ(t|θ)] (4)

The weights are then found as:

θ̂ = argθminVN(θ,Z
N) (5)

by some kind of iterative minimization scheme:

θi+1 = θi +µi + f i (6)

where θi specifies the current iteration, f i the search

direction and µi the step size.

3.2 System Identification

The following section details the adopted methodol-

ogy to use an artificial neural network for short-term

solar radiation predictions. Based on the process pre-

sented in (Norgaard et al., 2000), the procedure to

identify a dynamical system consists of four steps: i)

Experiment, ii) Model Structure Selection, iii) Model

Estimation and iv) Model Validation (see Fig. 1).
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Figure 1: System identification procedure

Experiment This step corresponds to the problem

analysis and the sampling and data collection. In

neural network applications, once the scope has been

identified, an adequate amount of data is needed.

Generally, an higher number of data allows better

forecasting performances (Srivastava et al., 2014).

Then the available data must be divided into two dif-

ferent datasets: the training set and the validation set,

respectively. These datasets are used in the training

and validation phases of the neural network, which

are the Estimate Model and the Validate Model steps

in Fig. 1, respectively.

Model Structure Selection This step allows identi-

fying the correct architecture model to use (Norgaard

et al., 2000). Generally, this selection is more dif-

ficult in the nonlinear case than in the linear (Chan-

drashekar and Sahin, 2014). At this aim, the system

regressor must be studied. In mathematical modeling,

these regressors identify independent variables able

to influence the dependent variables. In time series,

then, these regressors represent previous samplings

with respect to the predicted ones (Montgomery et al.,

2015). Consequently, the best neural structure can be

chosen.

Model Estimation In this step, once the network

model and the number of regressors are identified, the

network is first implemented and then trained. In time

series scenario, training a neural network is needed

to provide: i) the vector containing desired output

data; ii) the number of regressors to define the pre-

diction; iii) the vector containing the weights of both

input-to-hidden and hidden-to-output layers and lastly

iv) the data structure containing the parameters asso-

ciated with the selected training algorithm. Finally,

the training phase produces a training error, which

represents the network performance index (Srivastava

et al., 2014).

Model Validation This step validates the trained

network. Generally, validating a network allows eval-

uating its capabilities (Miller et al., 1989). In time se-

ries predictions, the most common validation method

consists of analysing the residuals (i.e. prediction er-

rors) by cross-validating the test set. This method al-

lows to perform a set of tests including also the au-

tocorrelation function of the residuals and the cross-

correlation function between controls and residuals.

This analysis provides the test error (Srivastava et al.,

2014), that is an index considered as a generalization

of the error estimation. This index should not be too

high compared to training error. If this happens, the

network could over-fit the training set.

Network optimization and final validation Gen-

erally, if the network is over-fitting the training set, the



selected model structure contains too many weights.

It is required to return in the Estimate Model step in

order to change and redefine some structural param-

eters by optimizing the whole architecture. For this

purpose, the superfluous weight must be pruned ac-

cording to the Optimal Brain Surgeon (OBS) strategy,

that represents one of the most important optimization

strategies (Han et al., 2015). Consequently, once the

new weights are given, the network architecture must

be re-validated.

4 NAR NEURAL NETWORK FOR

SHORT-TERM GHI FORECAST

In this work, we aim at forecasting the short-term

Global Horizontal Solar Irradiance (GHI) for photo-

voltaic energy predictions. For this purpose, we used

a dataset of about four years (from 2010 to 2013).

It provides GHI values sampled every 15 minutes by

the weather station in our University Campus. In de-

tail, we considered all values in the time period from

8 a.m. to 6 p.m. Thus, we excluded evening and

night time. Then, we split the dataset into training

set (2010-2011) and validation set (2012-2013). This

dataset appears to be statistically relevant. Nonethe-

less, we believe that if we could have used a larger

accurate training set we could have achieved even

more accurate prediction results. In order to deal

with time series data, we adopted the Nonlinear Au-

toregressive neural network (NAR) belonging to the

Nonlinear Autoregressive Exogenous Model (NARX)

family (Siegelmann et al., 1997). Other choices, like

NARMA (Norgaard et al., 2000) are possible. How-

ever, NARX is considered as the best tool in time

series analysis (used as NAR) and does not suffer

from stability problems. It is a nonlinear autoregres-

sive model which has exogenous inputs. It is basi-

cally a choice of the inputs of a nonlinear model (an

MLP neural network, as in (Norgaard et al., 2000)),

which replaces the traditional linear model ARX (as

in (Ljung, 1998)). It bases its predictions on i) past

values of the series and ii) current and past values of

the driving exogenous series, producing an error that

represents the error of prediction. This error means

that the knowledge of the past terms does not enable

the future value of the time series to be predicted ex-

actly. These network models are characterized by:

yt = F(yt−1,yt−2,yt−3, ...,ut ,ut−1,ut−2,ut−3, ...)+ εt

(7)

where yt represents the variable of interest and ut is

the externally determined variable at time t respec-

tively. In detail, information about ut and previous

values of u and y, helps predicting yt , with a predic-

tion error εt .

Once the model has been chosen, we analysed the

number of past signals used as regressors for the pre-

diction. We used Lipschiz method for determining the

lag-space (Rajamani, 1998). This methodology al-

lows identifying the orders of Input-Output Models

for Nonlinear Dynamic Systems. However, as de-

tailed in (He and Asada, 1993), this methodology is

not always effective but it represents a good starting

point to define the number of regressors. Fig. 2 details

the result of the applied Lipschiz method, in which

the number of past inputs is increased simultaneously

from 1 to 20.

Figure 2: Evaluation of Order Index criterion for different
lag-space

In this way, we deduced that the architecture can yield

a good performance with only 9 regressors (i.e. 9 pre-

vious values for y and u, respectively, in Eq. 7). How-

ever, considering that the value of 10 is very close to

the knee of the curve, 10 regressors have been cho-

sen in order to have more conservative results, in the

sense of the use of more information from the time

series. Then, we chose an initial fully connected net-

work architecture with one hidden layer of 30 hy-

perbolic tangent units. This large number of units

is redundant, but justified by the pruning technique.

The weights of the network are then initialized ran-

domly before a training. This choice allows to initial-

ize i) the weights, ii) their decay threshold and iii) the

maximum number of iterations. However, these data

structure parameters are overestimated during the first

training. After this phase, we proceed training the

neural network. Training is a minimization technique

in order to compute the best weights for the network.

Here we used the Levenberg-Marquardt algorithm,

which interpolates between the Gauss-Newton algo-

rithm and the method of gradient descent, using a

trust region approach (Norgaard et al., 2000).



According to the purpose of this study, we chose

to use the methodology illustrated in (Norgaard et al.,

2002) for the network validation. This methodol-

ogy allows the models systems validation of the out-

puts, performing a set of tests including autocorre-

lation function of the residuals and cross-correlation

function between controls and residuals. This pro-

cess produces the test error index as a result. The

test error represents an estimation of the generaliza-

tion error. This should not be too large compared to

training error. If the test error (NSSE) is greater than

the training error, it means that the predicted results

are over-fitting the training set. In our case, the val-

idation process yield this index equal to 3.27× 103,

which is a good value. Then, we proceeded to the op-

timization phase of the network. Our purpose was to

remove excess weights and obtain a smaller training

error than the one given during the first validation. In

order to do so, we adopted the Optimal Brain Surgeon

(OBS) strategy (Hansen et al., 1994), which prunes

superfluous weights. OBS computes the Hessian ma-

trix weights iteratively, which leads to a more exact

approximation of the error function. The inverse Hes-

sian is calculated by means of recursion. This method

allows finding the smallest saliency Si:

Si =
w2

i

2[H−1]]i,i
(8)

where [H−1]i,i is the (i, i)th element of the inverse

Hessian matrix and wi is the ith element of the vector

θ containing network weights. The saliency identi-

fies the quality of the connection between the various

network units. This methodology allows to verify the

state of the saliency iteratively. If the saliency Si is

much smaller than the mean-square error, then some

synaptic weights are deleted and the remaining ones

are updated. The computation stops when no more

weights can be removed from the network without a

large increase of the mean-square error. Once the new

weights are given, we re-validated the network archi-

tecture.

Through the same methodology used in the first

validation phase, we proceeded to the final network

validation using the new weights. The resulting test

error index NSSE was 3.11× 103, that is lower than

the previous one. Thus, the prediction error has been

further lowered, giving more precise GHI forecast.

Fig. 3 shows the final structure of the neural network

after the optimization process.

Figure 3: NAR optimized structure

5 RESULTS ON GHI FORECAST

The phases of the neural network characterization de-

scribed in Section 4 allow defining an architecture

that bases its prediction on 10 previous regressors.

This represents a big advantage, as in literature these

kinds of networks generally use just the single pre-

vious value to predict the next one. This implies a

higher prediction error. In our case, by using a more

large number of previous instances the prediction is

good.

Our goal is to predict GHI in very short time win-

dows (i.e. 15 minutes). We moved further predicting

also GHI up to next two hours with 15 min. time in-

terval. Using the dataset described in Section 4, we

perform predictions by employing the methodology

presented in (Norgaard et al., 2002). This methodol-

ogy allows to determine the prediction value (that cor-

responds to the ahead k-step prediction of the system)

and compare it to the measured output. The predic-

tions are determined i) by feeding past predictions in

the neural network where observations are not avail-

able and ii) by setting unavailable residuals to zero.

Before starting the simulations, we set the prediction

function to 10 regressors. In this section, we present

the obtained results.

To evaluate the performance of our predic-

tions, we used the indicators reported by Gueymard

in (Gueymard, 2014). These indices of dispersion are:

i) the Root Mean Square Difference (RMSD) that rep-

resents the standard deviation of differences between

predicted and observed values; ii) the Mean Absolute

Difference (MAD) that represents a measure of sta-

tistical dispersion obtained by the average absolute

difference of two independent values drawn from a

probability distribution; iii) the Mean Bias Difference

(MBD) that measures the average squares of errors be-

tween predicted and measured values; iv) the Coeffi-

cient of determination (r2) that represent the propor-

tion between the variance and the predicted variable.

RMSD, MAD and MBD are expressed in percentage

rather than absolute units. Furthermore, we also con-



Figure 4: GHI prediction for 1 ≤ k ≤ 8 (June 2013)



Time

[min]

MAD

[%]

MDB

[%]
r2 RMSD

[%]
LCE WIA

k=1 15 13.56 0.26 0.91 25.37 0.81 0.98

k=2 30 19.82 0.70 0.84 32.92 0.72 0.96

k=3 45 24.28 1.08 0.80 37.61 0.66 0.94

k=4 60 28.02 1.27 0.75 41.55 0.60 0.93

k=5 75 31.30 1.52 0.71 45.10 0.56 0.91

k=6 105 34.43 1.42 0.66 48.48 0.51 0.90

k=7 115 37.88 0.97 0.61 52.15 0.46 0.88

k=8 120 41.32 0.14 0.55 55.97 0.41 0.86

Table 1: Performance Indicators for GHI prediction

sidered two indicators for the overall network perfor-

mance: i) the Willmotts Index of Agreement (WIA) that

represent the standardized measure of the degree of

model prediction error (Willmott et al., 2012) and ii)

the Legatess Coefficient of Efficiency (LCE) that is the

ratio between the mean square error and the variance

in the observed data (Legates and McCabe, 2013).

Fig. 4 shows the comparison among GHI results

given by our neural network (dashed lines) and mea-

sured values sampled by the weather station (contin-

ues line) for different steps, from k = 1 (i.e next 15

min.) to k = 8 (i.e next 120 min.). These GHI predic-

tions refer to the first week of June 2013. As shown in

Fig. 4-(a), Fig. 4-(b) and Fig. 4-(c), the trends of our

results for 1 ≤ k ≤ 3 follow the real GHI behaviour

with a good accuracy. Instead for k > 3, the predic-

tion accuracy decreases (from Fig. 4-(d) to Fig. 4-(g)).

This is also highlighted by Table 1 that reports the re-

sults of GHI predictions in terms of performance indi-

cators considering the whole validation set (i.e. 2012-

2013).

Performance indices clearly show that the architec-

ture performance worsens by increasing the predic-

tive steps. As a result, GHI prediction for high values

of k has a greater error than real data. The analysis

of indices highlights that the best GHI predictions are

given at smaller intervals. For example, the MAD in-

dicates that GHI prediction error grows as the predic-

tion step k increases. Indeed, for prediction step k = 1

the error is about 13.6% while for k = 8 the error is

around 41%. Also, RMSD has a similar trend. Fur-

thermore, the coefficient of determination r2 is much

better than it is closer to 1. This index for prediction

step k = 1 is equal to 0.91. Whilst, the error increases

with an r2 = 0.55 for k = 8.

This is also confirmed by LCE and WIA that high-

light a decreasing of the overall performance on high

prediction steps. Increasing the forecasting steps in-

crease the errors and, consequently, the performances

of prediction gets worst. Also for LCE and WIA, val-

ues closer to 1 represent the best case. For k = 8,

LCE and WIA are equal to 0.41 and 0.86, respectively.

However, the performance indexes for 1 ≤ k ≤ 3 are

acceptable to perform Photovoltaic energy estima-

tions (see Section 6). In this scenario, the maximum

error for GHI prediction is less than 25% for k = 3.

The correctness of the choice of the number of re-

gressors by the Lipschitz method seen previously is

confirmed by the following additional analysis whose

results are shown in Fig. 5. The technique proposed

here has been repeated for different numbers of in-

puts and the corresponding NSSE has been recorded.

It can be seen that too few regressors are not enough

and seven or ten inputs give the best results. It con-

firms the choice in the proposed experiment.

Figure 5: Evaluation of NSSE after pruning with regard to
the number of regressors

6 PV ENERGY ESTIMATION

As discussed in Section 5, the results on GHI forecast

are satisfactory especially on short-term time periods.

This forecast of GHI allows estimating in advance the

energy production of renewable, such as PV systems.

In our case, we used GHI predictions as input to our

PV energy simulator (Bottaccioli et al., 2017b). Es-

timating the PV production for the next short-term

time windows enables the development of more ac-

curate control policies for Smart Grid management,

such as Demand/Response (Siano, 2014). Further-

more, this estimation allows to analyse the penetra-

tion level and the impact of renewable energy in ex-

isting districts and smart grids and. Also, to test and

validate complex systems as presented in (Bottaccioli

et al., 2017a).

6.1 PV simulator

This work exploits the software infrastructure pre-

sented in our previous work (Bottaccioli et al., 2017b)

to estimate the energy generation profiles of PV sys-

tems in real-sky conditions. The inputs of this simula-

tor are i) a Digital Surface Model (DSM) and ii) GHI

trends. The DSM is a high-resolution raster image

representing terrain elevation of buildings of interest.



It allows recognizing encumbrances on rooftops, such

as chimneys and dormers, that prevent the deploy-

ment of PV panels. From the DSM, the PV simula-

tor estimates the evolution of shadows in the rooftops

over one year, with 15 minutes intervals. The result is

the identification of the suitable area that is the avail-

able area on the rooftop where PV panels can be de-

ployed.

The evolution of irradiance in real-sky conditions

is given by combining GHI trends retrieved from per-

sonal or third-party weather stations (Weather Under-

ground, ) with the shadow model. In case of short-

term prediction of PV energy production, the forecast

of GHI trends is given by the proposed neural network

(see Section 4). Then, the PV simulator decomposes

GHI to estimate both Direct Normal Incident radia-

tion (DNI) and Diffuse Horizontal Incident radiation

(DHI) (Hofierka and Kaňuk, 2009). This decomposi-

tion is done by exploiting state-of-the-art decomposi-

tion models, such as (Engerer, 2015) and (Ruiz-Arias

et al., 2010), and considering the attenuation caused

by air pollution applying the Linke turbidity coeffi-

cient (Linke, 1922). Finally, the PV energy produc-

tion is given by applying the methodology presented

in (Brihmat and Mekhtoub, 2014).

6.2 Results on PV generation forecast

In this section, we present the results of PV genera-

tion forecast in short-term time periods. In this sce-

nario, the PV simulator exploits GHI trends given by

the proposed neural network (see Section 4) with dif-

ferent time steps: i) k = 1 (i.e next 15 min.), ii) k = 2

(i.e next 30 min.) and iii) k = 3 (i.e next 45 min.). To

evaluate the errors of this approach, we repeated the

PV simulations with real GHI trends sampled by the

weather station in our campus. Fig. 6reports the plots

of the instant power for three generic days in June

2013: i) sunny, ii) cloudy and iii) rainy. Generally,

the trends of our results with GHI forecast (dashed

line) follow with a good accuracy the behaviour of

measured GHI (continues line). As expected, simu-

lations with k = 1 performs better than simulations

with k = 2 and k = 3. As shown in the three plots in

Fig. 6, PV energy simulations are more affected by

errors during rainy days especially during the early

hours in the morning. This is because the algorithm

expects higher GHI values. However, the algorithm is

also able to recognize the wrong GHI estimation and

correct the error after few time-steps.

Table 2 reports the performance indicators for

simulations with 1 ≤ k ≤ 3 with respect to simula-

tions with sampled GHI trends. The performance in-

dicators show that increasing the predictive steps (k)

Figure 6: Simulations of PV energy production with k = 1
and k = 2 (June 2013)

Time

[min]

MAD

[%]

MDB

[%]
r2 RMSD

[%]
LCE WIA

k=1 15 11.33 -0.70 0.91 21.34 0.82 0.98

k=2 30 16.87 -0.81 0.84 28.81 0.73 0.96

k=3 45 20.97 -0.86 0.77 34.28 0.67 0.94

Table 2: Performance Indicator for PV simulation

the accuracy on the results decreases. MAD increases

from 11.33% for k = 1 to 20.97% for k = 3. Also

RMSD has a similar trend. r2 for prediction step k = 1

is equal to 0.91. Whilst, the error increases with an

r2 = 0.77 for k = 3. Finally, LCE varies from 0.82 to

0.67 and WIA decreases from 0.98 to 0.94.

These results confirm that PV simulations with

GHI trends for 1≤ k ≤ 3 given by the proposed neural



network are acceptable to estimate the energy produc-

tion in the short-term time periods.

7 CONCLUSIONS

In this paper, we presented a methodology to fore-

cast the short-term solar radiation, suitable for photo-

voltaic energy predictions. We discussed the results

of the neural network forecast, introducing the NAR

architecture able to base its prediction on a high num-

ber of regressors. Furthermore, we compared our re-

sults with real GHI values sampled by a real weather

station in our University campus. The analysis of per-

formance indicators highlighted an overall good per-

formance in predicting the solar radiation, especially

for the next 15, 30 and 45 minutes. As discussed, this

short-term forecast of solar radiation allows estimat-

ing in advance the energy production of PV systems

with a good accuracy. This enables the design of more

accurate control policies for smart grids management,

such as Demand/Response.
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trübungsfaktor. Beitr. Phys. Fr. Atmos, 10:91–103.

Ljung, L. (1998). System identification. In Signal analysis
and prediction, pages 163–173. Springer.

Madanchi, A., Absalan, M., Lohmann, G., Anvari, M.,
and Tabar, M. R. R. (2017). Strong short-term non-
linearity of solar irradiance fluctuations. Solar Energy,
144:1–9.

Miller, G. F., Todd, P. M., and Hegde, S. U. (1989). De-
signing neural networks using genetic algorithms. In
ICGA, volume 89, pages 379–384.

Montgomery, D. C., Jennings, C. L., and Kulahci, M.
(2015). Introduction to time series analysis and fore-
casting. John Wiley & Sons.

Nazaripouya, H., Wang, B., Wang, Y., Chu, P., Pota, H.,
and Gadh, R. (2016). Univariate time series predic-
tion of solar power using a hybrid wavelet-arma-narx



prediction method. In Transmission and Distribution
Conference and Exposition (T&D), 2016 IEEE/PES,
pages 1–5. IEEE.

Norgaard, M., Ravn, O., and Poulsen, N. K. l. (2002).
Nnsysid-toolbox for system identification with neural
networks. Mathematical and computer modelling of
dynamical systems, 8(1):1–20.

Norgaard, P. M., Ravn, O., Poulsen, N. K., and Hansen,
L. K. (2000). Neural networks for modelling and con-
trol of dynamic systems-a practitioner’s handbook.
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