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Abstract.  Given a collection of science-based computational models that all estimate 

states of the same environmental system, we compare the forecast skill of the average of 

the collection to the skills of the individual members.  We illustrate our results through an 

analysis of regional climate model data and give general criteria for the average to 

perform more or less skillfully than the most skillful individual model, the “best” model.  

The average will only be more skillful than the best model if the individual models in the 

collection produce very different forecasts; if the individual forecasts generally agree, the 

average will not be as skillful as the best model. 

.  

 

Section 1.  Introduction 

Scientific models of environmental systems are based on accepted physical, chemical and 

biological principles of energy and mass transfer.  The goal of a science-based 

environmental system model is to approximate selected states of the system, and science-

based computational models are often used to forecast system states.  Weather prediction, 

climate studies, and analyses of groundwater flow and transport provide examples too 

numerous to list.  The accuracy of model forecasts must be assessed when management 

and policy decisions are based on them.  In general, forecasts are assessed by comparing 

predicted states to observations taken over given periods, locations, or both.  A wide 

range of evaluation measures has been used for assessment, including correlations 

between observed states and forecasts (Epstein and Murphy, 1989; Murphy, 1988), 

anomaly correlation coefficients (Wilks, 2005), ranked probability score (Epstein, 1969; 

Murphy, 1971), receiver operating characteristic under the curve (Swets, 1973), Peirce 

skill score (Pierce, 1884), potential predictability (Boer, 2004), various information 

criteria (Neuman, 2003; Ye et al., 2008), odds ratio skill score (Thornes and Stephenson, 

2001), and mean-square error (Wilks, 2005), which is the basis of square-error skill scores 

used in weather forecasting (Murphy, 1988 and 1996) and is also the basis for the 

analysis in this paper. 

 

Assessing model forecasts is complicated by the existence of alternative models that 

produce different estimates of system states.  The question of how to accommodate 

differences among models naturally arises, and one response has been to average model 

forecasts, the idea being that an average can achieve a consensus among individuals that 
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emphasizes their points of agreement.  In both climate (Lambert and Boer, 2001; Palmer 

et al., 2004; Latif et al., 2006) and groundwater applications (Ye et al., 2004, 2005, 2008; 

Bevin, 2006; Poeter and Anderson, 2007), the (weighted) average of a collection of 

models seems to produce better forecasts than any individual model when evaluated by 

standard measures of skill. For example, the average of models is in general the “… 

‘best’ model in its ability to simulate current climate, at least in terms of typical second 

order measures such as mean square differences, spatial correlation, and the ratio of 

variances” (Boer, 2004).  Nonetheless, the reasons for that are not completely understood 

(Latif et al., 2006).   

 

We use observed mean-square error, 
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to compare the relative skill of individual models and their averages because it is a 

standard measure of forecast skill (e.g., Murphy, 1988, Epstein and Murphy, 1989; 

Murphy, 1996; Lambert and Boer, 2001; Boer, 2004; Palmer et al., 2004; Wilks, 2005;  

Poeter and Anderson, 2005; Ye et al., 2008).  Observed MSE is a strong measure of skill 

in the sense that it directly compares model forecasts, Xt   ∈ X = (X
1
,…,X

T
) to observed 

state variables, Yt   ∈ Y = (Y
1
,…,Y

T
) obtained over an interval of length T.  The observed 

variables may be direct observations of the system state or a related variable, for instance, 

some combination of the principal components of the observed state and/or model.  From 

here on “skill” observed means square error skill. 

 

Our goal is to compare the skill of forecasts of a system state at t made by m = 1, …, M 

individual models, X
t

(m )
, to the skill of their average, 
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m
≥ 0 for all m. (2) 

  

 

In many climate applications, e.g., Meehl et al. (2007), model weights are uniform, wm = 

1/M, and we use uniform weights in our climate example (Section 3).  However, that is 

not necessary.  In geohydrology, e.g., Neuman (2003), Ye et al. (2004, 2005, and 2008), 

weights are often chosen by Bayesian methods (Hoeting et al., 1999).   We make no 

assumptions about weights, beyond those just stated in (2), to derive our general results 

(Section 4), which are therefore independent of the method used to choose weights.  In 

some approaches, for instance Palmer et al. (2004), the values X
t

(m )
 are themselves the 

result of stochastic averaging, but that also does not affect our analysis.  Krishnamurti 

and his colleagues have considered weighted ensembles where some of the weights may 

be negative (e.g., Krishnamurti et al., 2009), but that approach raises several questions 

that go beyond the scope of this paper and so we only consider nonnegative weightings.  
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We show by example (Section 3) and analysis (Section 4) that a forecast produced by 

averaging outputs from a collection of M models will be more skillful than the forecast of 

any individual model, X
(m )

, only if the models in the collection do not correspond too 

closely.  In other words, for the average to be more skillful than any X
(m )

, it is necessary 

that the collection of models include a diverse set of distinctly different forecasts.  

Second, if the forecasts of individual models are too similar, the average will produce 

worse forecasts than the most skillful individual model.  Intuitively, averaging in this 

case dilutes the best forecast with other, similar forecasts that are not as good.  

 

 

 

Section 2.  Components of MSE( X , Y) 

 

Using w
m
≥ 0 for all m, the MSE of the average of a collection of models, 
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depends on the MSEs of the individual models, as well as the correspondences between 

models, 
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The correspondence has an obvious geometrical interpretation, 

 

R
m, ′ m 

= MSE(X
(m )
,Y )MSE(X

( ′ m )
,Y ) cosθ

m, ′ m 
 (5)  

 

due to its dependence on the angle, θ
m, ′ m 

 between the vectors  
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and   
 
Z 
( ′ m )

 in ℜT .  We use this to motivate our general results in Section 4.  If the models 

are unbiased, i.e., E[ X
t

(m )
] = Yt, the correspondence is proportional to the correlation 

between models and has similar mathematical properties.  But it should be emphasized 

that we are focusing on the model results as a fixed set of outcomes and are not assuming 

additional probability structure in this problem.  From now on we write 

  MSE(
 
Z 
(m )
) = MSE(X

(m )
,Y ) when it is convenient. 
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Section 3.  North American Climate Example 

 

To illustrate these relationships, we consider the departures,  

 

  

 
Z 
(m )
= (Z

WNA

(m )
,Z

CNA

(m )
,Z

ENA

(m )
)   (7) 

 

produced by 19 global climate models (  m =1,…,19 ) when estimating normal winter 

temperature for Western North America (WNA), Central North America (CNA) and 

Eastern North America (ENA).  The normal is defined for the period 1970-1999, and 

winter consists of December, January and February.  The data are normalized by 

summing over months and through the normal period 1970-1999, 
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Here we use i = WNA, CNA, or ENA instead of t to emphasize that the data are 

normalized and range over regions.  

 

The model results are taken from the coordinated modeling effort supporting the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Meehl et 

al., 2007). The model output fields were re-gridded to a common 5 degree grid and 

compared to the observational data set from the Climate Research Unit (CRU), East 

Anglia, and the Hadley Centre, UK MetOffice (Jones et al.,  1999). More details of these 

data and a global analysis of this multi-model sample can be found in (Tebaldi et al., 

2005; Tebaldi and Knutti, 2007; Jun et al., 2008; Knutti and Nychka, 2008).  The regions 

WNA, CNA, and ENA are a subset of the Giorgi and Mearns divisions (Giorgi and 

Mearns, 2002).   

 

The model departures from regional normals and MSEs are shown in Table 1 where 

models correspond to rows and regions to columns. The last two rows are average 

departures over 1) the full suite of models, Z 
19

, including the most skillful, and 2) the 

suite of models with the most skillful left out, Z 
18

.  As noted, models are uniformly 

weighted in this section, w
m
=1/M  for all m, where M = 18 or 19 depending on which 

average is being considered. 

 

Looking at the suite of all 19 models first, the average, X 
19

, is not as skillful as the best 

model, m = 16, for these data: MSE(X
(min

19
)
,Y ) = MSE(X

(16)
,Y ) = 0.08  while 

MSE(X 
19
,Y ) = 0.39 .  When model 16 is removed from the set of models, 

MSE(X
(min

18
)
,Y )  = MSE(X

(2)
,Y )  = 0.47 while the average of the reduced set, X 

18
, yields 

MSE(X 18,Y ) = 0.45 . These two cases illustrate the sensitivity of model evaluations to the 

set of models. There are perhaps other factors such as the specific observation interval 

and choice of regions, however, our analysis does not address these points.      
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Table 1 -- Departures ( °C) and MSE for North America. 
 

 
 

Additional insight can be gained by decomposing 
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which makes clear that the model average is more skillful than the best model when r ≤ 

−m
2, i.e., when the models do not correspond too much.  Values of r and m 

corresponding to the full suite of nineteen models with model 16 included are r = 0.16  

and –m
2
 = -0.15 [Table 2].  This is a case where the best model is so much more skillful 

than all others that averaging only dilutes its individual skill.  When model 16 is 

removed, there is then enough disagreement among the remaining models for the average 

to perform better than any of the rest: r = -0.17

 

and –m
2
 = -0.15 [Table 2]. 
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Table 2 –Effect of Model Collection on Performance 

 

 
 

 

Section 4.  General Results 

 

Our general results consist of a sufficient condition for the model average to perform less 

skillfully than the best model, and a necessary condition for the average to perform better.  

Each result only requires that the weights be non-negative and sum to 1 (Eqn 2).   

 

Result 1.  If the models correspond too closely, the average is less skillful than the best 

model.  Intuitively, this is because the other models dilute the performance of the best 

model in this case.  Referring to Eqn 9, it is clear that MSE(Z ) > MSE(Z
(min )

) if 

R
m, ′ m 

> MSE(Z
(min )
), for all m and ′m .   

 

Another way for the best model to be more skillful than the average is for the best to be 

much more skillful than all the other models, i.e.,   MSE(
 
Z 

(min)
) << MSE(

 
Z 

(m)
)  for all 

m ≠ min , as was the case in the climate example.  In that case, MSE(Z 
n+1) − MSE(Z

(min )
)  

≅ MSE(Z 
n
) ≥ 0.  However, Result 1 shows it is not necessary for one model to be much 

more skillful than the rest for the average to be less skillful; it is enough for all the 

models to correspond at a level that only depends on MSE(Z
(min )

).   

 

Result 2.  The average is more skillful than the best model only if some individual models 

do not correspond too much.  This is derived from Result 1 as a proof  by contradiction 

(modus tollens).  

 

To emphasize the role of geometry, we illustrate the results in   ℜ
T

, the T-dimensional 

vector space of model forecasts [Figures 1 and 2]. Letting 
  Z = (Z 

1
,…,Z 

T
)  and taking   

 
Z 
(m )

 

from Eqn 6, the MSE are equivalent to squared lengths in   ℜ
T

, MSE(Z ) = 
1

T
Z 

2

 and 

MSE(Z
(m )
)  = 

  

1

T

 
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2

, while R
m, ′ m  = cosθm, ′ m  is the vector product   

 
Z 
(m )

•
 
Z 
( ′ m )

.  In the 

Figures, T = 3 for convenience of illustration, so each   
 
Z 
(m )

 = (Z1
(m )
,Z

2

(m )
,Z

3

(m )
) . The thin 

vectors represent the performances of different models, while the thick vector is the 

average, Z , their lengths corresponding to MSE(Z ) and MSE(Z
(m )
,Y ) respectively. 

 

Figure 1 shows a typical case of Result 1 leading to MSE(Z ) > MSE(Z
(min )

) . The models 

all vary similarly about   
 
Y , as evidenced by their approximate colinearity, but   

 
Z 
min  
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performs much better than the others.  The result of averaging is to “stretch” Z  away 

from   

 
Z 
min  in the general direction of the other models.  Figure 2 illustrates Result 2, a 

case when MSE(Z ) ≤ MSE(Z
(min )

) .  The role of the anti-correspondence requirement, 

 

cosθ
m, ′ m 

<
MSE(Z

(min )
)

MSE(Z
(m )
)MSE(Z

( ′ m )
)

 for some m, ′m  , 

 

is clear:MSE(Z
(min )

)  > MSE(Z ) because the two sets of vectors “pull” against each other 

to produce a reduced Z . 

 

 

 

 
 

Figure 1 – Example of Result 1.  Colinearity Figure 2 – Example of Result 2.  Weak 

places Z  beyond   
 
Z 
(min )

. correspondence allows MSE(Z ,Y )  <  

  MSE(Z
(min )
,Y ) . 

 

 

Section 5.  Summary and Discussion 

 

Alternate science-based computational models of a given environmental system always 

forecast system states that differ somewhat, and sometimes forecast states that differ 

considerably.  Model averaging has been proposed as a means for dealing with 

differences among model forecasts, and it has been noted that in some cases the average 

of a collection of models produces “better” forecasts than any individual model in the 

collection (e.g., Boer, 2004).  We have compared models and their averages on the basis 

of mean-square difference skill score, which is a standard assessment measure in weather 

forecasting, climate studies and groundwater hydrology.  In addition to its ubiquity, no 

other measure of skill has the straightforward metric properties of mean square error, the 

normalized distance between observations and forecasts. 

 

We investigated two climate examples to compare the sensitivity of the skill of an 

average of a collection of models to the most skillful model (the “best”) in the collection.  
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The best model in the first example was so much more skillful than any other model that 

the average simply could not perform as well as the best. When the best model was 

removed from the first collection, the average performed better than any individual model 

in the reduced collection.  In that case, none of the remaining climate models performed 

well enough to dominate the others.  Furthermore, the models disagreed, thus giving an 

example of the general result (Result 2) that the average can be more skillful than the best 

model only if some models make markedly different forecasts.  The example also 

illustrated the sensitivity of skill assessments to the collection of models, but we did not 

go more deeply into that point.   

 

Our general results give a sufficient condition for the best model to be more skillful than 

the average (Result 1) and a necessary condition for the average to be more skillful than 

the best individual (Result 2).  In general, 1) the average is less skillful than the best 

individual if the forecasts of individuals correspond closely to each other when compared 

to the skill of the best model, and 2) the average is more skillful than the best model only 

if the forecasts of some individuals do not correspond.  These results depend just on 

simple geometric properties of the collection of models, and are independent of i) how 

the models make their forecasts and ii) the weighting scheme used to derive their average 

(except the weights must be positive and sum to 1).   

 

These results, and the example, suggest a certain amount of caution should be applied 

when making strong claims that model averages are more skillful than individual models, 

at least if those claims are based on second-order performance measures like observed 

square-error skill.  At the same time, the results should not be over-interpreted.  In the 

first place, Result 2 does not indicate that collections of models should be assembled with 

the idea of maximizing the differences among individuals.  The goal is to make skillful 

forecasts, not to merely have a collection of models whose average is more skillful on a 

set of observations than any individual model.  At the same time, Result 1 does not imply 

that an average is never useful when models agree.  A collection of good models (models 

based on reasonable physical assumptions and estimates of system parameters) can be 

expected to produce forecasts that correspond strongly with each other, but differ in their 

details.  An average might be useful in that setting even if it is not as skillful as the best 

model on a set of observations.   

 

The discussion of the relative skill of science-based environmental models and their 

averages has taken place so far in the absence of statistical tests.  The complex 

probability distributions of environmental forecasts in realistic settings is one reason for 

that.  What is needed is a statistical test (or tests) to evaluate hypotheses about the means 

of forecasts made by complex physics models whose uncertain physical are not Gaussian, 

or even necessarily unimodal (cf., Rubin, 1995; Gomez-Hernandez and Wen, 1998; 

Winter and Tartakovsky, 2000, 2002; Christakos, 2003; Guadagnini et al., 2003; Neuman 

and Wierenga, 2003).  In the absence of such tests, the results in this paper indicate the 

sources of apparent forecasting skills of model averages have a simple geometric 

explanation in some cases. 
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