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ABSTRACT
The Ohlson model is evaluated using quarterly data from stocks in the Dow
Jones Index. A hierarchical Bayesian approach is developed to simultaneously
estimate the unknown coefficients in the time series regression model for each
company by pooling information across firms. Both estimation and prediction
are carried out by the Markov chain Monte Carlo (MCMC) method. Our 
empirical results show that our forecast based on the hierarchical Bayes method
is generally adequate for future prediction, and improves upon the classical
method. Copyright © 2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Recent development in the security valuation literature has provided a model that relates the stock
price to its book value and expected future earnings. It includes the work of Bernard (1995), Feltham
and Ohlson (1995), Lang and Lundholm (1996) and Ohlson (1991, 1995). These studies develop a
logically consistent framework for thinking about equity valuation using accounting data. The
primary objectives of this paper are to empirically evaluate the adequacy of the security valuation
model and to use it to forecast stock prices.

The security valuation model has been developed based on a single firm. The empirical literature
in both accounting and finance is based primarily on classical statistical techniques. In this paper,
we apply an innovative statistical method, a hierarchical Bayesian (HB) approach that allows
improved estimation of the regression coefficients by sharing information across firms. Using 14
years of quarterly stock price data, accounting book values and expected future earnings for 28 com-
panies included in the Dow Jones Industrial Average, we show that the forecast based on the HB
model is consistently superior to those obtained using the classical approach.

The original Ohlson model proposes that the stock price is a linear function of the company’s
book value per share and expected excess earnings per share for the following four periods with nor-
mally distributed innovation terms. Each company has its own coefficients; we use bi = (bi1, . . . ,
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bi6)¢ = (bi,1, . . . , bi,6)¢ to denote the regression coefficients of the intercept, book value, each of the
expected excess earnings for the following four periods for the ith company with i = 1, . . . , n. The
model can be described as follows for all t = 0, . . . , T;

(1)

where yit denotes the ith company’s stock price per share at time t; vit denotes the book value per
share of stock i at time t; wi,t+k denotes the expected excess earnings per share of stock i in the kth
period after time t; and uit is the innovation term for yit. In fact, Ohlson (1991) proposes the expected
excess earnings as

(2)

where si,t+k denotes the earnings per share of stock i in the (t + k)th period for k = 1, . . . , 4 and rt is
the discount rate at time t. The expected excess earnings are, however, not available in terms of
financial accounting data. We use

(3)

instead of (2). In this paper, we use xit = (xi1t, . . . , xi6t)¢ = (1, vit, wi,t+1, wi,t+2, wi,t+3, wi,t+4)¢ to denote
the vector of the predictors of the ith company at time t.

We employ a HB approach to inferences in the Ohlson model. A general form of HB model is
presented in Lindley and Smith (1972). In this paper, we extend the HB approach in two distinct
aspects. First, each regression coefficient bi is modelled as a mixture of normal distributions with
unknown hyperparameters. Thus, the hierarchical setup has two sets of parameters to be estimated.
One is the set of parameters of interest and the other is the set of hyperparameters that model the
parameters. Second, the innovation terms uit are modelled in the following ways: (a) uit has a first-
order autoregressive structure (AR(1)) for each company i, that is, corr(ui,t, ui,t-1) = ri for t = 1,
. . . , T; and (b) uit are allowed to have heterogeneous variance among the companies, that is, var(uit)
= s 2

i /(1 - r2
i ) for i = 1, . . . , n and for all t. The unknown parameters (s 2

i , ri) are modelled with
known proper priors. In fact, the AR(1) structure can easily be extended to a more general autore-
gressive moving average (ARMA) structure.

A widely used HB structure for the regression coefficients is to assume that bi are i.i.d. from a
normal distribution with its hyperparameters being modelled by the hyperpriors. The use of this hier-
archical setup can ‘borrow strength’ across the different individuals and bring ‘shrinkage’ effects to
the posterior mean of the regression coefficients. However, our data analysis shows that the esti-
mates of the regression coefficients in some companies are quite far away from the majority of other
companies. The use of a normal distribution for the i.i.d. regression coefficients is not adequate and
will cause ‘over-shrinkage’ to these estimates. Thus, we need a model that is flexible enough to
accommodate these ‘outliers’ while at the same time adjusting the estimates for shrinkage effects.
A natural choice would be a mixture of two normal distributions. The first component of the mixture
retains the company’s individual mean; and the second component of the mixture shares the common
mean among different companies. Müller and Rosner (1997) provide a detailed discussion on 
hierarchical mixture priors.

w E s r vi t k i t k t i t k, , ,+ + + -( )= ( ) - 1

w E s r vi t k i t k t i t k, , ,+ + + -( )= -[ ]1

y v w uit i i it i k i t k

k

it= + + Ê
Ë

ˆ
¯ ++ +

=
Âb b b, , ,1 2 2

1

4

,



Forecasting Stock Prices Using a Hierarchical Bayesian Approach 41

Copyright © 2005 John Wiley & Sons, Ltd. J. Forecast. 24, 39–59 (2005)

Bayesian HB methodology has been applied to the analysis of variance–covariance matrices of
the innovation terms uit. For example, Gelfand et al. (1990), Wakefield et al. (1994) and Rosenberg
et al. (1999) model uit as i.i.d. random variables over i and t. Gelfand and Sfiridis (1996) and Kasim
and Raudenbush (1998) extend the homogeneous variance models to the heterogeneous variance
models, while keeping the conditional independent structure of the innovation terms within each
company. Kasim and Raudenbush (1998) relax the conditional independence assumption and assume
a compound symmetry (constant correlation) structure for the innovation terms within each company.
The variances are assumed to be different, but the correlation coefficients are the same among the
companies.

In order to model the innovation terms as a function of times, Albert and Chib (1993) and Chib
(1993) apply a Bayesian framework to the autoregressive models in their data analysis with homo-
geneity of variance. Chib and Greenberg (1995) extend the HB method from the autoregressive
process to the ARMA(p, q) process.

Preliminary data analysis (not presented here) shows that (a) the variance differs widely among
the 28 companies, and (b) for each company the stock prices follow an AR(1) process. Moreover,
the autocorrelation coefficients vary substantially among the companies. Therefore, we extend the
methodologies in Albert and Chib (1993) and Chib (1993) to accommodate the heterogeneity of vari-
ances and autocorrelations.

The advantages of the hierarchical formulation can be summarized. (a) We retain the firm-
specific feature of the whole assembly. Each firm’s specific regression coefficients will provide us
with information on how sensitive the firm’s stock price is to the changes of book values and expected
excess earnings. (b) We provide a more information-efficient modelling for the data and a full syn-
thesis on all the data for the regression coefficients. Because the regression coefficients for the 
ith company are not only affected by the data from the ith company, but also affected by other 
companies’ data (perhaps to a lesser degree), this full synthesis provides a more satisfactory solu-
tion to modelling our data. (c) This full synthesis is known to provide estimates that have smaller
mean squared errors than the usual least squared or classical estimates (Stein, 1955).

On the methodology for inference, we will employ the MCMC algorithm (Gelfand and 
Smith, 1990; Chen et al., 2000) to provide point and interval estimates for the unknown parameters.
The MCMC algorithm simulates random parameters (or blocks of parameters) from their full con-
ditional distribution given the data by constructing a Markov chain, so the stationary distribution 
of the Markov chain is the desirable posterior distribution. The sampling-based approach circum-
vents the difficulties in evaluating multidimensional integrals needed in Bayesian inference. It 
allows us to obtain any features, such as mean, variance, quantiles and histograms, of the posterior 
distribution.

In addition to estimation, we are also concerned with the issues of model adequacy and model
selection. We compare the out-of-sample performance of our method to that of the classical approach
for two timeframes: one is from the 40th quarter to the 54th quarter, the other is the 52nd quarter
(the 3rd quarter of 1997). The criteria we use for comparison include the predictive mean squared
error (PMSE), the predictive mean absolute error (PMAE), the predictive mean absolute relative
deviation (PMARD) and the coverage probability for the forecast intervals. Our results show that
the HB method based on the mixture priors for bi has better forecasting power than the HB method
with a single normal prior, that further improves upon the classical method for both timeframes. The
improvement is more dramatic for the 52nd quarter. The two sets of priors in the HB method are
also compared by using the prequential pseudo-Bayes factor (PPBF). The result supports the mixture
prior assumption.
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MODEL

The Ohlson model assumes that the error terms are conditionally independent among companies and
an AR(1) structure in time periods within each company. We can express the Ohlson model using
the following expressions:

(4)

where yit is the observation of company i at time t, xit = (xi1t, . . . , xiKt)¢ is the vector of K predictors
for the ith company at the tth period, with xi1t = 1, bi = (bi1, . . . , biK)¢ is the vector of intercept and
slope coefficients of the predictors. The AR(1) structure is described by the innovation term. The
residue eit is independent of ei¢t for i π i¢ . The observation at time 0 is considered to be stationary,
that is, for i = 1, . . . , n,

(5)

Conditioning on ri, it is easy to apply a change of variable technique to (4). Let y*i = (y*i1, . . . , y*iT )¢,
X*i = (x*¢

i1 , . . . , x*¢
iT )¢ and ei = (ei1, . . . , eiT)¢, where y*it = yit - riyi,t-1 and x*it = xit - rixi,t-1 for t = 1,

. . . , T. Equation (4) can be written as

(6)

We use the notation NT (m, S) to denote a T-variate normal distribution with mean m and vari-
ance–covariance matrix S. We use I to denote the identity matrix of rank T.

To construct HB estimators, we use the following hierarchical model. At the first stage, the obser-
vations y*i and yi0 are described by the parameters {bi, s 2

i , ri) for each i = 1, . . . , n. This relation-
ship can be expressed in the likelihood function L for {y*i , yi0; i = 1, . . . , n}. Under the assumption
that the observations are conditionally independent among the companies, we have

(7)

At the second stage, we provide the prior distributions for the parameters {bi, s 2
i , ri; i = 1, . . . ,

n}, and we let bi, s 2
i and ri be conditionally independent. In particular, we model bi as a mixture of

two normal distributions:
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where {mi, Si, wi; i = 1, . . . , n} and {h, W} are the unknown hyperparameters. The first component
that allows individual means brings more dispersion among {bi; i = 1, . . . , n}, and thus also pre-
vents over-shrinkage of the estimates for the outliers. The second component that shares the same
mean provides a mechanism for sharing information across firms, as is usually done in the HB
method. The prior distribution for s 2

i is assumed to be an inverse gamma, that is, s2
i ~ IG(ai, bi) 

with mean and variance . Both ai and bi are known. We assume a truncated

normal for the correlation coefficient ri, that is, ri ~ N(r0i, s2
ri
) I (-1 £ ri £ 1), where the hyperpa-

rameters r0i and s2
ri

are known. In order to make inferences on ri primarily from the data rather 
than from the prior, we usually set s 2

ri
sufficiently large. The prior at the second stage can be written

as

(9)

The unknown hyperparameters {mi, Si, wi; i = 1, . . . , n} and {h, W} are modelled at the 
third stage. We assume they are conditionally independent of each other and let mi ~ NK(m, M), 
h ~ NK (h, H), S-1

i ~ WK (u, V) (Wishart distribution with u degree of freedom and scale matrix V),
W-1 ~ WK (q, Q) and wi ~ Be (r, s) (Beta distribution) for i = 1, . . . , n. The parameters {m, M, h, 
H, u, V, q, Q, r, s} are all assumed to be known. A schematic diagram for the ith firm is given in
Figure 1.

Under the circumstance that wi = 0 for all i, we have the non-mixture model in which all bi

(i = 1, . . . , n) share the same mean and variance across firms.
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Figure 1. Schematic diagram for the ith firm (i = 1, . . . , n). The circles contain the unknown parameters 
and hyperparameters, the squares contain the known parameters. All other firms in addition to the ith firm share
the same parameters {h, W, m, M, . . . , q, Q}
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GIBBS SAMPLING

We first summarize the full conditional distributions for the parameters {bi, s2
i , ri; i = 1, . . . , n}.

(a) Note

(10)

where

with

Thus, bi is updated by first generating a Bernoulli random variable wi ~ B (1, w*i ), and then gener-
ating bi ~ NK (bi |m*i , S*i ) if wi = 1 or generating bi ~ NK (bi|h*i , W*i ) if wi = 0.

(b)

(11)
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(c) Simulating the correlation coefficients ri. Let ui1 = (ui1, . . . , uiT)¢ and ui0 = (ui0, . . . , ui,T-1), the
full conditional distribution of ri can be written as

(12)

where

We cannot obtain a simple form of the conditional posterior density of ri from which the sample
value can be generated directly. However, it is easy to show that p(ri|.) is log-concave and hence
we can use the adaptive rejection sampling method (Gilks and Wild, 1992) to update ri.

We next describe a data augmentation step in the Gibbs sampler to facilitate the generation of the
hyperparameters.

(d) Data augmentation step of simulating the auxiliary variables zi. The prior mixtures of bi in 
(8) usually make it difficult to sample the unknown hyperparameters {mi, Si, wi; i = 1, . . . , n} and
{h, W}. Therefore, we introduce a latent variable zi as in Dey et al. (1995). The latent variable zi can
be simulated independently from the Bernoulli distribution B(1, pi) where

(13)

We then consider the joint density of (bi, zi) that is useful in deriving the conditional density of
the hyperparameters.

Finally, we provide the full conditional distributions for the hyperparameters {mi, Si, wi; i = 1,
. . . , n}, {h, W} based on their priors and the joint density of (bi, zi).
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where H* = (H-1 + (n - z+)W-1)-1, and .

(g)

(16)

where u*i = u + zi and V*i = [V-1 + zi(bi - mi)(bi - mi)¢]-1.
(h)

(17)

where q* = q + z+ and .

(i)

(18)

where r*i = r + zi and s*i = s + 1 - zi.
The detailed procedures for deriving the above full conditional distributions are given in Ying 

et al. (2001). All the distributions except (c) are in standard form and therefore it is straightforward
to generate the random variates. As described below, the MCMC procedure consists of steps 1
through 3, performed iteratively. The steps in 1 and 3 consist of substeps that are carried out sequen-
tially for a single chain. We can also replicate the Markov chain by drawing independent initial
values of the parameters and hyperparameters.

1. Update the parameters {bi, s 2
i , ri; i = 1, . . . , n} given the hyperparameters and data by carrying

out the following substeps 1.1 to 1.3 independently for each i = 1, . . . , n.

1.1. Generate bi from the conditional mixture normal density functions in (10) with the method
discussed in (a).

1.2. Generate s 2
i directly from the inverse gamma distribution described in (11).

1.3. Update ri as in (12) by applying the adaptive rejection sampling method.

2. Generate the latent variable zi from a Bernoulli distribution discussed in (d).
3. Generate the hyperparameters {mi, Si, wi; i = 1, . . . , n} and {h, W} given the values of the para-

meters in steps 1 and 2:

3.1. Generate wi from a Beta distribution given in (18).
3.2. Generate mi and Si from the full conditional distributions described in (14) and (16), 

respectively.
3.3. Generate h and W-1 from the full conditional distributions described in (15) and (17),

respectively.
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The HB method with single prior on bi can be considered as a special case of the HB method with
mixture prior by letting both wi (hence w*i ) and zi be fixed at 0. It is straightforward to see that the
full conditional distributions of bi in (10), h in (15) and W-1 in (17) will be adjusted with w*i = 0 in
(10) and zi = 0 in (15) and (17). Therefore, the MCMC steps to the single prior assumption are given
as above by using the adjusted conditional densities in (10), (15) and (17) and skipping steps 2, 3.1
and 3.2.

FORECAST

Having obtained the posterior distribution of the parameters, we can use it to predict future stock
prices. We will illustrate this by the one-step forecast. Let Yt+1 = (Y1,t+1, . . . , Yn,t+1) denote the random
future observations at period t + 1 for the n companies, and Dt and qt denote all the observed data
and the parameters respectively from t - T + 1 to t (a window of data of length T periods). Our pre-
diction for the (t + 1)th period follows from the predictive density

(19)

The predictive density in (19) can be approximated by the following Monte Carlo integration from
the Gibbs sampler:

(20)

where qt
(l,r) denotes the sample drawn in the lth iteration and the rth replication of the MCMC given

the data set Dt and Î·˚ denotes the floor operator, the largest integer less than or equal to the argu-
ment. Since the stock prices at period t + 1 are independent among the companies given qt and Dt,
we have

where qi,t = (bi,t, ri,t, s2
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given the observed data (yi,t, xi,t) and the sampled parameters (b (l,r), ri,t
(l,r), s i,t

2(l,r)). The mean of 
y(l,r)

i,t+1 over replication r and iteration L, after the first half (L/2) iterations being ‘burned in’, denoted
by i,t+1, can be obtained by

(22)

The 95% predictive interval for Yi,t+1 can be computed from the 2.5% and 97.5% empirical quantiles
of the values y(l,r)

i,t+1, r = 1, . . . , R and l = ÎL/2˚ + 1, . . . , L.
We then forecast Yt+2 by moving the data window up to Dt+1 (data from periods t - T + 2 to 

t + 1). Similarly, we repeat this process until we obtain all the forecasts from i,T+1 to i,T ¢, where T ¢
is the ending period of the data set.

MODEL VALIDATION AND MODEL CHOICE

Both model adequacy and model selection issues are discussed in this section. Model adequacy is
checked by comparing the observed yi,t+1 to its 95% predictive interval for Yi,t+1 based on the results
from the previous section. A model is judged to be adequate for each company if about 95% of the
intervals for t = T + 1, . . . , T ¢ contain the actual observed values for each company.

We use the coverage probability, the uncoverage probability and the average 95% predictive inter-
val length as criteria for model selection. They are all computed as summary statistics based on all
companies and all periods from T + 1 to T ¢ . The coverage (uncoverage) probability is the proba-
bility that the actual values are covered (uncovered) by the 95% predictive intervals; and the average
95% predictive interval length is the average interval length of these intervals. We prefer a model
with high coverage probability and low average length.

We also apply PMSE, PMAE, PMARD, PPBF for model selection. They are expressed as 
follows:

(23)

where (Yt+1|Dt) and i,t+1 are defined in (21) and (22), respectively. The best model is the one with
the smallest PMSE PMAE, PMARD or the biggest PPBF. Note the PPBF is different from the pseudo
Bayes factor where the cross-validation idea is used. In fact, the PPBF evaluates the conditional joint
predictive density of the data yT+1, . . . , yT ¢, given the window of length T of y1, . . . , yT.
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All the above comparisons are focused on the predictive performance of our forecast from the
period T + 1 to T¢. We can also single out a particular period for comparison. For example, we will
focus on the 52nd period where the forecast differences between the HB and the classical method
are more pronounced.

NUMERICAL EXAMPLES

We now apply the HB approach to the Ohlson model with a real data set. The preliminary data set
contains 30 companies that make up the Dow Jones Index on July 1, 1998 and are recorded from
the third quarter of 1984 to the first quarter of 1998. We obtained the data from two different sources,
Value Line and the Federal Reserve Bank in D.C. The stock price, expected earnings per share and
book value are all from Value Line. We use the 1-year Treasury bill as the interest rate, and it is pro-
vided by the Federal Reserve Bank in D.C.

Value Line records the stock price and the expected earnings per share for the next four quarters.
We select the data from the ending month of each quarter in the analysis (in fact, other months in
the quarter would also be appropriate). The interest rate is also collected on a monthly basis, and we
select the interest rate from the last month of each quarter as the quarterly data.

Once we have obtained the quarterly data for expected earnings per share, interest rate and book
value, we can calculate the expected excess earnings per share for the next four quarters as described
in (3).

We also exclude two companies, Traveler Group and Goodyear Tire, from our data set since Value
Line does not have complete expected earnings per share for these two companies during the period
of our analysis. In summary, our data set consists of 28 companies and 54 quarters for each company.

As a general rule, we recentre and rescale the covariates to reduce the correlations among the
covariates in the likelihood surface. Moreover, we use the autocorrelation function, partial autocor-
relation function and inverse autocorrelation function to check the structure of the innovation terms.
The results show that for most of the companies during the period of analysis, the innovation term
has an AR(1) structure. The Durbin–Watson test for AR(1) also supports our conclusion. Thus, we
use the AR(1) structure in our numerical analysis.

The initial study of the data using the classical method based on the Ohlson model shows that the
estimates of s2 and r for each firm vary widely across firms. For example, the results from the data
of the first 39 quarters show that the range of among firms is from 0.425 to 0.977, and the range
of 2 is from 0.954 to 45.92. This suggests that we need to incorporate heterogeneous variances and
separate correlation coefficients for each company.

The estimated regression coefficients for the expected excess earnings per share in four quarters
show some outliers among the 28 companies. A single prior on bi’s will cause the outliers to be
shrunk too much. We consider a mixture of two normal distributions for the prior of bi’s, which
allows individual companies that share the same mean to borrow strength from each other but also
to keep their individual properties.

The classical method uses least square estimates to make inferences on the parameters in an AR(1)
linear model. Most of the statistical software packages, for example PROC AUTOREG in SAS,
provide estimates with the classical method. These estimates provide useful information for the prior 

choices for the parameters and hyperparameters in the HB method. In fact, we let m h= =
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and , where i is the vector of the classical estimates of the regression coefficients

and i is the classical estimate of the variance–covariance matrix of the regression coefficients of
the ith company.

We can also obtain i
2 from the classical method. If we let the prior variance of si

2 be 100, large 

enough that the prior will not drive the conclusion, then we can derive and bi = i
2

¥ (ai - 1) from the mean and variance expression of the inverse gamma density. The mean of 
the prior of ri is set to the estimate of the correlation coefficient i; that is, ri0 = i; and we let s2

ri

= 10 for all i = 1, . . . , n.
For the known parameters in the prior of the Wishart distribution, we let v = q = K = 6 and 

V = Q = IK. Finally, we choose r = s = 1, so that the prior of wi is uniformly distributed between 0
and 1.

We also consider alternative priors for the prior sensitivity analyses. In particular, we assume 
m = h = 0, M = H = 100IK; ai = 2.01 and bi = 20 (to make the variance of si

2 in the prior as large
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Figure 2. Autocorrelation plots. The autocorrelation plots of the Gibbs sampler of regression coefficients for
Alcoa Inc. from the HB mixture prior method are given
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as 39,212); r = s = 1.5 (to make the Beta prior of wi have more weight towards the centre than the
uniform prior); and V = Q = 100IK (to make the prior influence of Si

-1 and W-1 even weaker). The
results (not presented here) show that our analysis is quite insensitive to the different prior choices.

All the parameter estimates are computed from the MCMC with 5000 iterations and two replica-
tions. Convergence of the Gibbs sampler is also assessed by the diagnostic procedures from CODA
(Best et al., 1995) and Cowles and Carlin (1996).

The analyses based on the data from the first 39 quarters (that is from the third quarter of 1984
to the second quarter of 1993) are displayed in Figures 2 to 7.

Figure 2 shows the autocorrelation plots of the Gibbs sampler of regression coefficients for Alcoa
Inc. from the HB mixture prior method. The autocorrelation drops to 0 quickly, suggesting an effi-
cient Gibbs sampler. The same pattern exists for other companies.

We compare the HB estimates of the regression coefficients using the mixture (single) prior to the
classical estimates in Figure 3 (Figure 4). We see the regression coefficients of the HB method in
both figures shrink to each other as compared to those in the classical method by ‘borrowing strength’
from each other. However, the HB method using the single prior tends to over-shrink the regression
coefficients, as shown in Figure 4.

20 30 40 50 –5 0 5 10 15 –2 0 2 4 6 8

–2 –1 0 1 2 3 –3 –2 –1 0 1 2 0 2 4 6 8

b5b4

b3b2b1

b6

Figure 3. Shrinkage effect. The comparison between the HB method with mixture prior and the classical
method for the point estimate of the regression coefficients for all the companies is given. The solid circles are
from the classical method, the unfilled circles are from the HB method with mixture prior
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We identify the outlying estimate of b3 (corresponding to the expected 1st quarter excess earn-
ings per share of stock) to be Coca Cola Co’s. (KO) coefficient, and the outlying estimate of b6 (cor-
responding to the expected 4th quarter excess earnings per share of stock) to be Procter & Gamble’s
(PG). During the first 39 quarters, the changes of stock prices from the lowest to the highest were
$56.97 for KO and $46.03 for PG, much higher than the average of the 28 companies ($27.66). At
the same time, the changes of the expected 1st quarter excess earnings per share for KO ($3.22) and
the expected 4th quarter excess earnings per share for PG ($3.34) were very close to the average 
of the 28 companies ($3.23 and $3.16, respectively). Therefore, the regression coefficient estimates
(b3 in KO and b6 in PG) turn out to be much larger than others when the classical method is applied.
Moreover, Figure 5 shows that the regression coefficients of these two companies are influenced by
the outlying points with higher stock prices and relatively lower excess earnings per share, as we
regress the stock prices on the corresponding covariate for each company. The slope estimates
become smaller as the outliers are excluded from the estimation. The shrinkage effect from the HB
method will bring similar effects by putting less weights on the outlying companies as expected.
Similarly, the effect of the outlying company of ChevronTexaco Corp. (CVX) for b5 can be smoothed
out by the HB method.

20 30 40 50 –5 0 5 10 15 –2 0 2 4 6 8

–2 –1 0 1 2 3 –3 –2 –1 0 1 2 0 2 4 6 8

b1

b5b4

b3b2

b6

Figure 4. Shrinkage effect. The comparison between the HB method with single prior and the classical method
for the point estimate of the regression coefficients for all the companies is given. The solid circles are from
the classical method, the unfilled circles are from the HB method with single prior
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The 95% credible intervals of the regression coefficients with the HB method using the mixture
prior as compared to that with the classical method for each company are shown in Figure 6. We
conclude: (a) the HB method brings tighter credible intervals than the classical method; (b) the cred-
ible intervals in the HB method fluctuate less than those of the classical intervals across the com-
panies. This is another indication of the effect of borrowing strength from each other in the HB
method. Similarly, Figure 7 compares the HB estimates based on the single prior to that of the clas-
sical results. We see the credible intervals tend to be shrunk towards the same interval, not adaptive
to the local variation of the regression coefficients.

One of the goals of our analysis is to compare different approaches to forecast the future stock
prices. We produce the one-step-ahead prediction rule based on the estimates obtained respectively
from HB and classical methods. In particular, we start with the first 39 quarters and predict the stock
price in the 40th quarter. Then we move to the next window, the second 39 quarters (from the 2nd
quarter to the 40th quarter), estimate the parameters and use them to predict the 41st quarter. As we
move the windows of 39 quarters up by each quarter, we obtain 15 quarters of predicted stock prices
for each company. Figure 8 (Figure 9) provides the 95% predictive intervals from the HB method
using the mixture (single) prior and the classical method for six randomly picked companies. It can
be seen that the predictive intervals made by the HB method are tighter than those from the classi-
cal method. Moreover, we notice that in some quarters, the classical method fails to forecast the real
stock price with its 95% credible interval, while the HB method is able to contain the real future
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Figure 5. Outlying points. The solid lines are the simple regression lines when all the points are included in
estimation. The dashed lines are the simple regression lines when the outlying points (solid points) are excluded
from estimation
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observations in its intervals. This indicates that the HB method is more accurate in prediction than
the classical method in these situations.

Table I exhibits the predictive performance among the classical method, the HB method with the
single prior and the HB method with the mixture prior for the time period of the 40th quarter to the
54th quarter. Table II performs the same comparisons except only for the 52nd quarter. Both tables
show HB methods are more accurate than the classical method in prediction. From Table I, among
a total of 420 predictions, the HB method using the mixture prior contains all the real stock prices
with its 95% predictive intervals, the HB method using the single prior misses five of the real stock
prices from its 95% predictive intervals, and the classical method fails to contain 20 of the real stock
prices. From Table II, the classical intervals fail to contain three out of 28 companies and none for
any of the HB methods. Moreover, the average lengths of the classical intervals from both tables are
longer than those of the HB mixture method. The latter intervals are also longer than those of the
HB single method.

We use PMSE, PMAE and PMARD for model selection. Both tables show the HB mixture prior
method is the best among three methods. The comparison of log(PPBF) between HB mixture and
single prior methods also suggests that the former is the preferred method.

0
20

40
60

80

–1
0

0
10

–1
5

–1
0

–5
0

5
10

–4
–2

0
2

4
6

–6
–4

–2
0

2
4

6

0
5

10

b5b4

b3b2b1

b6

Figure 6. Credible intervals. 95% credible intervals for the regression coefficients from the HB method 
with the mixture prior and the classical method for all the companies are given. The solid circles are from the
classical method and the unfilled circles are from the HB method with the mixture prior
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Table I. Model comparison

Classical HB single HB mixture

Uncov. 0.048 (20/420) 0.012 (5/420) 0 (0/420)
Ave. Lgt. 13.97 11.36 12.17
PMSE 39.20 30.84 28.92
PMAE 4.56 4.15 4.01
PMARD (%) 10.28 9.27 8.83
log(PPBF) — -2.23 -2.17
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Figure 7. Credible intervals. 95% credible intervals for the regression coefficients from the HB method with
the single prior and the classical method for all the companies are given. The solid circles are from the classi-
cal method and the unfilled circles are from the HB method with the single prior

CONCLUSIONS

The HB method described in this article has provided superior estimates to the classical method
when applied to the Ohlson model. The improvement was obtained by pooling information across
companies and borrowing strength from each other. The mixture of two normal distributions on 
the prior for the regression coefficients helps us to avoid the undesirable overshrinkage problem.
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Table II. Model comparison for the 3rd quarter of 1997

Classical HB single HB mixture

Uncov. 0.107 (3/28) 0 (0/28) 0 (0/28)
Ave. Lgt. 15.64 12.63 14.63
PMSE 82.15 45.26 38.6
PMAE 7.05 5.36 4.98
PMARD (%) 12.83 9.37 8.72
log(PPBF) — -2.39 -2.24
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Figure 8. Forecasting. 95% predictive intervals based upon one-step-ahead forecasting for six companies in 15
quarters from the third quarter 1994 to the first quarter 1998 are plotted. The solid circles are from the classi-
cal method, the unfilled circles are from the HB method with the mixture prior, and the cross signs indicate the
real stock prices
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Consequently, the HB method yields improved prediction as compared to the classical method; that
is the 95% predictive intervals from the HB method are tighter on average while at the same time
containing more real stock prices than the classical method. On the other hand, the HB method with
the single prior tends to over-shrink the regression coefficients and causes predictive credible inter-
vals too tight to contain the real stock prices. Hence, it loses the predictive power to some extent as
compared to the HB method with the mixture prior. The HB method with the mixture prior seems
to play a compromise between the classical and the HB single prior methods. We are hopeful that
this HB methodology with the mixture distribution structure on the regression coefficients will
provide an applicable example for financial researchers to pool information from many firms to
obtain more useful estimates. 
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