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Forecasting the covolatility of asset return series is becoming the subject of extensive research among academics, practitioners, and
portfolio managers. +is paper estimates a variety of multivariate GARCH models using weekly closing price (in USD/barrel) of
Brent crude oil and weekly closing prices (in USD/pound) of Coffee Arabica and compares the forecasting performance of these
models based on high-frequency intraday data which allows for a more precise realized volatility measurement. +e study used
weekly price data to explicitly model covolatility and employed high-frequency intraday data to assess model forecasting
performance. +e analysis points to the conclusion that the varying conditional correlation (VCC) model with Student’s t
distributed innovation terms is the most accurate volatility forecasting model in the context of our empirical setting. We
recommend and encourage future researchers studying the forecasting performance of MGARCH models to pay particular
attention to the measurement of realized volatility and employ high-frequency data whenever feasible.

1. Introduction

Forecasting the covolatility of asset return series is becoming
the subject of extensive research among academics, practi-
tioners, and portfolio managers [1]. +is has been used in
risk management, derivative pricing and hedging, portfolio
selection, and policy making. Similarly, the analysis of
volatility spillovers between commodity and asset prices has
a profound implication for risk management and portfolio
maximization by the government and investors [2]. In view
of the current bearish behavior of oil price in the interna-
tional markets, it is arguably of special interest to study the
relationship between oil and coffee prices [2]. Recently, a
number of papers have studied the comovement of oil prices
with equities, agricultural commodities, and precious metals
prices.

Prior studies provide evidence on the connectedness
between oil and one or more markets. However, the bulk of
these studies has focused on price connectedness. Relatively

little research has been devoted to volatility comovement.
+is is surprising since price volatilities are the main driving
forces in options and commodity future markets. +is paper
seeks to bridge this gap in the literature. In particular, it
undertakes a systematic analysis of the volatility intercon-
nectedness between two important commodity markets—oil
and coffee markets—using multivariate GARCH
(MGARCH) family of models with the view of providing
some rigorous price covolatility forecasting models.

Naturally, different papers in the literature also tend to
focus on different commodity pairs when studying volatility
interconnectedness. +e focus of this work is on the covo-
latility between Brent crude oil and Coffee Arabica prices in
the commodity futures markets which are markets where one
can buy specific quantities of a commodity at a specified price
with delivery set at a specified time in the future.+e choice of
these commodities is motivated by the fact that these are the
most actively traded commodities in the world. Existing work
appears to focus mostly on in-sample modeling of covolatility
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of commodity prices giving less attention tomodel forecasting
performance.+is work will also seek to bridge this gap in the
literature.

A number of recent papers have investigated the cov-
olatility of energy and commodity price mainly due to in-
creased interest for understanding the drivers and dynamics
of such covolatilities in these highly volatile times. Alter-
native estimation approaches are used in the literature, but
thus far there is a dearth of work undertaking a thorough
“MGARCH” analysis—a statistical framework which is
particularly suited for modeling asset prices covolatility.
Moreover, existing work appears to focus mostly on in-
sample modeling of covolatility of commodity prices giving
less attention to model forecasting performance. Accord-
ingly, this work will seek to contribute to the literature by
undertaking a systematic analysis of volatility forecasting
performance.

Most of the existing research on volatility spillovers
employ statistical models in order to estimate realized
volatilities which turned out to be oftentimes poor ap-
proximations of true volatilities. An attractive alternative to
model-based statistical volatility is to compute realized
volatility based on high-frequency intraday or “tick” data.
Realized volatility has been found to be more accurate than
model-based volatilities in predicting latent volatility [3].
+us, the results provided by previous studies can be po-
tentially misleading in that they may have underestimated or
overestimated the extent of the true volatility.

+is work avoids this potential pitfall by using realized
volatility based on 30-minute intraday data. We argue that
doing so represents an important contribution to the lit-
erature of covolatility measurement within commodity
markets.

+e work makes the following contributions to the
literature:

(1) From an applied econometrics stand point, the work
provides a robust and systematic investigation of the
statistical and econometric properties of the covo-
latility of the two important commodities.

(2) +e direction and magnitude of correlation between
the prices of coffee and crude oil which are docu-
mented in this work would help the design of a more
informed policy making on the part of financial
authorities as well as other stakeholders and market
participants interested in foreseeing the volatility of
these two important commodities.

2. Methods

2.1. Multivariate GARCH Models. A large part of the liter-
ature deals with univariate model price series. But markets
interact, and therefore a generalization from the univariate
model to a multivariate one is important. Multivariate
GARCH models can be categorized into four types [4].

(i) Models of the conditional covariance matrix: in
these models, the conditional covariance is com-
puted in a direct way. +e vector error correction

(VEC) and Baba–Engle–Kraft–Kroner (BEKK)
models are among this type of models.

(ii) Factor models: the return process is assumed to
consist of a small number of unobservable heter-
oskedastic factors. +is approach benefits from that
the dimensionality of the problem reduces when the
number of factors compared to the dimension of the
return vector is small.

(iii) Models of conditional variances and correlations: at
first, the univariate conditional variances and cor-
relations are computed and then used to get the
conditional covariance matrix. Somemodels are, for
example, the constant conditional correlation
(CCC) model and the dynamic conditional corre-
lation (DCC) model.

(iv) Nonparametric and semiparametric approaches:
models in this class form an alternative to para-
metric estimation of the conditional covariance
structure.+e advantage of these models is that they
do not impose a particular distribution (that can be
misspecified) on the data.

In this paper, conditional variance and correlationmodels
are used. Before detailed discussion of the MGARCHmodels,
some definitions of the series are presented. +is study uses
two commodity price series, resulting in a bivariate approach.

rt �
r1,t

r2,t
[ ] , (1)

where rt is the vector of returns which can be decomposed
as

rt � µt + εt,

εt � H
1/2
t zt,

µt � E rt It−1
∣∣∣∣( ),

zt ∼ iidN 0 , IN( ),
var rt It−1

∣∣∣∣( ) � H1/2
t H1/2

t( )′ �∑
t

,

(2)

where rt is theN × 1 vector of returns; µt is theN × 1 vector
of expected return at time t given the available information
set It−1; H

1/2
t N ×N is the Cholesky factor of time-varying

conditional covariance matrix ∑t; and zt is theN × 1 vector
of independent errors with mean zero and variance one.

+e variance of the conditional unpredictable compo-
nent can also be defined as

var rt It−1
∣∣∣∣( ) �∑

t

�
h11,th12,t

h21,th22,t
[ ] . (3)

In equation (3), the matrix obtained should be sym-
metric. Furthermore, the matrix ∑t has to be positive def-
inite for all t. +e approach of multivariate modeling brings
complications. Firstly, it may be hard to ensure that ∑t is
positive definite for all t. Secondly, the number of param-
eters becomes too large to estimate, and at last, it may be
difficult to obtain the stationarity condition for ∑t.
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+e various MGARCHmodels proposed in the literature
differ in how they trade off flexibility and parsimony in their
specifications for ∑t. Increased flexibility allows a model to
capture more complex ∑t. +e following sections will de-
scribe the theory of the models, where the VEC and DVEC
models which are the predecessors to the CCC, VCC, and
DCC models are first described.

2.1.1. &e Constant Conditional Correlation (CCC) Model.
+e constant conditional correlation model was suggested
by Bollerslev [5], where the time-varying covariance matrix∑t at time t is expressed as

∑
t

� DtRtDt. (4)

+e right hand side consists of the conditional corre-
lation matrix R that is time invariant, i.e., Rt � R.D is a
diagonal matrix of (h1t,h2t, . . . , hkt) such as

Dt �

���
h1,t

√
���
h2,t

√
���
h2,t

√
⋮�����
hk−1,t

√
���
hk,t

√





, (5)

where each hi,t follows a univariate GARCH process. +e
conditional correlation matrix is given by R � [ρi,j], and the
nondiagonal elements of ∑t are∑

ij,t

� h1/2i,t h
1/2
j,t ρi,j, ∀i≠ j. (6)

+e desired conditional variances can be expressed in
vector form:

∑
t

� C +∑q
i�1

Aiεt−j ⊙ εt−j′ +∑p
j�1

Bj∑
t−j

⊙∑
t−j.
′ (7)

+e first term C is a vector of the intercepts with a
dimension of n × 1 and the matrices of the coefficients are
× n.

+e advantage of the CCC model is that the computa-
tional procedure is more easily performed since the corre-
lation matrix R is constant. However, this means that the
model may be too restrictive [6].

2.1.2. &e Dynamic Conditional Correlation (DCC) Model.
+e dynamic conditional correlation model is given as

∑
t

� DtRtDt, (8)

where ∑t is the covariance matrix and Rt is n × nmatrix of
the conditional correlation of the returns which is symmetric
by definition. +e diagonal matrix Dt is expressed as

Dt � diag h1t, h2t, . . . , hkt( ), (9)

where each hi,t follows a univariate GARCH process. Fur-
thermore, ∑t has to be positive definite, which is auto-
matically obtained while Rt is a correlation matrix that is
symmetric by definition. When this matrix is defined, two
requirements are needed. Firstly, ∑t needs to be positive
definite, since it is a covariance matrix. Secondly, the parts
that belong to Rt need to be less than one. +ese require-
ments are met through decomposition:

Rt � diag qiit( )− 1Qtdiag qiit( )− 1 for, ii � 1,&, n, (10)

where

Qt � 1 − π1 − π2( )Q + π1εt−1εt−1′ + π2Qt−1,

Q � cov εtεt′[ ] � E εtεt′[ ], (11)

where Q is the unconditional covariance and will be finite as
the model contains finite parameters and the vector εt has
finite variance. Additionally, the parameters π1 and π2 are
scalars and diag (Q) is used to rescale the parts ofQt in order
to fulfill that |ρij| � |qijt/

������
qiitqjjt

√
|≤1, where qij is the ele-

ment of the matrix diag (Q). An estimate of Q is

Q̂ �
1

T
∑T
t�1

εtεt′. (12)

Moreover, the scalars π1 and π2 must be larger than zero,
but the sum has to be less than one. One may note that these
are conditions of the univariate GARCH to be stationary, but
which is applied in the DCC model [7].

2.1.3. &e Varying Conditional Correlation (VCC) Model.
+e varying conditional correlation (VCC) is a multivariate
generalized autoregressive conditionally heteroskedastic
(MGARCH) model in which the conditional variances are
modeled as univariate GARCH models and the conditional
covariance is modeled as nonlinear functions of the con-
ditional variances. +e conditional correlation parameters
that weight the nonlinear combinations of the conditional
variance follow the GARCH-like process specified by Tse
and Tsui [6]. +e VCC MGARCH model is about as flexible
as the closely related dynamic conditional correlation
MGARCH model and more flexible than the constant
conditional correlation model and more parsimonious than
the diagonal vector error conditionally heteroskedastic
(DVECH) models.

MGARCHmodels differ in the parsimony and flexibility
of their specifications for a time-varying conditional co-
variance matrix of the disturbances, denoted by ∑t. In the
conditional correlation family of MGARCH models, the
diagonal elements of ∑t are modeled as univariate GARCH
models, whereas the off-diagonal elements are modeled as
nonlinear functions of the diagonal terms. In the VCC
MGARCH model,

hij,t � ρij,t

������
hii,thjj,t

√
, (13)
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where the diagonal elements hii, t and hjj, t follow uni-
variate GARCH processes and ρij, t follows the dynamic
process specified in Tse and Tsui [6] and discussed below.
Because ρij, t varies with time, this model is known as the
VCC GARCH model.

+e VCC-GARCH(1, 1) model proposed by Tse and Tsui
[6] can be written as

rt � θxt + ϵt,
ϵt � H1/2

t zt,

∑
t

� DtRtDt,

Rt � 1 − π1 − π2( )R + π1ϵt−1 + π2Rt−1,

(14)

where xt is a k × 1 vector of independent variables, which
may contain lags of rt; θ is anm × kmatrix of parameters; rt
is an m × 1 vector of dependent variables; H1/2

t is the
Cholesky factor of the time-varying conditional covariance
matrix ∑t; zt is an m × 1 vector of independent and iden-
tically distributed innovations; andDt is a diagonal matrix of
conditional standard deviation. Dt � diag(h1t, h2t, . . . , hkt).
Rt is a matrix of conditional correlations,

Rt �

1ρ12,t · · · ρ1m,t
ρ21,t 1 · · · ρ2m,t
⋮ ⋮ ⋮
ρm1,t · · · ρm2,t1


.

R is the matrix of means to which the dynamic process in
equation (14) reverts; π1 and π2 are parameters that govern
the dynamics of conditional correlations, and they are
nonnegative and satisfy 0≤ π1 + π2 < 1.

2.2. Determining the Conditional Distribution. When fitting
a GARCH model based on financial data, the conditional
distribution of the returns has to be defined. Studies, for
example Bollerslev [8], illustrate that returns are not nor-
mally distributed. Instead, the Student t distribution cap-
tures the observed kurtosis in empirical returns in a more
sufficient way than the normal distribution. Returns have
excess kurtosis and fatter tails than the normal distribution.
+erefore, the Student t distribution is more suitable [9].
+ere are three assumptions about the conditional distri-
bution of the error term commonly employed when working
with GARCH models: normal (Gaussian) distribution,
Student’s t distribution, and the generalized error distri-
bution (GED).

2.3. Estimation Evaluation. +e evaluation is done with
several methods. Firstly, the estimations are compared using
the method of three measures: MAE, RMSE, and the ex-
planatory power from an ordinary least squares regression.
Secondly, an attempt to determine the goodness of fit of the
residuals is done through univariate approach consisting of
an analysis with the Ljung–Box test.

2.3.1. Defining a Proxy. In evaluating volatility forecasts, the
usual proxy for “true” volatility is “ex post” squared returns

or the squared errors. However, as noted by Andersen and
Bollerslev [5], although the use of squared returns or the
squared errors is justifiable as an unbiased estimate of the
volatility process, it provides a very noisy measure due to a
large idiosyncratic term. Specifically, the returns innovation
can be written as εt � σtzt with zt an independent zero mean
and unit variance stochastic process and σt is the volatility
process. If the model for σ2t is correctly specified, then the
conditional expectation E(E(ε2t | It−1) � E(σ2tz

2
t | It−1) � σ2t ,

and the squared error is an unbiased estimate of the volatility
process; however, it still contains the noisy idiosyncratic
term, z2t . +is typically resulted in a poor performance,
which instigated a discussion of the practical relevance of
volatility models.

Hansen et al. [10] provided another important argument
for using the realized variance rather than the squared
return. +ey showed that substituting the squared returns
for the conditional variance can severely distort the com-
parison, in the sense that the empirical ranking of models
may be inconsistent for the true (population) ranking. So, an
evaluation that is based on squared returns may select an
inferior model as the “best” with a probability that converges
to one as the sample size increases. For this reason, our
evaluation is based on the realized variance. Building upon
this line of research, Andersen et al. [11] defined the so-
called “realized volatility” on day t as

hrvt �∑N
i�1

r2t,i, (15)

where N is the number of equally spaced intervals within a
day and rt,i is a logarithmic return on day t at time interval i
with i� 1, 2. . ., N and t� 1,. . .,T.

+us, realized volatility is the sum of squared intraday
returns. In principle, letting N tend to large, i.e., continuous
time sampling, the measure approaches to the true inte-
grated volatility of the underlying continuous time process
and is theoretically free from measurement error. Further,
this measure allows a market participant to essentially treat
volatility as an observed variable and to allow direct
estimation.

2.4. Forecast Evaluation

2.4.1. &e MZ Regression. A popular way to evaluate vola-
tility models’ out-of-sample forecasting performance is in
terms of R2 from a Mincer–Zarnowitz (MZ) regression,

σ2t � a + bh
2
t + vt, (16)

that is, squared returns are regressed on the model forecasts
of σ2t and a constant. Here, σ2t is ex post volatility (e.g.,
realized volatility) at time t, h2t is estimated (in-sample) or
forecasted (out-of sample) volatility at time t, and vt is the
error term which is independent and identically distributed;
vi∼N (0,1). a and b are parameters to be estimated.

If the model for conditional variance is well specified, we
should have a� 0, b� 1. According to specific features of
financial data series, the value of R2 is usually low (even less
than 5%) [11].
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2.4.2. Mean Absolute Error (MAE). Another way of deter-
mining the goodness of the estimations and forecasts is
calculating the MAE. +e approach is to measure how the
received conditional covariance is close to its corresponding
realized value. +e formula is

MAE �
1

n
∑n
t�1

σ2t − h
2
t

∣∣∣∣ ∣∣∣∣, (17)

where σ2t is used as a proxy and h2t is the estimated co-
variance. By comparing the MAE between the estimated
models, it can give an indication of which model that makes
the best estimations.

2.4.3. Root Mean Square Error (RMSE). +e thirdmeasure is
the root mean square error (RMSE), which is defined as

RMSE �

�������������
1

n
∑n
t�1

σ2t − h
2
t( )2

√√
. (18)

Using these methods, the estimated models can be
compared, and using the same measurements for estima-
tions and forecasts, one can determine if the relatively best
estimation model also makes the best forecast.

3. Results and Discussion

3.1. Data. +e data considered in this paper were the weekly
time series of Brent crude oil and Coffee Arabica futures
market closing price, given in US dollars per barrel and US
dollars per pound, respectively. Both series contain data
spanning between first week of January 2005 and last week of
October 2016 extracted from Bloomberg database. +e full
sample is split in to two parts: in-sample data, in order to
estimate the parameters of models, and out-of-sample data,
in order to make forecasts. +e in-sample period spans from
first week of January 2005 up to last week of December 2015
and the out-of-sample period spans from first week of
January 2016 through last week of October 2016. For the out-
of-sample period, we have also extracted 30-minute intraday
data for realized volatility measuring purpose.

3.2. Test of Stationarity and Features of Log Return Series.
Our data consist of two commodity prices: crude oil and
Arabica coffee. +e two commodity prices present the same
trend and direction during the entire study period. Prices for
both of the commodities have risen from 2005 up to 2008
and fallen from 2009 up to 2010 with a similar pattern.
Another impression is that both commodity level series are
nonstationary (see Figure 1).

To visualize the returns series for these two markets, we
depict the return time series plots in Figure 2. +e weekly
return series display volatility persistence properties, indi-
cating that large changes tend to be followed by large changes
of both signs and small changes tend to be followed by small
changes, and the differenced series suggests stationarity. +e
plots further show that the volatilities of these two commodity
returns not only have a volatility clustering phenomenon

during the selected sample period but also have certain re-
lation on their return volatility processes. +at is, when the
fluctuation of the Arabica coffee price grew larger, the vol-
atility of crude oil return also became larger for most of the
times. +is is the main motive for discussing the relationships
of coffee price returns and crude oil price returns.

Table 1 summarizes the DF test results of the two
commodity level prices, respectively. As can be seen in the
table, p-value is greater than 0.05. Hence, the null hypothesis
of unit root would not be rejected, that is, there is a unit root
problem in each of the series.

If time series data are nonstationary, it is necessary to
look for possible transformations that might bring statio-
narity. In practice, econometricians usually transform fi-
nancial prices in to return forms.+is is because often return
series are found to be stationary such that analysis is pos-
sible. +e log return series is obtained by

rt � 52∗ log
pt
pt−1

( ), (19)

where rt is the log return series of the real price multiplied by
52 (which is simply a scaling factor), to annualize as we are
usingweekly data and each year contains 52weeks, andpt is the
originalprice series and log is the natural logarithm in base ten.

Table 2 summarizes the DF test of the log return series for
each of the commodities. +e table shows that both p-values
are too small (p-value <0.05) at 5% level of significance.+ese
indicate that the null hypothesis of unit root would be rejected
in both cases. Hence, the log return series are stationary for
each of the items as shown by the time series plots.

Looking at Table 3, the average prices for Arabica coffee
(per Pound) and crude oil (per Barrel) were $145.8668 and
$80.9327, respectively, over the entire period. +e average
log returns were then computed, and they are 0.0458 and
0.0119 for coffee and oil, respectively.+e average returns for
crude oil price were smaller than those of Arabica coffee
price return in the sample period considered. One more
impression here is that the two commodities’ return is
positive, which is an implication of the increasing trend in
the two commodity price. +e estimate of the standard
deviation is 2.229 for coffee and 2.3639 for oil which is nearly
similar. Hence, we can say that they exhibit approximately
similar variations in their prices.

3.3. Volatility Modeling. To build a volatility model for the
log return series, the first step is specifying the mean
equation. Once we specify the mean equation, we have to test
for ARCH effects using the residuals of the mean equation. If
ARCH effects are statistically significant, specifying a vol-
atility model and carrying out a joint estimation of the mean
and volatility equations are necessary. +e conditional mean
specification is, in general, arbitrary for GARCH models of
the conditional volatility.

3.3.1. Test for ARCH Effects. Considering a financial return
model and on fitting this model, if there is no volatility
clustering in each of the returns, the random disturbance
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term εt should be a white noise process. +e standardized
residual plot can be an initial insight to judge the heter-
oskedastic characteristics of the error term. +e stan-
dardized residual plot from each commodity return series
is shown in Figure 3. +e figure depicts the residual plots of
the two commodity return series generated from the mean
equation.

We see from the figure that for both of the series, there
is a prolonged period of low volatility and prolonged period
of high volatility. For example, for Arabica coffee return,
there is a long period of low volatility from the first week of

2005 to the end of 2008 and there exist long periods of high
volatility from first week of 2014 to the end week of 2016.
Crude oil return also exhibits a prolonged period of low
volatility than the coffee series, which is from the first week
of 2005 to the first week of 2009. In other words, periods of
high volatility are followed by periods of high volatility and
periods of low volatility tend to be followed by periods of
low volatility, which is known as volatility clustering.
+is suggests that the residuals or error terms are condi-
tionally heteroskedastic and can be represented by GARCH
models.

2008w1 2011w1 2014w1 2016w12005w1

Year and week

0
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Arabica future market price

Brent crude oil price

Figure 1: Time series plot for level series, Arabica coffee and crude oil.
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Crude oil, first-differenced series
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Figure 2: Time series plot for differenced series, Arabica coffee and crude oil.

Table 1: DF unit root test of stationarity for level prices, with trend.

Series t-statistic MacKinnon approximate p-value

Crude oil −1.675 0.4562
Arabica coffee −2.053 0.3896

Table 2: DF unit root test of stationarity for log returns.

Series t-statistic MacKinnon approximate p-value

Crude oil −5.791 0.001
Arabica coffee −5.877 0.001
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Table 4 shows the results of ARCH LM test for the two
commodity returns.+e last column of the table includes the
p-values that indicate rejection of the null hypothesis that
“there is no ARCH effect” up to the fourth lag at 5% level of
significance. +e results indicate that the two commodities’
price log return series are volatile and need to be modeled
using GARCH models.

3.4. Multivariate GARCH Modeling. At the beginning of
reviewing different formulations of MGARCH models, one
should consider what specification of a MGARCH model
should be imposed in contrast to the univariate case. On the
one hand, it should be flexible enough to state the dynamics
of the conditional variances and covariance. On the other
hand, as the number of parameters in a MGARCH model
increases rapidly along with the dimension of the model, the
specification should be parsimonious to simplify the model
estimation and also reach the purpose of easy interpretation

of the model parameters. However, parsimony may reduce
the number of parameters, in which situation the relevant
dynamics in the covariance matrix cannot be captured.

A number of alternative MGARCH formulations for
modeling long-run conditional heteroskedasticity are ex-
tensively used in relevant literature. +e most widely used are
the time-varying conditional correlation (VCC), the constant
conditional correlation (CCC), and the dynamic conditional
correlation (DCC) models [5]. A more elaborate discussion of
these models is presented in section2.1 of chapter two . One
complexity of MGARCH models is that the number of pa-
rameters grows rapidly and researchers often use a single
ARCH and GARCH term in the model specification, and
often it is enough in capturing the variation. So, in this paper,
we use bivariate-GARCH (1,1) models.

One of the major objectives of this study is choosing an
appropriate multivariate GARCH model from the com-
peting models. Using the Mincer-Zarnowitz regression and
the forecast error measures, a model with minimum forecast
error measure value and maximum MZ R2 value is selected
as an appropriate model. We can chose a single bivariate
GARCH model and then estimate the parameters of the
selected model. For the distribution of the innovation term,
the multivariate normal distribution and the multivariate
version of Student’s t distribution with eight degree of

Table 3: General summary statistics for Arabica coffee and crude oil series.

Statistics
Coffee market Crude oil market

Pt rt Pt rt

Mean 145.8668 0.0458 80.9327 0.0119
Median 132.7250 0 76.1950 0.1327
Maximum 299.3500 9.6800 144.4900 10.449
Minimum 88.2000 −7.538 28.9400 −15.451
Std.dev. 43.3636 2.229 26.1545 2.3639
Skewness 1.4120 0.0359 0.1347 −0.6890
Kurtosis 4.4545 3.6941 1.7781 7.2470
Jarque–Bera 144.8500 (0.001) 8.2600 (0.016) 488.0200 (0.001) 107.4100 (0.001)
∗∗Values below the Jarque–Bera statistics are p-values at 5% of significance level.

Residual plot of Coffee arabica from ARMA model

Residual plot of crude oil from ARMA model
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Figure 3: Residual plots of the Arabica coffee and crude oil return series from the mean.

Table 4: ARCH LM test summary statistics.

Series Obs∗R2 χ2 (4) Lag (p) Prob.

Arabica coffee 12.6477 9.488 4 0.004
Crude oil 105.6419 9.488 4 0.001
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freedom are considered. Like the previous analysis, we also
consider two volatility measures, that is, the weekly return
square and the 30-minute intraday return square.

Looking at Tables 5 and 6 for each of the models, the R2

obtained from Mincer-Zarnowitz regression (R2) value is
larger for the high-frequency data. Moreover, the R2 is larger
under Student t distribution assumption of the innovation
term. Now combining the high-frequency data and Student t
distribution, the time-varying conditional correlation
(VCC) model is a better model for the variance covariance
estimation of the Arabica coffee return and crude oil returns.

+e results in Table 7 of the variance equations actually
indicated volatility effects in the returns series across the
sample period considered. With regard to the estimates of
the time-varying correlation (ρ̂coffee,oil), the correlation was
found to be positive and significant. +is implies positive

relationship between the conditional volatility series of the
two commodity series and indicates that the returns on these
commodities rise or fall together.

+e estimates of the parameters π̂1 and π̂2, that is, the
parameters dealing with the effects of previous shocks and
previous dynamic conditional correlations on the current
dynamic conditional correlation, were significantly different
from zero, with π̂1 � 0.0291 and π̂2 � 0.919. +e time-varying
conditional correlation (VCC) model reduces to constant
conditional correlation (CCC) model when π̂1 � π̂2 � 0 [1].
Hence, employing CCC is too restrictive for these series.

Concerning the estimates of persistence (α̂i + β̂i), the
persistence estimates were 0.9698 and 0.9866 at coffee and
oil markets, respectively, which is closer to one, implying
that volatility is persistent in these markets. +e sufficient
conditions for the variance matrix to be positive definite are

Table 5: Bivariate GARCH model comparison under normal distribution for covolatility of coffee and oil returns.

Statistics

Realized volatility measure

Weekly returns squared
30-minute interval returns

(high freq.)

CCC DCC VCC CCC DCC VCC

MZ.reg.R2 0.0145 0.0037 0.0070 0.2575 0.1740 0.3929
MSE 29.2503 29.9553 29.313629 0.7865 0.9161 0.8590
RMSE 5.1442 5.4730 5.4083 0.8868 0.9571 0.9268
MAE 3.7900 3.7452 3.7307 0.879 0.8517 0.8000
AIC 4965.981 4957.583 4962.655 4965.981 4962.655 4957.583
BIC 5022.474 5022.768 5027.84 5022.474 5022.768 5027.84
LL −2469.99 −2463.79 −2466.32 −2469.99 −2463.79 −2466.32

Table 6: Bivariate GARCH model comparison under Student’s t distribution for covolatility of coffee and oil returns.

Statistics

Realized volatility measure

Weekly return square High frequency

CCC DCC VCC CCC DCC VCC

MZ.reg.R2 0.0937 0.0747 0.060 0.2372 0.1614 0.4014
MSE 29.36 29.99 29.28 0.7876 0.8877 0.8634
RMSE 5.4184 5.4763 5.4110 0.8874 0.9421 0.9291
MAE 3.7953 3.7532 3.742 0.8819 0.8423 0.8372
AIC 4945.74 4940.492 4943.54 4945.74 4943.54 4940.492
BIC 5002.24 5005.677 5008.725 5002.24 5005.677 5008.725
LL −2459.84 −2455.24 −2456.77 −2459.84 −2455.24 −2456.77

Table 7: Variance parameter estimates from time-varying conditional correlation (VCC-GARCH) model under t distribution (v � 8).

Parameters Coefficients z-statistics p-value

ω̂coffee 0.1647 1.04 0.300
α̂coffee 0.0305 1.60 0.109
β̂coffee 0.9393 22.16 0.001
ω̂oil 0.0835 1.60 0.109
α̂oil 0.0774 3.60 0.001
β̂oil 0.9092 38.48 0.001
ρ̂coffee,oil 0.2886 1.60 0.001
π̂1 0.02919 1.70 0.034
π̂2 0.919 15.88 0.001
α̂coff . + β̂coff . 0.9698 — —
α̂oil + β̂oil 0.9866 — —
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the usual GARCH restrictions, i.e., ω, α, β> 0 for the uni-
variate GARCH (1,1) model. Also, this univariate GARCH
process needs to be stationary, i.e., 1 − α − β> 0. +ese
conditions are satisfied in the above output table.

3.5. Discussion. +e aim has been modeling and forecasting
the covolatility dynamics of weekly time series of Brent
crude oil and Coffee Arabica futures market closing price
using bivariate GARCH models. From the preliminary
analysis over the time period considered, both of the price
series show an increasing trend. To determine whether
the series are stationary or not, the augmented Dick-
ey–Fuller (ADF) test was carried out. Often, raw data of
commodity prices are nonstationary, which was also the
case in this study. For both level time series, the tests
indicate to the existence of unit root I (1). +e first log
difference of each time series was considered as stationary
(Table 3).

In the two commodity returns, it appears that the ARCH
term coefficients were significant at 5% level of significance.
+e result is an implication of the presence of volatility
clustering, i.e., large changes followed by large changes and
small changes followed by small changes.

Noemi and Junior [12] investigated the volatility of two
tropical commodities, i.e., world coffee and crude oil, and
found that the two commodities were volatile and concluded
that fluctuations in coffee and cocoa price follow the oil price
fluctuation. Our results shows that Arabica coffee and crude
oil volatilities are correlated (in fact, not highly). In addition,
the covariance of Arabica coffee and crude oil is found to be
similar to the variance of crude oil which indicates that the
variation in the Arabica coffee price follows crude oil price, a
similar finding with Noemi and Junior.

Overall, the positive relationship between these com-
modity returns is consistent with previous research studies
on energy and commodity covolatility (see for example,
[13, 14]).

4. Conclusion and Recommendations

Forecasting the volatility dynamics of asset returns has been
the subject of extensive research among academics, practi-
tioners, and portfolio managers. +is thesis estimates a
variety of multivariate GARCHmodels using weekly closing
price (in USD/barrel) of Brent crude oil and weekly closing
prices (in USD/per pound) of Coffee Arabica and compares
the forecasting performance of these models based on high-
frequency intraday data which allows for a more precise
realized volatility measurement. +e analysis points to the
conclusion that varying conditional correlation (VCC)
model with Student’s t distributed innovation terms is the
most accurate volatility forecasting model in the context of
our empirical setting.

We recommend and encourage future researchers
studying the forecasting performance of MGARCH models
to pay particular attention to the measurement of realized
volatility and employ high-frequency data whenever feasible.

We also recommend that public policy makers interested
in foreseeing the price volatility of these two major com-
modities in the context of the Ethiopian economy consider
using the information documented in this study as input in
their deliberations given that it is based on some robust
econometric work and highly appropriate data.

+e scope of the analysis in this study has been limited to
the covolatility between the two commodities. In order to
overcome this limitation and provide a more nuanced
analysis, it might be profitable for future researchers to
consider incorporating stock, currency, and bond market
volatilities into the analysis.+e potential complexity of such
a research agenda notwithstanding, the results are likely to
be rewarding in light of the deeper integration between
global financial and commodity markets in recent years, a
phenomenon which came to be known as the financiali-
zation of commodities.
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