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Abstract

The objective of this paper is to present a new approach for forecasting NAO index (NAOi) 
based on predictions of sea level anomalies (SLAs). We utilize significant correlations 
(Pearson’s r up to 0.69) between sea surface height (SSH) calculated for the North Atlan-
tic (15–65°N, basin-wide) and winter Hurrell NAOi, as shown by Esselborn and Eden 
(Geophys Res Lett 28:3473–3476, 2001). We consider the seasonal and monthly data of 
Hurrell NAOi, ranging from 1993 to 2017. Weekly prognoses of SLA are provided by the 
Prognocean Plus system which uses several data-based models to predict sea level varia-
tion. Our experiment consists of three steps: (1) we calculate correlation between the first 
principal component (PC1) of SSH/SLA data and NAOi, (2) we determine coefficients of  
a linear regression model which describes the relationship between winter NAOi and PC1 
of SLA data (1993–2013), (3) we build two regression models in order to predict winter 
NAOi (by attaching SLA forecasts and applying coefficients of the fitted regression mod-
els). The resulting 3-month prognoses of winter NAOi are found to reveal mean absolute 
errors of 1.5 or less. The choice of method for preparing SLA data for principal component 
analysis is shown to have a stronger impact on the prediction performance than the selec-
tion of SLA prediction method itself.

Keywords North Atlantic Oscillation · Sea level change · Satellite altimetry · Prediction · 
Autoregressive models

1 Introduction

Periodic, short- and medium-term, as well as quickly noticeable changes in ocean level 
are associated with a number of processes and phenomena occurring in the atmosphere 
and hydrosphere. Meteorological conditions such as pressure, wind strength and direction, 
precipitation and evaporation cause irregular and short fluctuations in sea and ocean lev-
els. Because the oceans have an extremely high thermal capacity, when compared to the 
atmosphere, the ocean temperatures fluctuate seasonally much less than the atmospheric 
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temperature. For the same reason, when air blows over the water, its temperature tends 
to reach the temperature of the water rather than vice versa. Thus, maritime climates are 
generally less variable than climates of regions located in the interiors of the continents. 
The pattern of atmospheric circulation largely determines the pattern of oceanic surface 
circulation, which in turn determines the location and amount of heat that is released to the 
atmosphere. Also, the pattern of atmospheric circulation partly determines the location of 
clouds, which influences the locations of heating of the ocean surface.

One of the most predominant atmospheric phenomenon on the Earth is the North Atlan-
tic Oscillation (NAO) which has been subject of scrutiny over years (e.g. Walker 1924; 
Bjerknes 1964; Barnston and Livezey 1987; Hurrell 1995; Marshall and Schott 1999; Hur-
rell et al. 2003). The NAO phenomenon forms a dominant mode of winter climate vari-
ability in the North Atlantic region, ranging from central North America to Europe, and 
extending its impact to northern Asia (Walker and Bliss 1932; Van Loon and Rogers 1978; 
Rogers and van Loon 1979). The NAO influences cover parts of the East Atlantic and West 
Atlantic patterns, as originally shown by Wallace and Gutzler (1981) for the winter period 
on the Northern Hemisphere. The NAO phenomenon consists of balance changes between 
relatively stable northern and southern atmospheric pressure centers (IPCC 2007). The 
first one is located over Greenland and called the Icelandic Low (IL), while the second 
one, known as the Azores High (AH), is located in mid-latitudes of the North Atlantic, 
i.e. between 35 and 40

◦ N (Wanner et  al. 2001). Through the fluctuations in the strength 
of the north-south dipole, NAO controls the strength and direction of westerly winds and 
storm tracks across the North Atlantic (Feistel et  al. 2008). Hence, it is associated with 
large-scale modulations of the normal patterns of zonal and meridional heat and moisture 
transport (Hurrell 1995). Walker (1923) first noticed a tendency towards a simultaneous 
strengthening or weakening of IL and AH, and he named these changes as NAO. The posi-
tive (negative) mode of NAO occurs when IL and AH are simultaneously strong (weak). 
This teleconnection pattern is generally defined as the normalized sea level pressure differ-
ence between Ponta Delgada (Azores) and Akureyri (Iceland). It appears in the first eigen-
vector of sea level pressure field in the Northern Hemisphere (Barnston and Livezey 1987; 
Rogers 1990), accounting for roughly one third of the variability in sea level pressure over 
the North Atlantic Ocean (Deser and Blackon 1993).

To quantify the anomalous difference between the polar low and the subtropical high 
during the boreal winter (DJFM—from December to March), the NAO index (NAOi) was 
created. The first constructed NAOi involved temperature and pressure data from Europe 
and North America, and was calculated using a complex and multi-staged statistical pro-
cedure (Walker and Bliss 1932). The index reveals interannual variability, but it also has  
a tendency to persist in one phase over several years. The monthly NAOi is calculated on  
a basis of decadal sea level pressure measurements performed at two selected meteorologi-
cal stations. The most popular versions of NAOi are: (1) the Rogers NAO index (between 
Ponta Delgada (Azores) and Akureyri (Iceland) stations); (2) the Hurrell NAO index 
(between Lisbon (Portugal) and Stykkishólmur (Iceland) stations); and (3) the Jones NAO 
index (between Gibraltar and Stykkishólmur stations).

Predictions of NAO are useful for the economy and environment, and therefore several 
dedicated forecasting methods and services have been developed. Based on the principal 
components of sea surface temperature (SST) changes, Saunders and Qian (2002) elab-
orated an empirical model to predict winter NAOi. Eshel (2003) used the North Pacific 
surface pressure to produce 21-month forecasts of NAO based on various autoregres-
sive models. The Climate Prediction Center of the National Oceanic and Atmospheric 
Administration (NOAA) provides daily, weekly, 10-day and 14-day forecasts of NAOi 
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along with the mean value of NAOi as well as the correlation coefficients between the 
observations and all the forecasts for last 120 days. The NAOi forecasts are also based on 
the Global Forecasts System (GFS) and the associated ensemble mean model, produced  
by the National Centers for Environmental Prediction (NCEP). Yet another institution which 
provides long-term forecasts of winter NAOi is the European Centre for Medium-Range 
Weather Forecasts (ECMWF). Its Monthly Forecasting (MOFC) system is based on an 
ensemble of 51 coupled ocean–atmosphere integrations which produce 32-day forecast 
every two weeks (Vitart 2004). Recently, Wang et al. (2017) developed a skillful empirical 
model to predict winter NAO variability, and Dobrynin et al. (2018) utilized a dynamical 
ensemble model to produce seasonal NAO forecasts.

Most approaches developed to forecast NAOi use predictors like SST, sea level pres-
sure or ocean heat content, however none of them is based on SSH or sea level anomaly 
(SLA). It is widely known that sea level adjusts to changes in barometric pressure due  
to the inverted barometer effect (Wunsch and Stammer 1997; Ponte and Gaspar 1999). Sea 
level response to atmospheric pressure was the topic of several research, e.g. conducted  
by Garrett (1983), Ducet et al. (1999) and Mathers and Woodworth (2001). The SLA variation 
reflects changes in atmospheric patterns (Chen et al. 2014; Iglesias et al. 2017), therefore, 
SLA may be used as an explanatory variable to construct predictions of NAOi.

The correlation between variability of surface ocean topography and NAO phases was 
discussed by Esselborn and Eden (2001). The first Empirical Orthogonal Function (EOF) 
component of the observed seasonal SSH anomalies was found to explain 34% of vari-
ance. Pingree (2002) studied the relationship between the NAO index and the SSH along 
a meridional transect at 35◦ N in the North Atlantic and found vivid, but delayed (one year 
up) correlations. Investigations into the interannual variability of SSH conducted by Crom-
well (2006) led the author to the conclusion that the first principal component of SSH, 
which is also considered in this paper, is anti-correlated with other commonly used index 
over North Atlantic–East Atlantic (EA) pattern index. Similarly to Esselborn and Eden 
(2001), the author applied complex EOF analysis and then used wavelet analysis to deter-
mine time-varying spectral density content of the principal components. Other elements  
of the climate system that may improve predictability of NAO are discussed by Smith et al. 
(2014).

The main objective of this paper is to use SLA as the input data to issue long-term 
forecast of NAOi. Herein, we present, verify and validate a new approach for predicting 
NAOi, which integrates stochastic models implemented within the Prognocean Plus system 
(Niedzielski and Miziński 2013; Świerczyńska et al. 2016) with the SSH–NAOi relation-
ship presented by Esselborn and Eden (2001). The research hypothesis is the following:  
“it is possible to skilfully predict NAOi with the 3-month lead time based solely on the 
prognoses of sea level change”.

2  Data

Three sets of data are used in this paper: SLA, SSH and winter Hurrell NAOi. The relation-
ship between SLA and SSH is described by the formula:

where MSSH is the Mean Sea Surface Height.

(1)SLA = SSH − MSSH,
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Both SLA (variable “sea_surface_height_above_sea_level”) and SSH (variable “sea_
surface_height_above_geoid”) datasets were obtained courtesy of the Copernicus Marine 
Environment Monitoring Service (CMEMS) from the repository called “Global Ocean 
Gridded L4 Sea Surface Heights and derived variables reprocessed (1993–ongoing)”. Both 
datasets were processed by DUACS (Data Unification Altimeter Combination System) 
which is a part of the CNES (Centre National d’Etudes Spatiales) multimission ground 
segment SSALTO (Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de locali-
zation précise). It processes data from all available altimetric missions (Jason-3, Sentinel-
3A, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, Topex/Poseidon (T/P), ENVISAT, 
GFO, ERS1/2) and provides a consistent and homogeneous catalogue of products. For the 
SSH data a few altimeter corrections and processing algorithms were used so that the data 
are devoid of: the ionospheric effect, wet and dry troposphere, ocean-, pole- and solid earth 
tides or the sea state bias. The multimission gridded SLA time series is computed from 
SSH referenced to a twenty-year mean.

Spatial resolution of the data is 1∕4
◦ × 1∕4

◦ . After Esselborn and Eden (2001), we 
utilize only gridded SLA and SSH data, spatially limited to 15–65°N and 0–80°W. Due  
to data availability (the first altimetric satellite T/P was launched in 1992), we consider 
data collected between 1993 and 2016, aggregated to months (12 per year) and seasons  
(4 per year).

The monthly and seasonal gridded data where produced by performing simple averag-
ing for each grid of original gridded (multidimensional) time series of SLA/SSH. We cre-
ated a dataset for each grid (one dimension) that consisted of SLA/SSH values for a win-
ter month or three winter months (season), and calculated the corresponding mean value.  
We conducted this process for each year.

The monthly and seasonal station-based Hurrell NAOi time series were obtained from 
Climate Data Guide (Hurrell et al. 2017). For the purpose of this study, we consider only 
winter months, i.e. December/January/February (D/J/F), and winter seasons (DJF).

3  Methods

3.1  Prognocean Plus

Prognocean Plus is a real-time system for computing sea level prediction. It is an upgraded 
version of the Prognocean system described in detail by Niedzielski and Miziński (2013). 
Prognocean Plus has been developed as a new generation domain-specific service within 
the PL-Grid infrastructure for Polish science (http://www.plgri d.pl/en, access date: 
29/03/2018). By 2018, the system was available through the dedicated real-time online  
service (https ://progn ocean .plgri d.pl/, access date: 24/07/2018). Currently, it is not operational. 
Prognocean Plus produced SLA forecasts based on SLA time series obtained courtesy  
of CMEMS. The system produced short- (up to 14 days) and long-term (up to 12 weeks) 
predictions of global altimetric gridded SLA time series, updated daily (Świerczyńska 
et al. 2016). The spatial resolution of the SLA forecasts was 1∕4

◦ × 1∕4
◦ . Along with the 

prognoses, gridded statistical maps of prediction performance were produced, showing 
spatial distributions of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) 
of forecasts. The Prognocean Plus system was implemented in R (language and environ-
ment for statistical computing and graphics) and used the Message Passing Interface (MPI) 
computations with OpenMPI (https ://www.open-mpi.org/, access date: 24/07/2018).

http://www.plgrid.pl/en
https://prognocean.plgrid.pl/
https://www.open-mpi.org/
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3.2  Stochastic models in Prognocean Plus

The Prognocean Plus system computed the predictions of time-variable ocean topog-
raphy using data-based methods. The legitimacy of the use of a statistical approach for 
modelling physical phenomena is widely discussed in the literature (McPhaden et  al. 
2006; Clark 2008; Sarachik et  al. 2010). Moore et  al. (2013) constructed the semi-
empirical global sea level projections, compared them with the process-based projec-
tions of SLA, and arrived at the conclusion that statistical and dynamical models have 
comparable predictive abilities.

The following statistical models were used in the Prognocean Plus system:

• the deterministic polynomial-harmonic model (Polynomial-Harmonic, PH),
• a combination of the PH model and the stochastic autoregressive model (AutoRe-

gressive, AR), briefly called PH+AR,
• a combination of the PH model with the stochastic threshold autoregressive model 

(Threshold AutoRegressive, TAR), known as PH+TAR,
• a combination of the PH model and the multivariate autoregressive model (Multi-

variate AutoRegressive, MAR), briefly called PH+MAR.

The PH model consists of linear trend and five basic non-tidal harmonic oscillations 
(annual, semi-annual, 120-, 90- and 62-day). These deterministic components can 
be described as a sum of polynomial or harmonic nonlinear models, the parameters  
of which can be estimated using the Gauss–Newton algorithm within the weighted 
least-squares approach. The PH-based predictions are extrapolations of the model. The 
differences between the observed SLA data and the simulations from the PH model 
are residuals. They were subsequently modelled with the use of stochastic methods, as 
described in detail by Niedzielski and Miziński (2013) and Świerczyńska et al. (2016).

The physical background of the PH model with five harmonic components is based 
on the papers by Kosek (2001), Niedzielski and Kosek (2009) and Kosek et al. (2016) 
who, using Fourier transform band pass filter, identified the most energetic periodic 
oscillations in sea level as a function of geographic location. Apart from the annual 
oscillation, which is associated with the annual cycle and is found to be broadband 
(Kosek et al. 2016), Kosek (2001) found that semi-annual, 120-, 90- and 62-day com-
ponents are more energetic in the Northern Hemisphere than in the Southern Hemi-
sphere. In addition, the presence of these oscillations has been identified in sea level 
variation in the North Atlantic Ocean and some of its seas, mainly in the east-equatorial 
Atlantic Ocean, the North American Basin, the North Sea and the Baltic Sea (Kosek 
2001). Also, the annual oscillation is found to be energetic in parts of the North Atlantic 
Ocean, as shown for the Caribbean Sea (Niedzielski and Kosek 2009) and the western 
North Atlantic (Kosek et al. 2016). The 62-day component is an alias-type oscillation 
driven by observing the M2 and S2 tide waves by altimetric satellites with 10-day sam-
pling interval (Wagner et al. 1994; Kosek 2001). The polynomial component in the PH 
model has been assumed to be linear because in a short time scale (a few years) there 
has been no meaningful acceleration in sea level change observed by T/P, Jason-1 and 
Jason-2 satellites (Niedzielski and Kosek 2011).

The AR(p) solution is widely known in the theory of one-dimensional time series 
(Brockwell and Davis 2002; Cryer and Chan 2008). Here, the model Y(t,�, �) is fit-
ted to the residuals of SLA data at a given location (�, �) to improve prediction skills, 
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especially for a few first prediction steps. The required model parameters are calculated 
automatically using the Yule-Walker method (Brockwell and Davis 1996). The choice 
of the order p is based on minimizing the Akaike Information Criterion (AIC) (Akaike 
1971). The optimal AR-based linear prediction for r steps into the future is calculated 
recursively on a basis of the autoregression equation.

The TAR solution is the self-excitive modified version of AR model, which allows  
to switch between two main equations depending on the randomly determined process in 
the past. When the threshold is attained, the model is automatically adjusted and the more 
efficient equation is chosen. Model estimation and calculation of forecasts are carried out 
in accordance with the procedure described in Cryer and Chan (2008), using the Time 
Series Analysis (TSA) package in R environment.

The MAR approach is a vector version of the AR model. It is based on cross-corre-
lations within a multivariate time series of SLA (Lardies 1996). Here, the MAR model 
is implemented in a moving rectangular window (width of 1.25 degrees of longitude and 
height of 0.75 degrees of latitude), centred in the grid cell where prediction is needed.

3.3  Relationship between sea level changes and NAO

The NAO phenomenon reveals interseasonal, interannual (Hurrell 1995; Feldstein 2003; 
Benedict et al. 2004; Woollings et al. 2015) and even decadal or multidecadal (Stephenson 
et  al. 2000; Visbeck et  al. 2001; Bell and Chelliah 2006; Olsen et  al. 2012) variability. 
Bjerknes (1964) described the ocean-atmosphere interactions with respect to North Atlan-
tic climate variability. He stated that heat exchange in the atmosphere and sea surface tem-
peratures play an important role in producing NAO. Based on that, Van Loon and Rog-
ers (1978) found that there exists a significant correlation between atmospheric circulation 
and sea surface temperature (SST). In addition, many authors have investigated a possible 
role of Atlantic sea surface temperature anomalies in driving change in the surface pres-
sure patterns resembling NAO (Ratcliffe and Murray 1970; Peng et  al. 1997; Czaja and 
Frankignoul 1999; Rodwell et al. 1999; Rodwell and Folland 2003). Furthermore, Lozier 
et al. (2008) showed that changes in ocean heat content can be connected to the decadal 
trend in the NAO signal. The newest research conducted by Yeager et al. (2012) offered the 
knowledge about feedback between the NAO index and ocean heat content.

It is known that the NAO signal is present in SSH or SLA time series from the North 
Atlantic region (Cabanes et al. 2006). The methodical bases for quantifying the relation-
ship between SSH and NAOi were proposed by Esselborn and Eden (2001) who uti-
lized the Principal Component Analysis (PCA). It is a statistical procedure that allows us  
to transform a two-dimensional set of dependent variables to a one-dimensional set of inde-
pendent variables (principal components) using EOF. The principal components are domi-
nant patterns. The new variables represent the same amount of information as the original 
variables, and their total variance remains the same. However, it is redistributed among the 
new variables in the most “unequal” way: the first of them explains not only the majority of 
variance among the new variables, but also the majority of variance that a single variable 
can possibly explain (Jolliffe and Cadima 2016).

To perform PCA we used the “prcomp” function (Venables and Ripley 2002; R Devel-
opment Core Team 2008) from the “stats” package in R environment. The above-men-
tioned package and the “prcomp” function are commonly used in the environmental studies 
when there is a need to conduct PCA (Chandler and Scott 2011; Tapolczai et al. 2018; Will 
and Kitaysky 2018; Al-Karkhi and Alqaraghuli 2019). The calculation is carried out by  
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a singular value decomposition (SVD) of the (centred and possibly scaled) data matrix, not 
by using eigenvalues on the covariance matrix. Unbiased variances are utilized. The use  
of the SVD method is preferred if numeral accuracy is required.

Esselborn and Eden (2001) used the T/P altimeter SSH data provided by Archiving, 
Validation and Interpretation of Satellite Oceanographic data (AVISO), spanning the time 
interval from 1993 to 1998. The spatial resolution of the data was 1◦ × 1

◦ , and the authors 
limited their spatial extent to 15–65°N and 0–80°W. The gridded SSH altimetry data were 
referenced to the mean seasonal SSH along the satellite tracks to calculate anomalies. 
The seasonal Hurrel NAOi was used, and therefore in order to unify sampling intervals, 
the SSH time series was averaged to four seasons per year: December to February (DJF), 
March to May (MAM), June to August (JJA) and September to November (SON). To com-
pare the seasonal SSH variability with NAOi, the PCA method was used to extract the first 
principal component of gridded SSH data (PC1SSH) for each season. Esselborn and Eden 
(2001) extracted only winter Hurrel NAOi values which were subsequently compared with 
PC1SSH, and the two variables were found to be correlated.

Although Esselborn and Eden (2001) noticed limitations of their approach due  
to a small number of altimetric observations available at that time, they provided possible 
explanation of the relationship between SSH and NAO. They presented the reasoning that 
the NAO-related wind stress curl controls anomalies of ocean circulation and, as a conse-
quence, leads to the interannual changes in heat content of the North Atlantic Ocean.

3.4  New approach for forecasting NAOi

In this paper, we explore two methods for preparing input time series to perform PCA 
and to extract PC1 of SLA/SSH for winter seasons or months. The approaches are graphically 
presented in Fig.  1. The sketch consists of two parts, where part “a” presents the use  
of the two methods for seasonal SLA/SSH data, while part “b” corresponds to monthly SLA/
SSH data. The first method, known hereinafter as “method 1”, is based on the complete 
time series of SLA/SSH (all seasons and months), which become input data for PCA. After 
analysis, the first principal components for winter seasons and months are extracted. The 
second method, called “method 2”, is based on subsets of SLA/SSH time series, in which 
only winter seasons or winter months are selected to perform PCA.

The procedure of producing the NAOi forecasts is graphically presented in Fig.  2.  
At least 20 years (1993–2013) of the observed SLA data are needed to fit a linear regression 
model. We allow four temporal resolutions (Fig. 1), and the resulting time series are pro-
cessed by “method 1” and “method 2”.

In the next step, following Esselborn and Eden (2001), PCA is performed on the 
observed SLA time series. In “method 1”, the calculated PC1s of winter seasons or months 
must be extracted. Based on the calculated PC1s (4 types) and time series of NAOi (for 
winter seasons or months only) we can construct a regression model describing the rela-
tionship between SLA and NAOi using the following formula:

where NAOi is expressed by the step-adjusted linear regression model describing the Hur-
rell winter (seasonal or monthly) NAO index, a and b are model coefficients and PC1SLA 
is time series of one of the four possible sets of principal component time series (PC1SLA 
computed using “method 1” for seasonal and monthly data—two datasets, and PC1SLA 
computed using “method 2” for both temporal resolutions—additional two datasets). 

(2)NAOi = a × PC1SLA + b,
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Fig. 1  Scheme of preparing seasonal (part “a”) and monthly (part “b”) SLA/SSH datasets for PCA using 
two methods. First method uses complete seasonal or monthly data (respectively 4 gridded map per year 
and 12 gridded maps per year) as an input data for PCA. After analysis, first principal components for 
winter seasons/months are extracted. In second method, winter seasons/months are already extracted from 
SLA/SSH dataset, hence shorter time series are input data for PCA. After analysis, no extraction is needed
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The above-mentioned regression model is recalculated every time, when new prognoses  
of NAOi are needed. The length of input SLA dataset is equal to the number of the avail-
able observations at the time of forecast determination. Hence, a new set of PC1SSH data  
is produced at every time step. The regression model is necessary to obtain coefficients a and 
b, which are used in the subsequent step of the procedure.

Fig. 2  Scheme presenting several steps in procedure of predicting winter Hurrell NAOi based solely on 
SLA observed and forecasted data using linear regression model based on time series of PC1SLA
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After fitting the regression model based on the observed SLA time series, we extend 
this dataset by attaching a newly-predicted SLA gridded map (one map containing SLA 
prognoses for the next DJF season or three maps consisting of SLA predictions for the 
next three winter months). Such gridded predictions are computed by the Prognocean 
Plus system using one of three stochastic models (PH+AR, PH+TAR or PH+MAR). The 
observed SLA data together with the attached newest gridded forecast, prepared using the 
above-mentioned methods 1 and 2, becomes input data for PCA. As previously, in the case  
of “method 2”, it is necessary to extract PC1s for winter seasons and months.

The last step of the procedure for computing prognoses of NAOi is the use of the regres-
sion model, based on the previously calculated coefficients and the extended time series of 
PC1SLA, utilizing the formula:

where p(NAOi) is the step-adjusted linear regression model predicting Hurrell winter 
(seasonal or monthly) NAO index, a and b are the already estimated model coefficients 
obtained to express NAOi, extPC1SLA is a time series composed of one of the four possi-
ble sets of principal component data (the same procedure as described above, but with the 
original time series of SLA extended by attaching the nearest winter prediction). The last 
component of extPC1SLA is calculated for the predicted gridded SLA data, attached to the 
observational dataset. In addition to the regression model p(NAOi), we determine its mod-
ified version p�(NAOi) produced by applying the empirical correction. It is the p(NAOi) 
model multiplied by a coefficient defined as a ratio between standard deviation of the NAOi 
time series and standard deviation of extPC1SLA data, namely:

where p(NAOi) is the step-adjusted linear regression model from the first approach to pre-
dict NAOi, �

NAOi
 is standard deviation of NAOi dataset, �

extPC1SLA
 is standard deviation 

of PC1SLA time series computed based on the observed SLA with attached forecast(s). 
This procedure results in the same variances of NAOi time series and the NAOi data recon-
structed from the p�(NAOi) regression model.

4  Results

In this study, we carried out two analyses: (1) we performed the calculations along the lines 
of the paper by Esselborn and Eden (2001) on a basis of SSH and SLA datasets, which 
allowed us to confirm the strong relationship between NAOi and SSH/SLA for the 20-year 
time span and to quantify the relation in question; (2) based on the dependency we used the 
associated regression models along with the real-time SLA predictions computed by the 
Prognocean Plus system. The approach was used to predict winter NAOi for four boreal 
winters from 2013/2014 to 2016/2017.

The length of time series included in the analyses varies between 21 and 72, depending 
on the selected approach, the temporal resolution (seasons vs. months) and the progno-
sis itself (into which season it hits). The shortest time series is for the prediction of the 
2013/2014 season computed using seasonal data. In contrast, the longest time series is uti-
lized for the prediction of the 2016/2017 season calculated using monthly data.

(3)p(NAOi) = a × extPC1SLA + b,

(4)p�(NAOi) = p(NAOi) ×
�NAOi

�extPC1SLA

,



541Acta Geodaetica et Geophysica (2020) 55:531–553 

1 3

-0.02

-0.01

0

0.01

0.02

-6

-4

-2

0

2

4

6

N
A

O
 i
n

d
e

x P
C

1
 S

L
A

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

r = 0.675 p-value = 4.84×10
–4

-0.02

0.02

0.06

0.10

-6

-4

-2

0

2

4

6

N
A

O
 i
n

d
e

x P
C

1
 S

L
A

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

r = 0.559 p-value = 6.37×10
–3

-6

-8

-4

-2

0

2

4

6

N
A

O
 i
n

d
e

x

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

-0.01

-0.005

0

0.005

0.01

P
C

1
 S

L
A

r = 0.596 p-value = 1.22×10
–7

-6

-8

-4

-2

0

2

4

6

-0.02

-0.01

0

0.01

0.02

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

P
C

1
 S

L
A

N
A

O
 i
n

d
e

x

r = 0.478 p-value = 4.79×10
–5

0.11

0.13

0.15

0.17

-6

-4

-2

0

2

4

6

N
A

O
 i
n

d
e

x P
C

1
 S

S
H

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

r = 0.560 p-value = 6.34×10
–3

0.09

0.10

0.11

0.12

0.13

0.14

-6

-4

-2

0

2

4

6
N

A
O

 i
n

d
e

x P
C

1
 S

S
H

1
9

9
3

1
9

9
6

1
9

9
9

2
0

0
2

2
0

0
5

2
0

0
8

2
0

1
1

2
0

1
4

r = 0.545 p-value = 8.13×10
–3

r = 0.473 p-value = 5.81×10
–5

-6

-8

-4

-2

0

2

4

6

0.09

0.11

0.13

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

P
C

1
 S

S
H

N
A

O
 i
n

d
e

x

0.07

-6

-8

-4

-2

0

2

4

6

0.09

0.11

0.13

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

2
0

0
9

2
0

1
1

2
0

1
3

P
C

1
 S

S
H

N
A

O
 i
n

d
e

x

r = 0.496 p-value = 2.17×10
–5

0.07

WINTER SEASONS (DJF) WINTER MONTHS (DJF SEPARATELY)
P

C
1
 S

S
H

c
o

m
p

u
te

d
 u

s
in

g
 M

E
T

H
O

D
 1

P
C

1
 S

L
A

c
o

m
p

u
te

d
 u

s
in

g
 M

E
T

H
O

D
 1

P
C

1
 S

S
H

c
o

m
p

u
te

d
 u

s
in

g
 M

E
T

H
O

D
 2

P
C

1
 S

L
A

c
o

m
p

u
te

d
 u

s
in

g
 M

E
T

H
O

D
 2

*after Esselborn and Eden (2001)

PC1SSH for DJF

winter NAOi

PC1SSH for D/J/F

winter NAOi

PC1SSH for D/J/F

winter NAOi

PC1SSH for D/J/F

winter NAOi

PC1SSH for D/J/F

winter NAOi

PC1SSH for DJF

winter NAOi

PC1SSH for DJF

winter NAOi

PC1SSH for DJF

winter NAOi

a b

c d

e

g h

f

Fig. 3  Scheme presenting relationship between principal components of winter seasons (left column) and 
winter months (right column) of SSH (graphs a–d) and SLA (graphs e–h) observed data computed using 
method 1 and 2 (alternating rows) values of PC1s are presented as grey squares with black outline, values 
of NAOi are presented as black triangles. On the bottom of each graph, value of Pearson’s correlation coef-
ficient (r) with statistical significance (p-value) are presented
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4.1  PC1 of SLA/SSH and NAOi

The relationships between PC1 of SSH/SLA and winter NAOi are presented in Fig. 3. For 
each graph we present the value of Pearson’s correlation coefficient (r) with its statisti-
cal significance (p-value). In the literature, a general appreciation for the level of correla-
tion may include the following values: 0–0.09 indicates no correlation, 0.1–0.3 indicates  
a small correlation, 0.3–0.5 indicates a medium correlation, and 0.5–1 indicates a large 
correlation (e.g. Cohen 1988). When interpreting small correlations it is worth referring to 
the paper by Kozak et al. (2012) who argue that “low value of the correlation coefficient 
can represent incredibly strong association, while a high value can still represent weak  
correlation” and recommend the analysis of the context of the association.

In their study, Esselborn and Eden (2001) performed the analysis on short seasonal 
SSH time series using “method 1” of preparing dataset for PCA. The results of similar 
calculations, but using much longer time series, are shown in Fig. 3a. Their version based 
on monthly data is presented in graph “b”. The corresponding analysis performed using 
“method 2” gives higher values of Pearson’s correlation coefficient. The strongest correla-
tion ( r = 0.56 ) appears between DJF Hurrel NAOi and PC1SSH for DJF season (graph 
“c”). This confirms that there exists the strong relationship between SSH and NAOi, which 
can be used in the process of forecasting NAOi. The Prognocean Plus system produces pre-
dictions of SLA, therefore we conducted the same experiment with SLA data (Fig. 3e–h). 
The correlation coefficient between NAOi and PC1SLA in all cases is even higher than 
between NAOi and PC1SSH. The highest correlation value ( r = 0.68 ) occurred between 
winter seasonal NAOi and PC1SLA for DJF season.

4.2  Seasonal forecasts

Using two regression models described in Sect. 3.4 which utilize PH+AR-based SLA pre-
dictions, we produced four seasonal prognoses of winter Hurrell NAOi. They are presented 
in rows of Fig. 4. In order to keep the calibration period long enough (at least 20 years), the 
first NAOi forecast is issued into the DJF season 2013/2014 (graphs “a” and “b”), while the 
last available prediction is for the DJF season 2016/2017 (graphs “g” and “h”). Each graph 
consists of black solid line reflecting values of the observed NAOi, solid grey (approach 
1) and dark grey (approach 2) lines which are NAOi reconstructions from two regression 
models. Dashed lines and squares with the greyness intensity corresponding to the mod-
els indicate values of predicted DJF NAOi. Because of the stepwise recalibration of each 
model, every time when forecast is produced, these parts of graphs are different as the cali-
bration dataset extends. The model recalibration shows that both models respond properly 
to changes of NAOi. The presented statistics (Table 1) show that the values of Pearson’s 
correlation coefficient fall around 0.5, and the values of MAE or RMSE statistics fluctuate 
around 1.5. The empirically-corrected regression model (Eq. 4) reveals better performance 
and, because of the same variance as NAOi time series, it better reflects the amplitudes  
of NAOi changes.

Although Fig. 4 focuses on the PH+AR model only (it has the smallest misfit accord-
ing to the conducted performance analysis), the skills of the remaining two deterministic-
stochastic models (PH+TAR and PH+MAR) are juxtaposed in Table 1. It is apparent from 
the table that choice of the SLA prediction model from those available in the Prognocean 
Plus system has no impact on the performance of NAOi forecasts. Higher correlations are 
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METHOD 1 OF CALCULATING PC1SLA METHOD 2 OF CALCULATING PC1SLA
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Fig. 4  Set of graphs presenting performance of two regression models in reconstructing and predicting win-
ter seasonal Hurrell NAOi. In left column all regression models are based on the PC1SLA obtained using 
method 1, results using method 2 are in the right column. Each row shows results of reconstruction and 
prediction of one DJF season, where first row is forecasting Hurrell NAOi for winter season 2013/2014 
and the last one—2016/2017. Observed NAOi is presented as solid black line. Reconstruction of NAOi 
using approach 1 (first regression model without correction) is an solid grey line, dark grey solid line is a 
performance of approach 1 (second regression model with correction). Predicted values of NAOi for each 
winter season are indicated as an filled square with black outline and marked centroid of the figure, joined 
by dashed-line. Fill of the square correspond to the line colour assigned to the forecasting approach
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Fig. 5  Set of graphs presenting performance of two regression models in reconstructing and predicting win-
ter monthly Hurrell NAOi. In left column all regression models are based on the PC1SLA obtained using 
method 1, results using method 2 are in the right column. Each row shows results of reconstruction and 
prediction of D/J/F months, where first row is forecasting Hurrell NAOi for winter months 2013/2014 and 
the last one—2016/2017. Observed NAOi is presented as solid black line. Reconstruction of NAOi using 
approach 1 (first regression model without correction) is an solid grey line, dark grey solid line is a perfor-
mance of approach 1 (second regression model with correction). Predicted values of NAOi for each win-
ter month are indicated as an filled square with black outline and marked centroid of the figure, joined by 
dashed-line. Fill of the square and colour of the dashed-lines correspond to the solid line colour assigned to 
the forecasting approach
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found for “method 1” (in all variants), but at the same time prediction errors are similar  
or worse than in case of predicting winter months of NAOi. The PH+AR model reveals the 
lowest values of MAE and RMSE (the lowest values of these statistics are 1.18 and 1.55, 
respectively, for method 1, approach 1, season 2013/2014). However, it should be clearly 
noted that all values of prediction performance statistics are very similar. They are often 
non-recognizable, with differences occurring at the 4th or 5th decimal place.
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Fig. 6  Scatter plot of the case presented in Fig. 5b. Gray triangles represent corresponding values of recon-
structed and predicted values of NAOi obtained from approach 1 (before correction) and observed NAOi, 
where dark grey squares indicate corresponding values of reconstructed and predicted values of NAOi 
obtained from approach 2 (after correction) and observed NAOi. Based on the corresponding values, solid 
lines representing trend lines are drawn. Dashed line indicates the ideal relationship between predicted or 
reconstructed values of NAOi and observed ones. Correlation coefficient r = 0.578 for both approaches 
(scaling factor does not change r)
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4.3  Monthly forecasts

We carried out a similar exercise, based on monthly data. In this setup, NAOi for three 
individual winter months is predicted. The results are presented in Fig.  5, the structure  
of which corresponds to Fig. 4.

The empirically-corrected regression model (Eq.  4) resolves the amplitude of NAOi 
better than the uncorrected model. Forecasts issued into D/J/F months for winter seasons 
2015/2016 and 2016/2017 are accurate, with the NAOi amplitude correctly resolved. The 
usefulness of the empirical correction is well seen in Fig. 5b, where the corrected predic-
tion curves accurately hit the true NAOi variability (predicted values correctly fitted the 
fluctuations in NAOi values, with absolute error smaller than 0.7). To convince the reader 
why the empirical correction was needed, the authors prepared Fig.  6 where the scatter 
plot of the mentioned case from Fig. 5b is presented. The amplitudes of the uncorrected 
NAOi changes determined through the reconstruction and prediction vary between − 0.5 
and 0.5 (gray rectangles), while the corrected ones (dark gray squares) are between − 4 and 
4 which much better reflects the real NAOi variability (− 5.5 to 4).

Table  1 shows that for monthly predictions of NAOi, the use of “method 2” leads  
to the highest correlation coefficient values which exceed 0.59 (winter season 2015/2016). 
Based on the prediction errors, “method 2” is found to produce the most accurate forecasts 
of NAOi for D/J/F months in winter 2015/2016. In this exercise, 69 values of PCA1 and 
NAOi are used.

4.4  Discussion

It is known that correlations between NAOi and its short-term predictions are very high, 
i.e. ≥ 0.8 up to 6–7 days into the future (Johansson 2007; Vitart 2014). They decrease  
to approximately 0.35 when lead time increases to 15 days (Johansson 2007).

Although our validation of monthly and seasonal forecasts, due to data availability, is 
limited to four winters (2013/2014, 2014/2015, 2015/2016, 2016/2017), we believe that 
the numerical exercise serves as a feasibility study to confirm the usefulness of the new 
methodical approach presented in this paper. Our method uses altimetric sea level change 
of northern Atlantic Ocean as a predictor of NAOi, and it is fundamentally different from 
the work of Saunders and Qian (2002) who employed SST variability to forecast NAOi. 
Even though the statistical robustness of our NAOi prediction validation is much worse 
than the robustness of the results published by Saunders and Qian (2002)—i.e. 20 years for 
comparing the reconstructed models with true data and 4 winters for comparing true data 
with predictions (our study) versus 51 years of cross-validation and 15 winters for compar-
ing predictions with independent forecasts (Saunders and Qian 2002)—certain findings are 
similar. The two studies aim to anticipate NAOi in the 3-month DJF seasons. In the SST-
based NAOi prediction experiment, correlations were found to vary between 0.47 and 0.63 
for the cross-validation period (51 years), while in our SLA-based NAOi prediction exer-
cise correlations between true and reconstructed NAOi (20 years of calibration with step-
wise extension by one year) were equal to 0.51–0.69. Thus, SST- and SLA-based NAOi 
predictions have comparable skills.

Similarly, Saunders et  al. (2003) obtained comparable correlations of 0.60–0.62  
in numerical hindcast experiments for intervals 1972–2001 and 1987–2001. Also, Johans-
son (2007) found that statistically significant correlations between monthly NAOi predic-
tions and data vary from 0.36 to 0.63, depending on month. Lower and often insignificant 
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correlations (max 0.42) were found for seasonal predictions (Johansson 2007). For longer 
lead times (year-to-year) Kim et al. (2012) obtained much lower correlations (approx. 0.2), 
while Fan et al. (2016) presented slightly higher values (approx. 0.38–0.53). The recently 
developed statistical method by Wang et  al. (2017) uses the multiple linear regression  
to forecast the NAO variability, with SST, 70 hPa geopotential height and sea ice concen-
tration as main predictors. The authors reported high correlations between data and NAO 
predictions. Also, high correlations, even exceeding 0.8 for selected cases, were obtained 
by Dobrynin et al. (2018) who used the dynamical ensemble approach.

The performance of our NAOi predictions is either controlled by the relationship 
between PC1SLA and NAOi, described by Esselborn and Eden (2001), or driven by the 
skills of the SLA predictions issued by the Prognocean Plus system (Świerczyńska et al. 
2016). Figure  3 shows that our PC1SSH–NAOi analysis for 1993–2014 leads to find-
ings which are similar to what Esselborn and Eden (2001) discovered. It is also appar-
ent from Fig. 3 that correlations between PC1SLA and NAOi are higher than correlations 
PC1SSH–NAOi.

Our approach is purely statistical, since both the relationship borrowed from Esselborn 
and Eden (2001) and three models implemented in the Prognocean Plus system are empiri-
cal. There are other attempts to build such statistical prediction schemes to anticipate NAOi 
variability. For instance, Eshel (2003) focused on the Pacific–Atlantic teleconnection and 
built long-term 15-month NAOi predictions using sea level pressure, not only in northern 
Atlantic, but in particular in northern Pacific. The correlations between one-year NAOi 
predictions and observations were found to be approximately equal to 0.45 for 1925–2002 
cross-validation experiment.

It is rather difficult to compare the skills of our predictions of NAOi with the corre-
sponding forecasts based on other models run by different centres. For instance, the histori-
cal ECMWF prognoses are not archived (e-mail communication dated 01/08/2018), while 
the fortnight ensemble predictions computed by NOAA CPC are publically available solely 
as graphical plots without access to historical forecasts (www.cpc.ncep.noaa.gov/produ 
cts/preci p/CWlin k/pna/nao.shtml , access date: 09/08/2018). The comparison of prediction 
errors and skill measures must therefore be limited to published work in which different 
timespans are employed.

5  Conclusions

We developed a new method for forecasting winter Hurrell NAOi based solely on SLA 
predictions calculated by the Prognocean Plus system. Using the procedure proposed  
by Esselborn and Eden (2001) we demonstrated a significant relationship between SLA 
data, aggregated seasonally and monthly, and seasonal and monthly winter Hurrell NAOi 
(Pearson’s correlation coefficient was equal to 0.69 and 0.59, respectively). Forecasts of 
NAOi included winter season from 2013/2014 to 2016/2017 (four seasonal and four 
3-monthly predictions).

The main finding of this paper is that it is possible to produce long-term (up  
to 3-months) predictions of NAOi based solely on SLAs. The study shows that using  
predictions of SLA from the Prognocean Plus system we are able to anticipate next values  
of winter NAOi with prediction errors of MAE and RMSE not exceeding 1.5 and 1.9, 
respectively. The key findings are the following:

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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• forecast accuracy using regression models is satisfying, and the best performance was 
achieved using SLA forecasts from PH+AR model implemented in the Prognocean 
Plus system,

• differences between performance statistics indicate that the choice of SLA forecasts 
model has less impact than the choice of method for preparing SLA time series for 
PCA,

• approach 1 of predicting NAOi fails to resolve NAOi amplitudes,
• approach 2 (empirically-corrected model outputs), properly resolves NAOi amplitudes,
• the calibration (reconstruction) of approaches 1 and 2 is characterized by high agree-

ment with observations, while the predictions based on the reconstructions reveal only 
medium or low agreement with observations.
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