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Abstract

The increasing spread of the Asian tiger mosquito, Aedes albopictus, in Europe and US

raises public health concern due to the species competence to transmit several exotic

human arboviruses, among which dengue, chikungunya and Zika, and urges the develop-

ment of suitable modeling approach to forecast the spatial and temporal distribution of the

mosquito. Here we developed a dynamical species distribution modeling approach forecast-

ing Ae. albopictus eggs abundance at high spatial (0.01 degree WGS84) and temporal

(weekly) resolution over 10 Balkan countries, using temperature times series of Modis data

products and altitude as input predictors. The model was satisfactorily calibrated and vali-

dated over Albania based observed eggs abundance data weekly monitored during three

years. For a given week of the year, eggs abundance was mainly predicted by the number

of eggs and the mean temperature recorded in the preceding weeks. That is, results are in

agreement with the biological cycle of the mosquito, reflecting the effect temperature on

eggs spawning, maturation and hatching. The model, seeded by initial egg values derived

from a second model, was then used to forecast the spatial and temporal distribution of

eggs abundance over the selected Balkan countries, weekly in 2011, 2012 and 2013. The

present study is a baseline to develop an easy-handling forecasting model able to provide

information useful for promoting active surveillance and possibly prevention of Ae. albopic-

tus colonization in presently non-infested areas in the Balkans as well as in other temperate

regions.
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Author summary

The Asian tiger mosquito Aedes albopictus, originating from Asia, in the last decade has

spread in many regions in Europe and US. Beside the nuisance problem causing to the cit-

izens during the day, this species has raised public health concern, due to its strict associa-

tion with humans and anthropic habitats, its expanding distribution and its capacities to

transmit several human arboviruses. We developed a spatio-temporal model of Ae. albo-

pictus dynamics that helps to understand the biology and the ecology of the species in rela-

tion to environmental factors, and to inform efficient control strategies. Here we

developed a dynamical species distribution modeling approach at high spatial (over the

Balkans) and temporal resolution (weekly scale), enabling to link oviposition activities

and climatic conditions across different time periods to forecast the potential future ovi-

position activities of Ae. albopictus in unknown locations or identify target areas and peri-

ods of highest activities. Extrapolating Ae. albopictus abundance over the Balkan region

may help to identify habitat suitability where the species has never been reported so far.

The temperature-related predictors remain the most determinant predictors among all

candidate predictors e.g land cover and rainfall. The model provides useful information

for promoting active surveillance on Ae. albopictus and assessing the risk of exotic arbovi-

rus transmission in temperate regions.

Introduction

In the last decade, the increasing spread of the Asian tiger mosquito, Aedes albopictus, in

Europe and US has raised public health concern, as the species is involved in the transmission

of several human arboviruses among which dengue, chikungunya and Zika [1,2,3,4]. The tiger

mosquito is arrived in Europe in the seventies, probably through cargo transportation from

China [5]. The first record of this species in Europe was reported from Albania in 1979,

although it is quite possible that the species was already present in mid-1970s, at least two

decades before the species was first detected in Italy in 1991[5]. Nowadays, Ae. albopictus is

widespread and commonly found in Albania, even in tiny isolated villages and sites in high

altitude including beech forest up to 1200m. In other European countries, Italy reported Ae.

albopictus up to 600m altitude[6] and the species was found in Switzerland, France or Spain

and widely distributed in Balkan countries such as Croatia, Montenegro and Serbia [(http://

ecdc.europa.eu/en/healthtopics/vectors/vector-maps/Pages/VBORNET_maps.aspx) [7]

To mitigate the potential impact of the mosquito in transmitting human diseases, efforts

were made to better understand the biology and the ecology of the species. The role of the

environmental factors in the spread and temporal dynamics of Ae. albopictus has been investi-

gated in both laboratory and field work conditions [8]. Temperature is shown to be a crucial

driver for Ae. albopictus activity at different levels, from adult abundance [9] and oviposition

activity [10], to eggs incubation [11] and eggs hatching [12,10,11]. More specifically, laboratory

studies showed to which extent the strength of thermal conditions, their starting period and

duration, could impact spawning and embryogenesis [11]. Some other environmental factors

related to land cover, have been shown to be statistically associated with high habitat suitability

for Ae. albopictus larval breeding site, through the landscape structure [13].

To date, several studies have focused on modeling the spatial distribution of Ae. albopictus

at different spatial scales, from global [14], to continental for Europe, [15,16] or country and

regional scales e.g., for Japan, [17] for Northern Italy [18,19]. However, as most classical spe-

cies distribution modeling approaches, those studies provide a static picture of Ae. albopictus
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activity, by statistically relating the occurrence [14,15] or eggs abundance [20] of the species to

some environmental spatial factors for some fixed period of the year. By contrast, a few studies

have either accounted for spatio-temporal variables [21,22,23] or developed dynamical models

of Ae. albopictus biological activity [24], enabling to link oviposition activities and climatic

conditions across different time periods [25]. The use of dynamical model provides a prag-

matic solution for public health policies to forecast the potential future oviposition activities of

Ae. albopictus or identify target areas and periods of highest activities. This might be used, in

return, to develop efficient scenarios to mitigate the impact of the tiger mosquito in the spread

of several human diseases among which dengue, chikungunya and Zika.

Hereby, we present a three-year study of the abundance of Ae. albopictus eggs at different

altitudes on Dajti mountain in central Albania. We developed a novel dynamical species distri-

bution modeling approach at high spatial and temporal resolution. Our major goal is to

develop a statistical forecasting model as simple as possible in terms of implementation for

non-statistician users, with relatively low computer-time calculation and flexibility for extrapo-

lating projected results to varying spatial and temporal scales. Our approach contrast with the

many species distribution models published previously by allowing spatially and temporally

explicit predictions. The three main objectives are: i) calibrating and validating a forecasting

approach based on independent data to assess the ability of the model to project the potential

future oviposition of Ae. albopictus in unknown locations; ii) ensuring that the strength of

environmental drivers on mosquito spawning, as fitted by our model at large spatial and time

scale, is consistent with literature review; iii) extrapolating our forecasting approach and proj-

ect the spatio-temporal oviposition activity of Ae. albopictus over the Balkans between 2009

and 2012 at high spatial (1km2 resolution approximately) and temporal resolution (weekly

scale).

Methods

Forecasting model framework

The forecasting modeling framework was based on five major steps summarized hereafter.

First, the entomological and environmental data were collected and stored into a spatial-tem-

poral database for data analysis. Second, a calibration step aimed at selecting the best combina-

tion of predictors and statistical models that best fit the observed spatio-temporal patterns of

eggs abundance. Third, the ability of the forecasting model to project unforeseen future events

in new locations was tested on independent validation dataset. Four, the forecasting model

projections were extended to the entire Balkan countries (Albania, Montenegro, Macedonia,

Serbia, Kosovo, Greece, Croatia, Slovenia, Bulgaria and Rumania) at high spatial (one km) and

high temporal (week) resolution between 2009 and 2013. The overall modeling framework was

built upon Generalized linear models (GLM; [26]) to facilitate the ecological understanding of

model behavior while minimizing computer-time calculations and favoring the replication of

model to similar ecological systems.

Dataset

Entomological survey. Oviposition activity of Ae. albopictus was monitored in 26 sites

across Albania by ovitraps, i.e. black cylindrical vessels (9 cm high, 11 cm in diameter with an

overflow hole at 7 cm from the base) filled with ~300 ml tap-water with no attractants, and

internally lined with heavy-weight seed germination paper [27]. No specific permissions were

required for these sites/activities. Landowners gave permission to conduct the studies on their

properties. The field studies did not involve endangered or protected species.
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A first set of 16 sites located in the center of Albania (Tirana-Dajti mount, 19 55’51.2"Eo, 41

21’34.5"No, across a 154–1559 meter altitude gradient, (Fig 1A) was used for model

calibration.

Monitoring started in April 2011 and continued on a weekly basis until December 2013, by

5 ovitraps/site (i.e.80 ovitraps/week). A second set of 10 sites located in the Northern part of

Albania (Malesia e Madhe-Vermosh 19 41’26"E, 42 35’22"N, along an altitude gradient ranging

from 41 to 1282 meters, (Fig 1B) was used for model validation.

In the latter 10 sites, monitoring was carried out in August-September 2012 every two

weeks by 5 ovitraps/site and the number of eggs/week was calculated by dividing the total

number of eggs collected over the two weeks by two.

Eggs laied on germination paper were counted and identified to species level based on their

color, size, shape and surface sculpting [28].

Environmental data. Climate and landscape data expected to influence Ae. albopictus

ecological dynamic were used to derive relevant predictors in the model [21, 22, 23]. The mean

land surface temperature (LST) were extracted fromModis data, by averaging night and daily

LST data, then rescaling data to the weekly resolution using spline interpolation to match the

sampling unit of the study. Altitude data were based on the Shuttle Radar Topography Mission

database (SRTM; [29]). For each site, the dominant class of Corine land-cover 1km resolution

raster [30] was extracted among: artificial surface, agriculture, forest, wetlands or water body.

Fig 1. Location of the sampling sites. a) 16 sites used for model calibration are located in Middle Albania (Tirana-
Dajti mount); b) 10 sites used for model validation are located in North Albania (Malesia e Madhe–Vermosh).
Information sources are open source information from: http://asig.gov.al/ https://landsatlook.usgs.gov/viewer.html.

https://doi.org/10.1371/journal.pntd.0006236.g001
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Forecasting model structure

The spatial and temporal sampling unit of study was defined at the site and week scale, respec-

tively i.e. the forecasting model aimed to predict the total abundance of Ae. albopictus eggs/

site/week.

The structure of the forecasting model was made of three components; namely the ’Core’,

’Init’, and ’Max’ components. While the Core component is the key feature, making the direct

link between the spatial and temporal variability of environmental predictors and the abun-

dance of Ae. albopictus eggs/site/week, the ‘Init’ and ‘Max’ component defines the initial and

maximal condition values inside which the Core modeling component was allowed to run.

The Core model. Ten predictors expected to influence eggs abundance were used in the

models. We aimed to develop a parsimonious model using a relatively limited number of vari-

ables with a plausible biological causal relationship underlying the predictions. The variables

included: i) three biological predictors referring to the respective eggs abundance recorded at

each three weeks before the sampling; ii) four climate predictors including the mean tempera-

ture recorded at the sampling week and at each of the past three weeks of sampling, in order to

take into account the role of climate variables during the larval development in affecting A.

albopictus adult abundance and survival [23]; iii) two geophysical predictors related to Corine

land-cover and altitude; iv) one seasonal predictor denoting the week of the year the sample

was recorded.

Considering eggs abundance as count data, Poisson (hereafter referred as ’poisson’) or neg-

ative binomial (hereafter referred as ’nb’) errors distribution families were assumed in the

modeling setup. In addition, simple GLMs (hereafter referred as ’glm’) as well as more com-

plex types of model enable to account for the presence of large number of zeros in the database

(> 50%) were also tested; namely hurdle (hereafter referred as ’hurdle’) and zero-inflated

(hereafter referred as ’zeroinf’) models [31]. It is worth to note that zero-inflated models are

based on a zero-inflated probability distribution i.e. a distribution that allows for frequent

zero-valued observations. So, the zero inflated model fit simultaneously two separate regres-

sion models. On one hand a logistic or probit model that predicts the probability of being a

non-zero count, and on the other hand a model that predicts the size of that count. In total, six

models derived from the combination between the three types of model and the two distribu-

tion families were compared to each other; i.e. glm-poisson, glm-negbin, hurdle-poisson, hur-

dle-negbin, zeroinf-poisson, zeroinf-negbin.

The Init and Max models. The Init modeling component defined initial condition values

to allow the Core component to initialize projections from any week of the year and any loca-

tion, and to populate the core model with these values to generate projections. This allows pro-

jections to be made in any location where the predictor covariate data is available. Similarly,

the Max modeling component defined maximal condition values at each step of the forecasting

process, preventing the Core model to project some excessive or unreliable eggs abundance

values above those maximal condition values.

Based on the calibration dataset, the mean and maximum weekly eggs abundance over the

three years of sampling was calculated at each site. The Init and Max models were setup indi-

vidually, by regressing the mean (for the Init model) and the maximum (for the Init model)

weekly eggs abundance against the mean altitude and the week of the year (as a second polyno-

mial degree). GLMs models with Poisson and negative binomial distribution families were

tested.

Models selection. The procedure used to select the best combination of predictors and

statistical models was inspired from [32]. For each sub-model (i.e. Core, Init and Max model),

each statistical model was first built using the full set of potential predictors, hereafter referred
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as ’full model’. Then, the ’full’ model that best fulfilled the following five criteria was selected:

1) normality of residuals; 2) homogeneity of residuals; 3) absence of strong spatial and tempo-

ral autocorrelation patterns in the residuals as quantified by the experimental semi-variogram;

4) dispersion parameter as close as possible of value 1; 5) Akaike information criterion as small

as possible (AIC). Finally, a stepwise procedure was applied to the best ’full’ model to derive

the most parsimonious ’final’ model i.e. the model which maximizes the model goodness-of-fit

based on AIC criteria while minimizing the number of predictors. All predictors were trans-

formed to normality and scaled to zero mean and unique variance. All models were calibrated

using the calibration dataset.

Dynamical feature. The dynamical feature of the forecasting model was designed to

refine the accuracy of projections while integrating meaningful ecological information related

to the biological cycle of Ae. albopictus. Technically, this was implemented in 4 steps by: i) ini-

tializing the Core model at a given week of the year (Wt) using the Init Model by estimating

starting egg counts; ii) Output from the Init Model were used to derive the egg count predictor

variables to be included in the Core Model; iii) Core model projections were then calculated

while paying attention that they do not exceed Max model projections, otherwise they were

given the corresponding Max model projection value; iv) Core model outputs at time Wt were

used as egg count predictors at timeWt-1 to derive Core model projections at time Wt+1; v)

The model was run iteratively until the ending week of the year, by repeating step iii) and iv).

Forecasting model calibration and validation

The forecasting model was calibrated using the calibration dataset while validated using the

validation dataset. Both dataset were assumed to be spatially independent, so that the valida-

tion step provided a suitable assessment of the forecasting model ability to extrapolate projec-

tions to higher spatial extents. Since the validation data were only available in weeks 32, 34, 36

and 38 for year 2012, the goodness-of-fit assessment was made for this period only.

Model goodness-of-fit and uncertainty was evaluated throughout bootstrap approach

under 100 iterations. For each iteration, 70% of the calibration dataset was randomly sampled

(with replacement) to calibrate a single forecasting model. The projections derived from the

100 forecasting models were then assembled to calculate the 10th, 50th and 90th percentiles pro-

jections values.

The model goodness-of-fit was quantified by comparing the projected values with the vali-

dation observational values using root mean square error (RMSE) and Spearman rank correla-

tion coefficients index. The robustness of the forecasting model was discussed in terms of

weekly variability and by initializing the model at different weeks of the year, ranging from

one to five weeks before the first recording week.

Forecasting model extrapolation to the Balkans

Once validated, the forecasting model was extrapolated to Albania and its surroundings coun-

tries (Montenegro, Macedonia, Serbia, Kosovo, Greece, Croatia, Slovenia, Bulgaria, Rumania)

at 0.01 degree spatial resolution (WGS84 coordinate reference system), and at a weekly interval

from 2009 to 2013. Model projections are provided as supplementary information data S1

Dataset.

The forecasting model assumed stationarity, so that the relationships fitted between the

abundance of eggs and its predictors was supposed to remain stable beyond the spatio-tempo-

ral extent of model calibration.

All statistical analyses were performed under the R software environment (version 3.1.1)

using packages pscl [33], visreg [34], dplyr [35], and ggplot2 [36].
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Results

Entomological observations

The entomological survey revealed the presence of Ae. albopictus even in very tiny and isolated

sites up to the altitude 1,200 m a.s.l. in Middle Albania (Dajti mount) and up to 1,054 m a.s.l.

in North Albania (Vermosh). The highest species abundance (i.e. 1028 eggs/ovitrap in average

w 28 (second week of July), 2012) was observed in park and gardens in urban, suburban and

rural areas below 550 m a.s.l and high abundance was also observed up to 700 m a.s.l. in both

the North and the Central transects (i.e. 377 eggs/ovitrap in average w31, 2013). While at alti-

tudes<160 m oviposition continued fromMay to early December (weeks 19–49, with peaks

in August and September), the activity declined with at higher altitudes and was observed only

from end of June to end of September (w25-w38) at>760 m a.s.l.

Although Ae. albopictus eggs represented>97% of mosquito eggs found, eggs of other mos-

quito species were also found in ovitraps. Ochlerotatus geniculatus eggs were found in almost

all stations along the transect in Dajti mount fromMay (w19) to beginning of September

(w36) at altitudes<140 m a.s.l. and from beginning of June (w24) to end of August (w35) at

higher altitudes. Anopheles sp. eggs were found in ovitrap located in the 333 m a.s.l. site in

Dajti mount (w25, 2012). Presence of Anopheles plumbeus adults was observed at 1257m a.s.l.,

end of June 2012 (w25). Culex pipiens egg rafts were found in the 962 m a.s.l. site in Dajti

mount in June-July 2012 (w25-28).

Model selection

The first model selection step consisted in identifying the most suitable statistical models for

the Core, Init and Max modeling components, independently. For the Core modeling compo-

nent, zero-inflated negative binomial model displayed the best goodness-of-fit results, with

particularly low AIC, RMSE and dispersion parameters values (zeroinf-nb; Table 1).

The best statistical model was selected based on the following criteria: normality, homoge-

neity and absence of strong spatial and temporal autocorrelation patterns in the residuals (Fig

2), minimizing dispersion, RMSE and AIC parameter values. All models were built upon the

calibration dataset.

In regards with the Init and Max modeling component, best results were obtained using

GLM statistical model with negative binomial distribution family (glm-nb; Table 1).

In addition, the analysis of Core model results revealed a satisfying normality, homogeneity

as well as an absence of strong spatial and temporal autocorrelation patterns in residuals (Fig

2).

Table 1. Statistical model selection for the Core, Init and Max modeling components, based on based on Akaike information criterion (AIC), Spearman correlation
coefficient (COR), root mean square error (RMSE) and dispersion parameter (DISP).

Statistical model Core Model Init Model Max Model

AIC COR RMSE DISP AIC COR. RMSE DISP. AIC COR. RMSE DISP.

Poisson model (glm-pois) 31174. 0.76 125 103.7 89731 0.82 97.6 72.12 150582 0.81 164.5 124.42

Negative binomial model (glm-nb) - 0.76 29274 7.9 10446 0.83 126.9 2.91 11627 0.81 231.7 2.61

Hurdle Poisson model (hurdle-pois) 190935 0.77 115 19.1 - - - - - - - -

Hurdle negative binomial model (hurdle-nb) 22227 0.79 404 0.76 - - - - - - - -

Zero-inflated poisson model (zeroinf-pois) 190935 0.79 115 19.32 - - - - - - - -

Zero-inflated negative binomial model (zeroinf-nb) 22207 0.79 376 0.74 - - - - - - - -

‘-’ Statistical models that have not been tested as candidate models.

https://doi.org/10.1371/journal.pntd.0006236.t001
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Final Core, Init and Max modeling components were derived using AIC backward stepwise

variable elimination and results are shown in Table 2.

Model behavior

Based on the final Core model results, the main relationships between conditional effect of pre-

dictors and eggs abundance was shown in Fig 3. One can note that the temperature in the cur-

rent week, the lagged temperature in the weeks -2 and -3, and the land cover variables were

taken out of the significant predictor variables by the backward stepwise procedure.

The influence of egg abundance in the previous weeks decreased with time, with the stron-

gest effect of egg abundance at week-1, and the lowest but yet significant effect for egg abun-

dance at week-2 and week-3 (Table 2 and Fig 3). Temperature measured by the MODIS LST

signal in the previous week had positive influence on eggs abundance, while altitude displayed

a negative effect. Neither the land cover nor the seasonal predictors were selected in the final

Fig 2. Spatial and temporal experimental semi-variograms calculated from the final Core model residuals,
highlighting low autocorrelation in model residuals (the black line indicated the smoothed trend).

https://doi.org/10.1371/journal.pntd.0006236.g002
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model. This suggests the seasonal eggs abundance variability was satisfactorily captured by cli-

matic and previous week egg abundance predictors.

Model validation

The forecasting model accuracy was evaluated using calibration and validation sites for year

2012 during the summer period (weeks 32–38). Results from the 100 bootstrap model outputs

are summarized in Fig 4.

Goodness-of-fit criteria included the residuals (i.e. the difference between the predicted

and observed abundance), root mean squared error (RMSE) and Spearman correlation values.

Since the validation data were only available for weeks 32, 34, 36 and 38 in year 2012, the over-

all goodness-of-fit assessment was performed for this period only.

Model accuracy was assessed in terms of weekly variability (Fig 4A) as well as by initializing

the model at different weeks of the year, ranging from one to five weeks before the first record-

ing week (Fig 4B).

Globally, goodness-of-fit metrics were relatively comparable between calibration and vali-

dation dataset, although validation metrics values were moderately lower than the calibration

ones e.g. residuals calibration � 140.37 vs residuals validation � 67.14, RMSE calibration � 310.41 vs

RMSE validation � 342.15, Spearman calibration � 0.72 vs Spearman validation � 0.66 (Fig 4). Those

results indicated the relatively good ability of the forecasting model to extrapolate out of its

spatial range of calibration.

The seasonal variability in model performances were relatively low and stable across time,

although the model displayed noticeably better performances in weeks 32 and 38 than in

weeks 34 and 36 (Fig 4A). Similarly, the variability in model performances due to the different

initialization weeks of the year was relatively low as well (Fig 4B). This highlighted the overall

good forecasting capacity of the model.

Model projections

The forecasting model was successfully applied to high spatial (0.01 WGS84 decimal degrees)

and temporal (weekly) resolutions over the Balkans for the period 2009–2013. Summary statis-

tics (percentiles 10, 50 and 90) were derived from the 100 bootstrap model runs to assess the

Table 2. Parameters, standard deviation and significance for the best Core (zero inflated negative binomial model; zeroinf-nb), Init (GLM negative binomial
model; glm-nb) and Maxmodels (GLM negative binomial model; glm-nb).

Core model (zeroinf-nb) Init model (glm-nb) Max model (glm-nb)

count model zero model

Coef. Sd. Sig Coef. Sd. Sig Coef. Sd. Sig Coef. Sd. Sig

Intercept 4.24 0.04 ��� -0.22 0.09 � -15.68 -1.32 ��� -15.91 -1.39 ���

Egg count Week-1 0.25 0.03 ��� -1.59 0.21 ��� - - - - - -

Egg count Week-2 0.12 0.03 ��� -0.65 0.15 ��� - - - - - -

Egg count Week-3 0.08 0.02 �� -0.4 0.12 �� - - - - - -

Temperature Week-1 0.34 0.04 ��� -0.87 0.16 ��� - - - - - -

Altitude -0.35 0.05 ��� -0.01 0.00 ��� -0.01 0.00 ��� -0.01 0.00 ���

Week of the year - - - - - - 1.37 -0.08 ��� 1.40 -0.08 ���

Week of the year2 - - - - - - -0.02 0.00 ��� -0.02 0.00 ���

�, ��, ���, Predictors significance at the alpha level of 0.05, 0.01 and 0.001 respectively.

‘-’Predictors which are not included in the modeling setup.

https://doi.org/10.1371/journal.pntd.0006236.t002
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Fig 3. Conditional effects of selected predictors (x-axis) on the egg abundances (y-axis) in the the final Core zero-inflated negative binomial model.

https://doi.org/10.1371/journal.pntd.0006236.g003
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mean trend and uncertainty in the projected eggs abundance spatiotemporal patterns (Figs 5

and 6).

Results were averaged to derive a spatial distribution maps in eggs abundance for each year.

The spatial patterns being relatively similar between years, results for year 2012 are shown to

illustrate the main spatial trends (Fig 5). Globally, results displayed strong spatial heterogene-

ity, the southern coastal regions displaying higher eggs abundance than in northern and cen-

tral regions. Resulting maps for percentiles 10, 50 and 90 were very similar to each other. This

indicated that the spatial uncertainty related to model error was relatively low.

Fig 4. Goodness-of-fit assessment for the forecasting model applied to the validation and calibration sites, based on 100 bootstrap
model projections. a) according to the monitoring week of the year and b) according to the week of model initialization.

https://doi.org/10.1371/journal.pntd.0006236.g004

Fig 5. Annual mean percentiles of 10% (p10), 50% (p50) and 90% (p90) of Aedes albopictus eggs abundance projected by the forecasting model over Balkan
countries in year 2012. The darker the color the more projected abundance by the model.

https://doi.org/10.1371/journal.pntd.0006236.g005
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The results were analyzed annually and seasonally for three different regions located in the

southern (region A), middle (region B) and northern (region C) parts of Balkans (Fig 6).

Although the three regions displayed different results in terms of magnitude, each region

displayed a strong similar seasonal signal. The projected annual peaks in eggs abundance gen-

erally occurred between the summer months of August and September i.e. approximately

from weeks 32 to 38. Importantly, the annual and seasonal uncertainty in projections was rela-

tively low since the mean percentiles 10 and 90 values were closed to the median value.

Discussion

Our results provide confidence in the ability of the here proposed forecasting model to project

the spatial and seasonal oviposition activity of Ae. albopictus over Albania and its neighboring

countries. Firstly, the goodness-of-fit indicators from the calibration and validation step were

satisfying. In regards with the Core modeling component, the use of zero-inflated model was

shown to outperform other GLMs models. In particular, zero inflated models have the interest

to account both for the skewed distribution (generally best modeled using negative binomial

distribution family) and for the high proportion of zero values in eggs samples. While similar

spatial modeling studies of Ae. albopictus generally apply negative binomial distribution family

to their model, they do not take into account high proportion of zero values [23,22,21]. Sec-

ondly, the spatio-temporal projections validated on the Northern sites of Albania, provides

confidence in the ability of model to extrapolate the spatio-temporal dynamics of eggs abun-

dance over the other Balkan countries. Some noise may however, have been added in this vali-

dation by the fact that the sampling interval was different in the training and validation data,

but given the fairly good goodness-of-fit metrics, we believe that this effect was low.

It is noteworthy that the geographical extrapolation exercise remains questionable over lon-

ger geographical distance, as far as the model has not validated using observational data from

the neighboring Balkan countries, which was not feasible in the frame of the present work, but

may become feasible in the near future as more information on the Ae. albopictus abundance

in the region are becoming available [37]. One should note, that in many cases, the validation

of spatial models is internal through the use of cross-validation, so fact of training and validat-

ing the model in entirely different areas goes beyond the state-of-the-art encountered in many

species distribution models applied to disease vectors. However, despite this limitation,

Fig 6. Mean annual and monthly Aedes albopictus eggs abundance projected by the forecasting model over the period 2009–2013 for the three regions located in
the southern (region A), middle (region B) and northern part (region C) of Balkan countries. The central statistics (percentile p50) and the associated error bars
(percentiles p10 and p90) of each barplot were calculated from 100 bootstrap models projections, averaged over the three regions of interest.

https://doi.org/10.1371/journal.pntd.0006236.g006
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extrapolating Ae. albopictus abundance over the Balkan region may help to identify suitable

environmental niche where the species has never been reported so far.

From a biological point of view, our results are in line with the known literature [23,22,21]

and provide further insights on the predominant predictors of Ae. albopictus oviposition activ-

ity. The key predictor was related to antecedent oviposition activities from the previous week.

That is, the abundance of eggs for a given week is likely to generate a proportional abundance

of adults which will spawn, in return, a proportional abundance of eggs for the next-coming

week. Temperature from the previous week was the second most important predictors of eggs

abundance, presumably through the influence of temperature on adults spawning. Thus, these

results are consistent with the known biological activity of Ae. albopictus, [38] which in tem-

perate areas have developed the ability to induce photoperiodic egg diapause, allowing over-

wintering and further assisting its establishment in more northerly latitudes. [11] Altitude and

seasonal information related to the week of sampling was of minor influence on eggs activity.

It is worth to note that temperature-related predictors are seemingly correlated with both alti-

tude and seasonality, thus spatio-temporal times series of temperatures are likely to capture

some seasonal and altitudinal signal. Altitude can be a proxy for temperature, but may is also a

proxy for slope or insolation, which may impact oviposition activity. Land cover was not

shown to be a determinant factor influencing oviposition activity, however this effect might be

significant in some particular areas not covered by our sampling design e.g. proximity to water

bodies. Some other predictors could have been included to improve the model such as water-

related predictors that may strongly influence oviposition activity, [39] in particular the devel-

opment time from eggs immersion to the adult state. However, the satisfying predictive power

of our model confirms that the temperature-related predictors remain the most determinant

predictors among all candidate predictors.

The proposed forecasting model provide information useful for promoting active surveillance

and possibly prevention of Ae. albopictus colonization in presently non-infested areas in the Bal-

kans (e.g. Kosovo andMacedonia), as well as in high altitude areas, and could represent a helpful

instrument for assessing the actual risk of exotic arbovirus transmission in temperate regions.
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