
 

 

 

  

Abstract—In this paper, a nonlinear autoregressive (NAR) 

recurrent neural network is used for the prediction of the next 

18 data samples of each time series in a set of 11 unknown 

dynamics in NN3 Database. The models are built on the 

reconstructed state spaces of data and no other domain 

knowledge is available to be used. Here, we clarify that the 

employed method is in part similar to a superior subclass of 

recurrent neural network, namely the nonlinear autoregressive 

model with exogenous inputs (NARX). Using the extensive 

available research about NARX networks, we briefly explain 

that our model is preferred to the both non-recursive and even 

other recurrent predictors, because of its intrinsic ability for 

learning long term dependencies in time series. As the desired 

values of the predicted time series are not available yet, no 

analysis have been performed on the presented results. 

I. INTRODUCTION 

N time series prediction, we wish to build a model that is 

responsible for generation of a given time series. 

However, when the underlying dynamics is affected by a set 

of explanatory variables, which are not known, the model 

that captures the dynamics cannot be identified directly. In 

these cases, a proper mapping of the observable output of the 

unknown dynamical system may be helpful for the prediction 

of the time series at hand. Identification of this mapping is 

discussed in the theory of dynamic reconstruction  [1]. Using 

the result of this theory the analysis, e.g. prediction, of the 

observable time series is possible. This is valuable if the 

evolution of the points in the reconstructed state space tracks 

that of the unknown dynamics in the original state space. 

Under some conditions, Takens delay-embedding theorem 

 [2] introduces a diffeomorphic map (one to one deferential 

mapping) as the result of dynamic reconstruction theory. 

According to this theory, with estimating two parameters of 

embedding dimension DE and normalized embedding delay 

τ, and constructing a predictive mapping, dynamic 

reconstruction is achieved. The reconstruction consists of 

two steps: first, a delay line should be designed to latch the 

information for DE points, and after that, a predictor that 

identifies the unknown mapping must be trained. This step is 

the heart of dynamic modeling. 

Various nonlinear predictors are employed for the time 
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series prediction task, including regression- and neural 

network-based algorithms. A review on some common 

methods for prediction of a chaotic time series, namely 

electricity price is presented in our recent work  [3]. As it is 

described in  [3], in many time series there is a very important 

characteristics, which is known as long-term dependencies, 

meaning that the temporal contingencies presented in the 

input/out sequences span long intervals. We have shown 

in [3],  [4] that this is the case for financial time series and 

electricity price historical data.  

It is mentioned in  [5] that recurrent neural networks 

(RNNs) may be considered as a good choice for mapping 

input sequences to output sequences. In contrast, static 

systems, i.e. those with no recurrent connection, even if they 

include some lagged values of input data, have a finite 

impulse response and have difficulties with respect to RNN 

to store information for an indefinite time  [5]. However, 

even simple recurrent networks, e.g. Elman RNN, are not 

ideal approaches for learning long-term dependencies 

because of the problem of vanishing gradient, meaning that 

under special condition given in section II, the fraction of 

error gradient due to information n  time steps in the past 

exponentially decreases as n  increases. 

To tackle the problem of vanishing gradient, a class of 

recurrent neural networks, called nonlinear autoregressive 

model with exogenous inputs (NARX) is proposed  [6], 

which has various advantages over simple recurrent 

networks. Not only has the NARX model less sensitivity to 

long-term dependencies [6], but also it has a very good 

learning capability and generalization performance  [7]. 

It should be mentioned that NARX is different from a 

popular Auto Regressive (AR) model  [8] which performs a 

simple linear transformation of the visited values of the time 

series. As it is mentioned in section II, the NARX is a 

nonlinear model which estimates the next  values of the time 

series based on its last outputs instead of the actual 

measurements as is used in ARIMA models. Furthermore, 

the NARX uses a nonlinear structure, e.g. a neural network, 

for estimating the model's parameters. In contrast, the 

coefficients of a simple AR model are estimated using simple 

statistical methods like least squares estimation. Therefore, a 

NARX model enjoys a better generalization capability. 

In this paper, we introduce the NARX model to use the 

research history that proves the advantages of this model 

over static and even simple recurrent structures. However, 
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the time series that we are going to challenge in this paper 

are not multidimensional, in the sense that for each time 

series there is not any other explanatory data with values 

corresponding to the original one. Therefore, we are 

obligated to employ a simplified NARX network known as 

NAR. However, as the advantages of NARX are due to the 

feedback structure of this model, we are still interested in 

using a nonlinear autoregressive model without any 

exogenous inputs.  

In this paper, we have employed aforementioned NAR 

model to forecast a set of 11 time series from the dataset of 

NN3 forecasting competition. As a preprocessing step, we 

first calculate some characteristics of these time series based 

on Takens’ embedding theorem and the theory of dynamic 

reconstruction. The reconstructed state space is then used to 

generate 18-step ahead forecasts. 

This paper is organized as follows. In the next section, we 

briefly review the architecture of NAR in the framework of 

NARX recurrent neural network and enumerate its 

advantages over other recurrent structures. In section III, we 

review the Takens’ embedding theory. In section IV, we 

present the reconstructed dynamics of time series in NN3 

database. In section V, we implement the methods explained 

in section II regarding the reconstructed state space 

addressed in section IV. Finally, the numerical results are 

presented in section VI. 

 

II. NARX RECURRENT NEURAL NETWORK 

A NARX model is a class of discrete-time nonlinear 

autoregressive systems, which has endogenous inputs as well 

as exogenous inputs, and can be stated as: 

tu

y

Dtutu

Dtytyfty

ε+−

−=+

))(,),(

),(,),(()1(ˆ

L

L

 (1) 

here )}({ ty  is the time series of interest that should be 

predicted and )}({ tu  is another time series with terms 

associated with that of )}({ ty . The terms )(,),( uDtutu −L  

are the exogenous inputs and may be produced with an input 

delay line with memory of order 
uD . Similarly 

)(,),( yDtyty −L  are the endogenous inputs and may be 

produced with a delay line memory of order 
yD . f  is some 

nonlinear function, e.g. a multi layer perceptron (MLP), that 

estimates the next value of )}({ ty , )1(ˆ +ty  and 
tε
 denotes 

the additive noise of the estimation. The architecture of a 

NARX recurrent neural network is shown in Fig. 1. The first 

layer of the MLP network consists of 
yu DD + buffer 

neurons, corresponding to the outputs of the two delay lines. 

Considering the above architecture, we define the cost 

function E  at the time t  as:  

2
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We may mathematically explain the effect of vanishing 

gradient on the derivatives of 
tE  with respect to the weight 

vector w : 
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It has been shown that if a network is to latch the 

information robustly, i.e. if it is to store information for a 

long period of time in the presence of noise, then for a term 

with υ << t , 0)(ˆ/)(ˆ →∂∂ υyty   [5]. In this condition, the 

gradient decays exponentially  [6], meaning that there is not 

any chance for the terms that are far from t  to change the 

weights in such a way that allow the network’s state to jump 

to a better basin of attraction. 

The above scenario comes true for all recurrent structures. 

However, one can postpone vanishing of gradient in NARX 

recurrent neural networks with increasing the number of 

delays in the output delay line of this architecture  [6]. As it 

may be seen in Fig. 1, the output delay line of NARX 

networks, as jump-ahead connections, provides shortcuts for 

propagating gradient information more efficiently when the 

network is unfolded in time. In an unfolded recurrent neural 

network, the hidden units from the pervious states are 

considered as an additional set of inputs. This property 

makes NARX a proper tool for modeling dynamics that 

exhibit long-term dependencies. 

As it is mentioned in section I, the NARX which is used in 

this paper does not have any exogenous inputs. 

 
Fig. 1.  A NARX recurrent neural network. 



 

 

 

III. EMBEDDING THEORY AND DYNAMIC RECONSTRUCTION 

By the results of Takens’ embedding theorem [9] and the 

theory of dynamic reconstruction [1], it is able to reconstruct 

the dynamics of interest, which were initially unobservable 

due to various, and maybe unknown parameters that effect 

on them. 

Takens’ theorem implies that by the means of two 

parameters of embedding dimension 
ED  and normalized 

embedding delay τ , it is guaranteed that the evolution of the 

points in the new state space follows that of the original state 

space. In this way the analysis, e.g. prediction of the new 

state space is fruitful. 

Suppose the time series )}({ ty  as the observable output of 

the unknown dynamical system )}({ tx ; )}({ ty  may be 

defined as follows: 

 ))(()( txgty =  (4) 

where )(⋅g  is a scalar-valued function. 

According to Takens’ theorem, we can define D -

dimensional reconstructed dynamics )}({ tRy  by the 

following equation:  
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where d  is the state space dimension of the unknown 

dynamics. 

As it is mentioned above, the evolution of the points 

)1()( +→ tt RR yy  tracks that of the unknown dynamics 

)1()( +→ txtx . So to challenge a problem concerned with 

the prediction of the time series )}({ tx , it is fruitful to predict 

the time series )}({ ty . This can be satisfied by a nonlinear 

model of 1: ℜ→ℜ
Df , which performs the following 

mapping:  

 ))(()1(ˆ tfty Ry=+  (6) 

where )1(ˆ +ty  is the one-step ahead predicted value of the 

time series )}({ ty . 

Equation (6) may be extended to τ -step mapping with a 

different model of f : 

 ))(()(ˆ tfty Ry=+τ  (7) 

There are many methods for estimating the embedding 

parameters. One of the methods for choosing the embedding 

delay is to choose the first point of autocorrelation function 

that goes bellow zero zone [10]. In [11] it is selected as the 

reciprocal of the highest relevant frequency of the time 

series. It is proposed in [12] to use the information 

dimension, which is a kind of fractal dimensions, as the time 

delay. However, one of the most reliable methods is 

presented by Fraser [13]. Due to this method known as 

average mutual information (AMI), the normalized 

embedding delay τ  is heuristically set to the value in which 

the mutual information between )(ty  and )( τ−ty  attains its 

first minimum. This way, the values )(ty  and )( τ−ty  are 

essentially independent of each other in the sense that they 

may serve as two coordinates of the reconstructed space. 

However, they are not so independent as to have no 

correlation with each other. 

There are also some methods for choosing embedding 

dimension DE such as correlation dimension and the Integral 

Local Deformation (ILD) algorithm [14]. One of the best 

and simplest methods is presented in [15]. According to this 

method, the minimum acceptable value of D, denoted by 

ED , is determined by looking at the first local minimum of 

the false nearest neighbors (FNN) under changes in the 

embedding dimension from 1+→ DD .  

In the next section, we calculate the embedding 

parameters of NN3 time series. 

IV. RECONSTRUCTED DYNAMICS OF THE TIME SERIES IN 

NN3 DATABASE 

We have calculated the parameters of τ  and 
ED  for the set 

of 11 time series, including NN3-101 through NN3-111. It 

should be mentioned that due to the high nonstationarity of 

four time series, namely NN3-101, NN3-105, NN3-108 and 

NN3-109, first order differencing is used for detrending the 

raw data. By detrending, we mean eliminating the long-term 

trends of the signal, leaving only short-term oscillations. In 

fact, for these time series the reconstruction is performed on 

this secondary signal. Here, the normalized embedding delay 

is calculated by the autocorrelation function of each time 

series and the first point bellow zero zone is considered as 

the value of τ . Although, the method of average mutual 

information (AMI) is more reliable; however, it requires 

more historical data that is not available in our experiments. 

The embedding dimension is also calculated by the method 

of false nearest neighbors (FNN). We have depicted the 

autocorrelation and [15] FNN function for the time series 

NN3-106 in Fig. 2 and Fig. 3 respectively. The complete 

results for all of the time series in the database are reported 

in Table I. 

V. ALGORITHM IMPLEMENTATION 

To generate the prediction of the next 18 observation, 

NAR networks are used to model the functions f  defined in 

(7). The reconstructed state space of each data set is used 

here as the endogenous inputs. The reconstruction vectors 

)(tRy  defined by (5) is of dimension 
ED . Furthermore, the 

size of output delay line memory required to perform the 

embedding, is 
ED×τ . However, the delay line memory is 

only required to provide 
ED  outputs. Therefore, we use τ  

equally spaced taps, representing spars connections to the 

nonlinear structure of NAR. The embedding parameters as 

well as the nonlinear structures, which are used for different 

time series in NN3 database are mentioned in Table I. 

As the  training sets of the given  time series are extremely  



 

 

 

 
Fig.  2. The autocorrelation function of time series NN3-106. The first 

point bellow zero zone is considered as the value of normalized embedding 

delay.  

 
Fig.  3. The percentage of false nearest neighbors for data points of NN3-

106 time series. The location of the first minimum is reported as the 

minimum acceptable value of embedding dimension. 

 
TABLE I 

THE EMBEDDING VARIABLES, EMPLOYED ARCHITECTURES, AND PREDICTION RESULTS FOR THE 11 TIME SERIES 

 
 

TABLE II 

FORECASTS RESULTS FOR THE NEXT 18 DATA SAMPLES OF EACH TIME SERIES IN NN3 DATASET 

 

 



 

 

 

small, we have just considered 10% of each data set as 

validation data. The validation data in these experiments 

play a very important role. As the desired values of the time 

series are not available, to achieve the best results, we have 

trained many NAR networks in each case. Then, the network 

with the best performance over validation data is used to 

generate the forecasts for the next 18 data samples. 

VI. FORECASTING RESULTS 

The normalized mean square error (NMSE) values of the 

predictions are reported in Table I. Furthermore, the 

forecasted time series are presented in Table II. As the 

desired outputs of each network are not available yet, we 

have not been able to do any analysis on the results. 
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