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Forecasting the Volatility of Coffee Arabica and Crude Oil 
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Abstract
Modeling, analyzing, and forecasting volatility has been the subject of extensive research among academics, practitioners and portfolio managers. This paper estimates 
a variety of GARCH models using weekly closing price (in USD/barrel) of Brent crude oil and weekly closing prices (in USD/pound) of coffee Arabica, and compares the 
forecasting performance of these models based on a high frequency intra-day data which allows for a more precise realized volatility measurement. The study used weekly 
price data to explicitly model volatility, and employed high-frequency intra-day data to assess model forecasting performance. The analysis points to the conclusion that 
GARCH (1,1) for Arabica coffee and GARCH (1,2) crude oil returns were best models, respectively with Student’s t distributed innovation terms is the most accurate volatility 
forecasting models in the context of our empirical setting. We recommend and encourage future researchers studying the forecasting performance of GARCH models to pay 
particular attention to the measurement of realized volatility, and employ high-frequency data whenever feasible.
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Introduction

Background of the study

The recent global financial crisis has increased the susceptibility of 
Commodity Dependent Developing Countries (CDDCs) to excessive price 
volatility in commodity markets. Moreover, structural weaknesses in these 
countries render their economies more vulnerable to increased commodity 
market turbulence than developed countries, given their comparatively lower 
income and high dependence on commodity exports. The World Bank estimates 
that 119 million additional people have been pushed into hunger as a result of 
the 2008 food price crisis [1].

Modeling, analyzing, and forecasting volatility has been the subject of 
extensive research among academics, practitioners and portfolio managers. 
This has been used in risk management, derivative pricing and hedging, portfolio 
selection and policy making. Similarly the analysis of volatility spillovers between 
commodity and asset prices has a profound implication for risk management and 
portfolios maximization by the government and investors alike. In view of the 
current bearish behavior of oil price in the international markets, it is arguably of 
special interest to study the volatility of oil and coffee prices [2-4].

In the last two decades there has been an explosion in volatility research. 
The “Dynamic Volatility Era” began with the introduction of the Autoregressive 
Conditional Heteroskedastic (ARCH) model. The ARCH (p) model expresses 
the conditional variance as p th−  order weighted average of past (squared) 
disturbances and thus is able to describe volatility clustering in financial series. 
Following this, an enormous body of research has focused on extending and 
generalizing the ARCH model, mainly by providing alternative functional forms 
for the conditional variance. Some of the most important contributors to the 
dynamic volatility literature have been Engle, Bollerslev, Nelson and Ding. 
Bollerslev proposed the Generalized ARCH (GARCH) model, as a more 
parsimonious way of modeling volatility dynamics [5,6].

The most significant contribution of this extensive volatility research is 

that now we have a much clearer and better understanding of the probabilistic 
features of speculative returns data. This is of crucial importance in the search 
for an overarching framework, which will be able to first capture the empirical 
regularities adequately and ultimately give us reliable volatility forecasts. There 
are a number of extensive surveys of the literature including for instance 
Bollerslev, Chou and Kroner, Engle and Nelson, and Ding and Engle. While 
realized volatility models often demonstrate excellent forecasting performance, 
there is still much debate concerning optimal approaches. However, recent 
results reported by Hansen and Lunde have suggested that, in the context of 
exchange rate returns, nothing can beat a GARCH (1, 1) model [5,7-10].

Naturally, different papers in the literature tend to focus on different 
commodity price volatility. The focus of this work is on the volatility of Brent 
crude oil and Coffee Arabica prices in the commodity futures markets which 
are markets where one can buy specific quantities of a commodity at a 
specified price with delivery set at a specified time in the future. The choice 
of these commodities is motivated by the fact that these are the most actively 
traded commodities in the world which also happen to be major importing and 
exporting commodities of Ethiopia. Existing work appears to focus mostly on 
in-sample modeling of volatility of commodity prices giving less attention to 
model forecasting performance. This work will also seek to bridge this gap in 
the literature.

Statement of the problem
A number of recent papers have investigated the volatility of energy 

and commodity price mainly due to increased interest for understanding 
the drivers and dynamics of such volatilities in these highly volatile times. 
Alternative estimation approaches are used in the literature, but thus far 
there is a dearth of work undertaking a thorough “GARCH” analysis -a 
statistical framework which is particularly suited for modeling asset price 
volatility. Moreover existing work appears to focus mostly on in-sample 
modeling of volatility of commodity price giving less attention to model 
forecasting performance. Accordingly, this work will seek to contribute to 
the literature by undertaking a systematic analysis of volatility forecasting 
performance of different GARCH models.

Most of the existing research on volatility spillovers employ statistical 
models in order to estimate realized volatilities which turned out to be 
oftentimes poor approximations of true volatilities. An attractive alternative 
to model-based statistical volatility is to compute realized volatility based on 
high frequency intra-day or `tick’ data. Realized volatility has been found to 
be more accurate than model based volatilities in predicting latent volatility. 
Thus, the results provided by previous studies can be potentially misleading 
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in that they may have underestimated or overestimated the extent of the 
true volatility [11].

This paper avoids this potential pitfall by using realized volatility 
based on a 30-minute intra-day data. We argue that doing so represents 
an important contribution to the literature of volatility measurement within 
commodity markets.

Objective of the Study

General objective

The general objective of this study is to model the volatility of the 
Arabica coffee and crude oil prices using GARCH type models and perform 
volatility forecasting using realized variance.

Specific objectives

The specific objectives of this study are:

1.	 To fit a univariate GARCH models for each commodity prices 
separately.

2.	 To forecast the volatility of the two commodities

3.	 To compare the realized volatility forecasts obtained from weekly 
return square and a high frequency (a thirty minute interval) data.

Methods

Stationarity

The concept of stationarity is fundamental in time series analysis. A time 
series {yt} is said to be strictly stationary if the joint distribution of (yt1,yt2, …, 
ytT) is identical to that of (yt1+k,yt2+k,…, ytT+k) for all , where  is an arbitrary 
positive integer and (t1,t2 …, tT) is a collection of T positive integers. In other 
words, strict stationarity requires that the joint distribution of (yt1,yt2 …, ytT) is 
invariant under time shift. Strict stationarity imposes a very strong condition and 
is hard to test empirically. Often the concept of weak stationarity is used. A time 
series {yt} is weakly stationary if both the mean of yt and the covariance between 
yt and yt-l are time invariant, where l is an arbitrary integer. More specifically,

{yt} is weakly stationary if (a) E (yt)=µ, which is a constant and (b) co
 γ, which only depends on l. In practice, suppose that we have=(γt,γt-l) ט
observed n data points {yt l t=1,…,n}. Weak stationarity implies that the 
time plot of the data would show that the values fluctuate with constant 
variation around a fixed level. In application, weak stationarity enables 
one to make inferences concerning future observations (e.g. Forecasting).
The covariance γl=coט (γt,γt-l) is called the lag -l auto-covariance of yt. It 
has two important properties: (a) γo=Var (yt) and (b) γ-l=γl. In the finance 
literature, it is necessary to test weakly stationarity of an asset return series. 
There are three methods of testing stationarity: graphical analysis, unit root 
test due to Dickey and Fuller test [12].

Graphical analysis of the series

Before pursuing formal tests, it is always advisable to plot the time 
series under study. Such a plot gives an initial clue about the likely nature 
of the time series. For instance, if a line-graph of a time series shows an 
upward trend, then this suggests perhaps that the mean of the data has 
been changing. This may be a clue that the series is not stationary. Such an 
intuitive feel is the starting point of more formal tests of stationarity.

Unit root test

A test for stationarity that has become widely popular over the past 
several years is the unit root test.The Augmented Dickey-Fuller (ADF) test 
is discussed below. To illustrate the use of Dickey-Fuller test, consider first 
an autoregressive process of order one (AR (1)) process:

yt=ω + α1yt-1 + εt	 	  			              (1)

where ω and α1 are parameters and εt is assumed to be white noise. 
y is a stationary series if -1 < α1 < 1. If α1=1, y is a non-stationary series (a 
random walk with drift); if the process is started at some point, the variance 
of y increases steadily with time and goes to infinity. If the absolute value of 
α1 is greater than one, the series is explosive. Therefore, the hypothesis of 
a stationary series can be evaluated by testing whether the absolute value 
of α1 is strictly less than one. The augmented Dickey-Fuller (ADF) test takes 
the unit root as the null hypothesis, Ho: α1=0. Since explosive series do not 
make much economic sense, this null hypot0hesis is tested against the 
one-sided alternative H

α
: α1 < 1. The test is carried out by estimating an 

equation with yt-1 subtracted from both sides of the equation:

∆yt=ω + δyt-1 + εt			    	               (2)

Where=α1 -1, ∆ is the first difference operator, and the null and 
alternative hypotheses are Ho: δ=0, Hα: δ < 0.

While it may appear that the test can be carried out by performing a t-test 
on the estimated δ, the t-statistic under the null hypothesis of a unit root does 
not have the conventional t-distribution. Dickey and Fuller showed that the 
distribution under the null hypothesis is nonstandard, and simulated the critical 
values for selected sample sizes. Recently, MacKinnon has implemented a much 
larger set of simulations than those tabulated by Dickey and Fuller. In addition, 
MacKinnon estimates the response surface using the simulation results, 
permitting the calculation of Dickey-Fuller critical values for any sample size 
and for any number of right-hand variables. The simple unit root test described 
above is valid only if the series is an AR (1) process. If the series is correlated at 
higher order lags, the assumption of white noise disturbances is violated [12,13]. 
The ADF test uses different methods to control for higher-order serial correlation 
in the series. It makes a parametric correction for higher-order correlation by 
assuming that the  series follows an AR (p) process and adjusting the test 
methodology:

yt=ω + α1yt-1+ α2yt-2 + … + αpyt-p + εt			                             (3)

The ADF approach controls for higher-order correlation by adding 
lagged difference terms of the dependent variable to the right-hand side of 
the regression:

∆yt=ω+δyt-1+ γ1 ∆yt-1 + γ2∆yt-2 + ⋯ + γp-1∆yt-p+1+εt 	                  (4)

Where, 1( ) 1p
i ia== Σ −  , 1

p
j kk j

γ γ
= +

= −∑ , ∆ is the first difference 

operator, and the null and alternative hypotheses are Ho: δ=0, H
α
: δ < 0.

An important result obtained by Fuller is that the asymptotic distribution 
of the t-statistic on δ is independent of the number of lagged first differences 
included in the ADF regression. Moreover, while the parametric assumption 
that  follows an autoregressive (AR) process may seem restrictive, Said and 
Dickey demonstrate that the ADF test remains valid even when the series has a 
moving average (MA) component, provided that enough lagged difference terms 
are augmented to the regression [14].

Tests for autocorrelation

A weakly stationary series is not serially correlated (or is a white noise 
process) if the autocorrelation function is 0 for all k >0. The ACF at lag k, 
denoted by ρk is defined as:

    k
k

o

Covarianceat lag k
variance

γρ
γ

= = 			   	               (5)

Since both covariance and variance are measured in the same units of 
measurement, ρk is unit less, or pure, number. It lies between -1 and 1. If we 
plot ρk against, the graph we obtain is known as the population correlogram.

In practice it is only possible to compute the sample autocorrelation function 
(SACF), ˆkρ .To compute this, first computing the sample covariance at lag k, 
ˆkγ , and the sample variance, γo is a must.

Therefore, the SACF at lag k is
ˆˆ
ˆ

k

o
k

γρ
γ

=

A plot of ˆkρ  against k is known as the sample correlogram.
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Financial applications often require to test jointly that several autocorrelations 
of yt are zero. the Portmanteau statistics (Q-statistics) is defined as

2
1

ˆm
kk

Q n ρ
=

= ∑ 					                 (7)

Where n=sample size and m=lag length. The null hypothesis for this test 
is, all the ρk up to certain lags are simultaneously zero. In large samples, 
the q statistic is approximately distributed as the chi-square distribution with 
m degree of freedom. In application, if the computed Q exceeds the critical 
value from the chi-square distribution at the chosen level of significance, the 
null hypothesis is rejected.

Ljung and Box modify the above Q-statistic as LB statistic (Ljung-Box 
Q-statistic) which is defined as:

2
2

1

ˆ
 ( 2)   m k

mk
LB n n

n k
ρ χ

=

 
= + ∼ − 

∑ 			                 (8)

Although in large samples both Q and LB statistics follow the chi-square 
distribution with m degrees of freedom, LB statistic has been found to have 
better performance in small samples than the Q statistic.

The univariate GARCH model

First of all let the returns rt be expressed as the change in logarithmic price 
over a certain period

1

t
t

t

pr log
p −

= 					                    (9)

Consider the following financial return model;

rt = µt + εt, εt = σtZt		  (i)

∼ iid N (0,1) 			   (ii)		               (10)
2 2

0 1 1 0 1, 0,0 1t tσ α α ε α α−= + > ≤ <  (iii)

 Where;

rt-return series at time t,

μt-the average return at time t,

εt-the innovation term

The autoregressive AR (p), moving average MA (q) and autoregressive 
moving average ARMA (p, q) models are applicable when the innovation term 
(εt) maintains a constant variance (homoscedasticity). If the error term  is 
conditionally heteroskedastic, then ARCH/GARCH models are applicable to 
model the conditional variance of the innovation term. Since the model involves 
just one lag of 2 2

1 ( .  ),t ti eε ε − , it is known as ARCH (1) model. The generalized 
ARCH (here after, GARCH) model is a generalization of the ARCH model in 
that it includes lagged variances in the conditional variance equation. GARCH 
models have the advantage of capturing long lags in the shocks by using fewer 
parameters than ARCH models. The GARCH (1, 1) model is defined as:

rt=μt+εt 				     	                  (11)
2 2 2

0 1 1 1 1t t tσ α α ε β σ− −= + + 		   		                 (12)

The GARCH model with p number of lagged variance term and q number 
of lagged squared error terms denoted as GARCH (q, p),and can be written as:

p
2 2 2

0 0
1 j 1

  0,  0, 0 
q

t i t i j t j i j
i

a b a bσ α ε σ α− −
= =

= + + > ≥ ≥∑ ∑ 	               (13)

 Where the volatility term 2
t jσ −  denote the variance and j represents the 

number of lags, and the term 2
t iε −  is the squared error for the period t-i. We can 

write the above equation more compactly:

( ) ( )2 2 2
 t t tL Lσ ω α ε β σ= + + 			               (14)

Where α (L)=α1L + ⋯ + αqL
q

 β (L)=β1+⋯+βpL
p

To ensure that the conditional variance is well defined in a GARCH (p, 
q) model all the coefficients in the corresponding linear ARCH (∞) should be 
positive rewriting the GARCH (p, q) modeled as an ARCH (∞):

( ) 12 2
1 11  (p q

t i i i j j t jLσ β ω α ε
−

= = −= − ∑ + + ∑ 		               (15)

* 2
1

1
k t k

k

ω φ ε
∞

− −
=

= + ∑
2 0,tσ ≥  if * 0ω ≥  and all 0kφ ≥ . The non-negativity of *ω and kφ  is also a 

necessary condition for the non-negativity of 2
tσ  [15].

The a coefficients of lagged squared returns are interpreted as how fast 
the model react to, for example, market events, the b-coefficients of lagged 
conditional variance determines the degree of persistence in the volatility. A 
large value of indicates that the conditional variance decays slowly, and that 
the volatility is persistent. On the other hand, if the a value is relatively higher 
than the b value, then the volatility is more extreme. The sum of ai and bj (

1 1
q p
i i j ja b= =∑ + ∑ ) should be less than one for the above GARCH (q, p) to be 

stationary. Nevertheless, one regions’ volatility has impact on volatility of the 
other regions. Making estimations that include this contagion effect requires an 
extended model.

The model order selection: AIC and BIC

An important step before making the estimations is to determine the 
order of the models. Theoretically one can do this using the autocorrelation 
function, but in practice this may be difficult. A more formal way is to use 
an information criterion and choose the order that minimizes the criterion 
value. Two common criteria are the Akaike Information Criterion (AIC) and 
the Bayesian Information Criterion (BIC). The formulas for these are

AIC = - 2 × LLF + 2M

2M = - 2 × LLF + M × LN (N)

Where N is the sample size, and M is the number of parameters. LLF is an 
abbreviation for log likelihood function. The reason for using both criteria is that 
the BIC is consistent but inefficient, and the AIC is the opposite, not consistent 
but efficient. No criteria are superior to others, but an overall assessment is 
needed based on the results showed by the criteria. For a model to be best it 
should have the smallest information criteria [16].

Determining the conditional distribution

When fitting a GARCH-model based on financial data, the conditional 
distribution of the returns has to be defined. Studies, for example Bollerslev, 
illustrate that returns are not normally distributed. Instead, the Student-t 
distribution captures the observed kurtosis in empirical returns in a more 
sufficient way than the normal distribution. Returns have excess kurtosis 
and fatter tails than the normal distribution. Therefore, the Student-t 
distribution is more suitable. There are three assumptions about the 
conditional distribution of the error term commonly employed when working 
with GARCH models: normal (Gaussian) distribution, student’s t-distribution, 
and the generalized error distribution (GED) [6,17].

The ARCH LM test

This test was introduced by Engle in 1982, and it investigates whether the 
conditional Volatilities of the chosen sample of data contain variation [6]. The 
test can be used first to determine if there is volatility clustering in the data, and 
then to determine if there is any ARCH -effects left in the residuals. Firstly, the 
estimated residuals, 2

t̂ε are regressed as:

( )2 2
1ˆ ˆq

t i i t i tC a vε ε= −= + ∑ + 			                 (16)

and secondly, the hypotheses are

Ho:a1=a2=…=aq = 0

H1: at least one of ai ≠ 0

If Ho is true, then homoscedasticity characterizes the variance indicating no 
volatility clustering. The test statistic is

 2 2~LM nR χ= 				                   (17)

Where n is the number of observations and R2 is computed from the 
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regression (16) using estimated residuals. If n is large, LM is chi-squared 
distributed with q degrees of freedom.

Defining a proxy

In evaluating volatility forecasts the usual proxy for ‘true’ volatility is ‘ex 
post’ squared returns, or the squared errors. However, as noted by Andersen 
and Bollerslev and Andersen et al., although the use of squared returns or the 
squared errors is justifiable as an unbiased estimate of the volatility process, it 
provides a very noisy measure due to a large idiosyncratic term. Specifically, 
the returns innovation can be written as t t tzε σ=  with zt an independent zero 
mean and unit variance stochastic process and σt is the volatility process. If 
the model for 2

tσ  is correctly specified, then the conditional expectation, 

( )2 2 2 2
( 1) 1( | ) | ,t t t t t tE I E z Iε σ σ− −= =  and the squared error is an unbiased estimate 

of the volatility process; however, it still contains the noisy idiosyncratic term, 
2
tz . This typically resulted in a poor performance, which instigated a discussion 

of the practical relevance of volatility models [18].

However, Andersen and Bollerslev showed that the ‘poor’ performance 
could be explained by the fact that the squared return is a noisy proxy for 
the conditional variance. By substituting the realized variance (instead of 
the squared return), Andersen and Bollerslev showed that volatility models 
perform quite well [18].

Hansen and Lunde provide another important argument for using 
the realized variance rather than the squared return. They show that 
substituting the squared returns for the conditional variance can severely 
distort the comparison, in the sense that the empirical ranking of models 
may be inconsistent for the true (population) ranking. So an evaluation that 
is based on squared returns may select an inferior model as the ‘best’ with 
a probability that converges to one as the sample size increases. For this 
reason, our evaluation is based on the realized variance [18,19]. Building 
upon this line of research Andersen et al. define the so-called ‘realized 
volatility’ on day t as:

2
1 ,  rv N

t i t ih r== ∑ 		  			               (18)

Where;

N-is the number of equally spaced intervals within a day,

rt,i -is a logarithmic return on day t at time interval i; with i=1, 2…, N and 
t=1, …, T.

Thus realized volatility is the sum of squared intra-day returns. In 
principle, letting N tend to large, i.e. continuous time sampling, the measure 
approaches the true integrated volatility of the underlying continuous time 
process and is theoretically free from measurement error. Further, this 
measure allows a market participant to essentially treat volatility as an 
observed variable and to allow direct estimation [20].

Forecast evaluation

The MZ regression: A popular way to evaluate volatility models out-of-
sample is in terms of the R2 from a Mincer -Zarnowitz (MZ) regression,

2 2 ,t t ta bh vσ = + + 				                (19)

that is, squared returns are regressed on the model forecasts of 2
tσ  and a 

constant.

Here:
2
tσ  -is ex-post volatility (e.g. realized volatility) at time t, 2

th  is estimated 
(in-sample) or forecasted (out-of sample) volatility at time t,

 t-independent and identically distributed; vi~ N (0, 1). α and b areט
parameters to be estimated.

If the model for conditional variance is well specified, we should have: 
a=0, b=1. According to specific features of financial data series, the value of 
R2 is usually low (even less than 5%) [18].

Mean Absolute Error (MAE)

Another way of determining the goodness of the estimations and 

forecasts is calculating the MAE. The approach is to measure how the 
received conditional covariance are close to their corresponding realized 
value. The formula is:

2 2
1

1 n
t t tMAE h

n
σ== ∑ −  				                 (20)

Where the proxy is used as 2
tσ  and the estimated conditional covariance is 

used as 2
th .By comparing the MAE between the estimated models, it can give 

an indication of which model that makes the best estimations.

Root Mean Square Error (RMSE)

The third measure is the Root Mean Square Error (RMSE), which is 
defined as

2 2 2
1

1  ( )n
t t tMSE h

n
σ== ∑ − 			                   (21)

Using these methods, the estimated models can be compared, and 
using the same measurements for estimations and forecasts, one can 
determine if the relatively best estimations model also makes the best 
forecast.

Results
Data

The data considered in this paper were the weekly time series of 
Brent crude oil and coffee Arabica futures market closing price, given in 
US dollars per barrel and US dollars per pound, respectively. Both series 
contain data spanning between first week of January 2005 and last week 
of October, 2016 (a total of 616 observations) extracted from Bloomberg 
database. The full sample is split into two parts: in sample data, in order to 
estimate the parameters of models and out of sample data, in order to make 
forecasts. The in-sample period spans from first week of January 2005 up 
to last week of December, 2015 and the out-of-sample period spans from 
first week of January, 2016 through last week of October, 2016. For the out 
of sample period, we have also extracted a 30 minute intra-day data for 
realized volatility measuring purpose.

Test of stationarity and features of log return series

Our data consists of two commodity prices; crude oil, and Arabica 
coffee. Figure 1 is the trend charts of the two commodity prices in the study 
period. The two commodity prices present the same trend and direction 
during the entire study period. Price for both of the commodities have risen 
from 2005 up to 2008 and fallen from 2009 up to 2010 with a similar pattern. 
Another impression is that both commodity level series are non-stationary. 
To visualize the returns series for these two markets, we depict the return 
time series plots in Figure 2. The weekly return series display volatility 
persistence properties, indicating that large changes tend to be followed by 
large changes of both sign and small changes tend to be followed by small 
changes, and the differenced series suggests stationarity.

The level series plot in Figure 1 show that the level prices are non-stationary. 
Thus, the first logical step is to check the stationarity of these prices using unit 
root test. In this test the null hypothesis of unit root is rejected if the t-statistic is 
less than the critical value.

Table 1 summarizes the DF unit root test results of the two commodity level 
prices. As can be seen in the table, the t-statistics are greater than the critical 
values, at 1%, 5% and 10% the significance. Hence, the null hypothesis of unit root 
would not be rejected, that is, there is a unit root problem in each of the data.

If a time series data is non-stationary, it is necessary to look for possible 
transformations that might bring stationarity. In practice, econometricians 
usually transform financial prices in to return forms. This is because often 
return series are found to be stationary such that analysis is possible. The 
log return series is obtained by:

t
t

t 1

p52* 
p

r log
−

 
=  

 
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where rt is the log return series of the real price multiplied by 52 (which is 
simply a scaling factor), to annualize as we are using weekly data and each 
year contains 52 weeks, and pt is the real price series and log is the natural 
logarithm.

Table 2 summarizes the DF unit root test of the log return series for each of 
the commodities. The table shows that all the t-statistics are less than the critical 
values at all levels of significance. These indicate that the null hypothesis of unit 
root would be rejected in both cases. Hence, the log return series are stationary 
for each of the items as shown by the time series plots.

Volatility modeling

To build a volatility model for the log return series, the first step is 
specifying the mean equation. Once we specify the mean equation we have 
to test for ARCH effects using the residuals of the mean equation. If ARCH 
effects are statistically significant, specifying a volatility model and carrying 

out a joint estimation of the mean and volatility equations is necessary. The 
conditional mean specification is, in general, arbitrary for GARCH models 
of the conditional volatility. Various modifications to the conditional means 
in GARCH models are possible.

Specification of mean equation

Based on two statistics, the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) we have chosen the temporary mean 
equation to estimate the joint mean and variance parameters. In most 
applications, lower order ARMA models, say, ARMA (1, 1), ARMA (1, 2), 
ARMA (2, 1) and ARMA (2, 2) are used. Table 3 gives the alternative ARMA 
models together with their corresponding AIC and BIC.

As can be seen in Table 4, the best in-sample results are achieved by 
ARMA (2, 2) for both commodity log return series. Therefore, ARMA (2, 2) 
is the best (having minimum AIC & BIC) conditional mean equation for both 

Figure 1. Time series plot for level series, Arabica coffee and crude oil.

Figure 2. Time series plot for differenced series, Arabica coffee and crude oil.

Series t-Statistic 1% critical value 5% critical value 10%critical value
Crude oil -1.675 -3.96 -3.41 -3.12
Arabica coffee -2.053 -3.96 -3.41 3.12

Table 1. DF Unit root test of stationarity for level prices, with trend.

Series t-statistic 1%critical value 5%critical value 10%critical value
Crude oil -5.791 -3.43 -2.86 -2.57
Arabica coffee -5.877 -3.43 -2.86 -2.57

Table 2. DF Unit root test of stationarity for log Returns.
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of the two cases. Hence, the ARMA (2, 2) model given by the following 
expression is used to model the conditional variance as mean equation of 
the log return series of prices:

1 1 2 2 1 1 2 2t t t t t tr r rµ ρ ρ ε θ ε θ ε− − − −= + + + + +  	                (22)

Where;

rt -return series at time t, either of Arabica coffee or crude oil return, ARMA 
(2, 2) process

εt is an innovation term.

Test for ARCH effects

Considering the above chosen financial returns model i.e. Equation 

(22) and on fitting this model, if there is no volatility clustering in each of the 
returns, the random disturbance term εt should be a white noise process. The 
standardized residual plot from Equation (22) can be an initial insight to judge 
the heteroskedastic characteristics of the error term. The standardized residual 
plot from each commodity return series, and is given below (Figure 3). The 
figure depicts the residual plots of the two commodity return series generated 
from the mean equation. We see from the figure that for both of the series there 
is a prolonged period of low volatility and prolonged period of high volatility. For 
example for Arabica coffee return there is a long period of low volatility from the 
first week of 2005 to the end of 2008 and also there exist a long periods of high 
volatility from first week of 2014 to the end week of 2016. Crude oil return also 
exhibits a prolonged period of low volatility than the coffee series, which is from 
the first week of 2005 to the first week of 2009. In other words periods of high 

Figure 3. Residual plots of the Arabica coffee and crude oil return series from the mean.

 Lag length Returns

Arabica Coffee  Crude Oil 
 P  Q AIC BIC AIC BIC
0 1 2587.192 2600.234 2551.377 2572.674
0 2 2581.203 2598.593 2553.267 2570.656
1 0 2587.093 2600.135 2515.398 2564.44
1 1 2588.146 2605.535 2553.22 2570.609
1 2 2578.419 2600.156 2553.64 2575.377
2 0 2582.588 2599.977 2553.274 2570.664
2 1 2577.982 2606.049 2552.285 2568.674
2 2 2576.96 2599.719 2546.107 2564.419

Table 3. ARMA model selection for the weekly log returns using AIC & BIC.

Series Obs*R2 χ2(4) Lag(p) Prob.
Arabica coffee 12.6477 9.488 4 0.0040
Crude oil 105.6419 9.488 4 0.0000

Table 4. ARCH LM Test Summary Statistics.
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volatility are followed by periods of high volatility and periods of low volatility tend 
to be followed by periods of low volatility, which is known as volatility clustering. 
This suggests that the residuals or error terms are conditionally heteroskedastic 
and can be represented by GARCH models.

Based on the residuals from the mean equation chosen above, it is 
possible to test for the existence of ARCH effect which will allow continuing 
the analysis using GARCH model.

Table 4 shows the results of ARCH LM test for the two commodity 
returns. The last column of the table includes the p-values that indicate 
rejection of the null hypothesis that “there is no ARCH effect” up to the 
fourth lag at 5% level of significance. The results indicate that the two 
commodities price log return series are volatile and need to be modeled 
using GARCH models.

GARCH model identification

To estimate and evaluate the forecasts of the competing GARCH 
models, different p and q values for the standard symmetric GARCH 
models are tested using different statistics such as Akaike Information 
Criterion (AIC) and Bayesian information Criterion (BIC) in order to choose 
the best model based on the in-sample data. The appropriate specification 

Arabica coffee, in sample output

Statistics GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2)
AIC 3290.974 3291.862 3292.442 3293.363
  -1 -2 -3 -4
BIC 3308.363 3313.599 3314.179 3319.447
  -1 -2 -3 -4
Rank Sum 2 4 6 8

Crude oil, in sample output

Statistics GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2)
AIC 3208.934 3204.773 3202.883 3200.631
  -4 -3 -2 -1
BIC 3226.324 3226.51 3224.62 3226.716
  -2 -3 -1 -4
Rank Sum 6 6 3 5

Table 5. ARMA (2, 2)-GARCH model selection based on AIC and BIC.

Statistics Realized volatility

Weekly return square  High frequency

N-GARCH T-GARCH  GED-GARCH N-GARCH T-GARCH GED-GARCH
MZ.reg .R2 0.0667 0.0712 0.010 0.156 0.230 0.155
MSE 21.030 22.6411 21.641 18.44 18.139 18.1755
RMSE 4.586 4.758 4.651 4.2941 4.25894 4.26234
MAE 4.576 4.753 4.581 3.5013 3.553 3.497
AIC 2540.605 2535.28 2536.791 2540.605 2535.28 2536.791
LogL. -1261.393 -1264.303 -1259.64 -1261.393 -1264.303 -1259.64

Table 6. Forecast error measures, ARMA (2,2)-GARCH (1, 1) models under different distribution and realized volatility, Arabica coffee return.

Statistics Realized volatility

Weekly return square High frequency
N-GARCH T-GARCH  GED-GARCH N-GARCH T-GARCH GED-GARCH

MZ.reg .R2 0.016 0.022 0.011 0.1763 0.267 0.18
MSE 126.6363 125.6408 125.6408 67.985 64.512 64.56
RMSE 11.2532 11.2089 11.2039 8.2453 8.0319 8.0349
MAE 7.6397 7.5618 7.5817 7.9126 7.739 7.762
AIC 2460.264 2443.797 2443.877 2460.264 2443.797 2443.877
LogL. -1222.132 -1213.938 -1212.898 -1222.132 -1213.938 -1212.898

Table 7. Forecast error measures, ARMA (2,2)-GARCH (1,2) model under different distribution and realized variance, Crude oil return.

is chosen, and then for this specific p and q, the alternative GARCH models 
are estimated, tested and finally one GARCH model is chosen based on 
forecasting performance. For this GARCH (p, q)-model different distributions 
are evaluated. Namely, normal distribution, student’s t-distribution and 
generalized error distribution (GED). Finally the parameters for the chosen 
GARCH model is presented. Table 5 summarizes these two statistics 
computed from different GARCH models. Note that the AIC and BIC of the 
GARCH models are obtained by estimating the mean return and variance 
equations simultaneously.

The row ranks indicate the ranking of the various GARCH models 
based on the two statistics. As a result, the lower the rank sum is the better 
the model. The best models for the two commodity series are:

•	 GARCH (1,1) for Arabica coffee

•	 GARCH (1,2) for crude oil

That is, the conditional variance processes are modeled by
2 2 2

1 1 1 1GARCH t t taσ ω ε β σ− −= + + 			             (1, 1)
2 2 2 2

1 1 1 1 1 2GA H RCt t t taσ ω ε β σ β σ− − −= + + +  		              (1, 2)

Forecast comparison to realized volatility measures

Below in Tables 6 and 7 we present different forecast accuracy 
measures. We compare the realized volatility measures by taking the 
weekly return square and a high frequency (30-minute intra-day) data as 
realized volatility measure. We use the mincer-zarnowitz regression to our 
estimates. If the estimated parameters in this regression are as expected, 
it means a close to zero and b close to one and R2 is not lower than 30% 
from Equation (3.35), indicating that the differences between the compared 
estimates are not huge and if so both of them are good estimates. Forecast 
error measures and R2 values from the Mincer-zarnowitz regression 
presented in Tables 6 and 7 imply that the realized volatility measure from 
high frequency data is a better measure of unobserved volatility than the 
commonly used squares of returns (R2 values are the lowest). This is also 
confirmed by the other forecast error measures having 44 one step ahead 
forecasts (2016w1-2016w44). The values of the RMS and MAE should 
get lower if the computing model is best performing. With regards to the 
distribution of the error term, the student’s t-distribution combined with high 
frequency data is best performing for both series.
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Estimations of the univariate GARCH

The values of the coefficients of the two commodities are shown below 
in Table 8. The estimation was done assuming that the error term comes 
from student’s t-distribution with eight degree of freedom. From the table, 
it can be seen that some of the coefficients in both of the returns are not 
significant at 5% level of significance; for instance, the constant term is not 
significant in both cases.

Non-negativity rules: As we are modeling variance and the estimated 
variance must be non-negative, there is no easy rule that ensures non-
negativity for the general GARCH (p, q) process. But Nelson &Cao give easy 
checkable condition for GARCH (1,q) model and (somewhat) manageable 
conditions for GARCH (2,q) model. The non-negativity condition for GARCH 
(1, 1) and GARCH (2,1) model are:

2 2 2
1 1 1 1GARCHt t taσ ω ε β σ− −= + +  		             (1, 1)

2 2 2 2
1 1 1 1 1 2GARCH t t t taσ ω ε β σ β σ− − −= + + +  		                (1,2)

For both of the models to be non-negative the following condition 
should be satisfied:

1 1 1 2 2 0,  0, 0, 1and 0aω β β β β> ≥ ≥ + < ≥
Looking the parameter estimates of ARCH and GARCH terms from the table 

below they satisfy the non-negativity rule described above for both commodity 
return series.

Discussion

The aim has been modeling and forecasting the volatility dynamics of 
weekly time series of Brent crude oil and coffee Arabica futures market 
closing price using GARCH models. From the preliminary analysis over 
the time period considered, both of the price series show an increasing 
trend. To determine whether the series are stationary or not, the Augmented 
Dickey-Fuller (ADF) test was carried out. Often, raw data of commodity 
prices are non-stationary, which was also the case in this study. For both 
level time series, the tests indicates to the existence of unit root I (1). The 
first log difference of each time series was considered as stationary.

As a reference point for the analysis, a standard univariate GARCH 
models were fitted with ARMA (2,2) mean equation, and it is found that the 
variance equation for Arabica coffee and crude oil returns were GARCH 
(1,1) and GARCH (1,2), respectively.

In the two commodity returns it appears that the ARCH term coefficients 
were significant at 5% level of significance. The result is an implication of 

the presence of volatility clustering, i.e. large changes followed by large 
changes and small changes followed by small changes. In the case of 
Arabica coffee our result go in line with the Hansen and Lunde findings. 
They conclude that GARCH (1,1) model with high frequency data is enough 
to capture the volatility of exchange rates return volatility, but in the case of 
crude oil our finding is something different.

This study suggests that using high frequency data results in a more 
accurate forecast values in both the standard univariate GARCH and 
multivariate GARCH models. This result agrees with David G. McMillan and 
Alan E. H. Speight inference in the context of exchange rate returns. In fact, 
they consider a daily GARCH (1,1) model and 5-minute intra-day return. In 
addition to the usual ‘ex post’ squared returns measure, they also construct 
realized volatility and two versions of bias-corrected realized volatility. 
In order to evaluate these forecasts they utilize the Mincer-Zarnowitz 
regression test of predictive power, comparing forecasting performance on 
the basis of the R2 values obtained. In our analysis the procedure is similar, 
but we use a weekly return series and a 30-minute interval intra-day return 
series and we stretch their conclusion.

Conclusion and Recommendations

This study estimates a variety of GARCH models using weekly closing 
price (in USD/barrel) of Brent crude oil and weekly closing prices (in USD/
per pound) of coffee Arabica, and compares the forecasting performance 
of these models based on a high frequency intra-day data which allows for 
a more precise realized volatility measurement. The analysis points to the 
conclusion that for Arabica coffee and crude oil returns GARCH (1,1) and 
GARCH (1,2) were best models, respectively with Student’s t distributed 
innovation terms is the most accurate volatility forecasting models in the 
context of our empirical setting.

We recommend and encourage future researchers studying the 
forecasting performance of MGARCH models to pay particular attention 
to the measurement of realized volatility, and employ high-frequency data 
whenever feasible.

We also recommend that public policy makers interested in foreseeing 
the price volatility of these two major commodities in the context of the 
Ethiopian economy consider using the information documented in this 
study as input in their deliberations given that it is based on some robust 
econometric work and highly appropriate data.

The scope of the analysis in this study has been limited to the volatility of 
the two commodities. In order to overcome this limitation and provide a more 
nuanced analysis, it might be profitable for future researchers to consider 
incorporating stock, currency and bond markets volatilities into the analysis. 
The potential complexity of such a research agenda notwithstanding, the 
results are likely to be rewarding in light of the deeper integration between 
global financial and commodity markets in recent years, a phenomenon 
which came to be known as the financialization of commodities.
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Returns Coffee Oil
Mean equation

1̂θ -0.5158
(0.000)

-0.7636
(0.000)

2̂θ -0.4884
(0.000)

0.6585
(0.000)

1ρ̂ 0.5645
(0.000)

0.780
(0.000)

2ρ̂ 0.4362
(0.000)

-0.9325
(0.000)

Variance equation
ω 0.1037(0.38) 0.0317(0.160)

α̂ 0.0249(0.0097) 0.0391 (0.002)

1̂β 0.9556(0.000) 1.5861 (0.000)

2β̂ -0.6194 (0.000)

ˆα̂ β+ 0.9805 0.9988

**values in parenthesis are p-values at 5% level of significance.

Table 8. Parameter estimates from ARMA (2,2)-GARCH models.
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