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Abstract: Nowadays, cities meet numerous sustainable development challenges in facing growing
urban populations and expanding urban areas. The monitoring and simulation of land use and
land-cover change have become essential tools for understanding and managing urbanization. This
paper interprets and predicts the expansion of seven different land use types in the study area, using
the PLUS model, which combines the Land use Expansion Analysis Strategy (LEAS) and the CA
model, based on the multi-class random patch seed (CARS) model. By choosing a variety of driving
factors, the PLUS model simulates urban expansion in the metropolitan area of Hangzhou. The
accuracy of the simulation, manifested as the kappa coefficient of urban land, increased to more than
84%, and the kappa coefficient of other land use types was more than 90%. To a certain extent, the
PLUS model used in this study solves the CA model’s deficiencies in conversion rule mining strategy
and landscape dynamic change simulation strategy. The results show that various types of land use
changes obtained using this method have a high degree of accuracy and can be used to simulate
urban expansion, especially over short periods.

Keywords: urban expansion; LEAS; CARS; land use interpretation; China

1. Introduction

Since 2014, more than half of the world’s population now live in urban areas, and this
proportion is expected to increase to 66 percent by 2050 (UN, 2018) [1]. Cities face numerous
challenges in meeting the needs of their growing urban populations, and managing urban
areas has become one of the most critical development challenges worldwide [2]. Monitor-
ing and simulating land use and land cover (LULC) are important for understanding the
trend of urbanization within an area [3], as they can indicate anthropogenic impacts, iden-
tify land use problems such as degradation and deforestation, and act as basic supporting
information for land use plans aiming towards the sustainable development of a city [4].

Presently, three key areas advocate new research internationally on LULC: (1) The
temporal and spatial changes in land use. The application of remote sensing and GIS
technology allows scholars to catch up with land use changes throughout the world [5].
Evidence all over the world has illustrated the uneven distribution of land use changes in
different areas, from European countries [6] to western Kenya [7], and eastern China [8].
(2) The environmental impact of land use. Scholars began to link land use changes with air
pollution [9–11], temperature change [12,13], water-logging disasters [14], and so on. (3) The
driving force of land use change. Current driving factors of global LUCC mainly focus on
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population, culture, economic and political structures, technology, and distribution [15]. For
the lattermost, weighing the importance of various factors to cover change and obtaining
the correlation between factors for land use prediction have caught scholars’ attention. A
new method is urgently needed.

The establishment of correlation analysis between land use types, driving factors,
and empirical diagnosis models to obtain and predict cover changes are proposed, with
the support of computer technologies. This problem is partially solved with cellular
automata (CA) [16]. CA is a dynamic model in which space-time and its state are both
discrete. It describes multi-agent interactions and has been extensively applied to model
spatiotemporal land use dynamics under the influences of natural and socioeconomic
factors, including their interactions at different scales [17,18]. However, currently, CA is
affected by specific spatial patterns, due to the definition of rules, and cannot be applied
universally [19]. Additionally, most existing CA models pay too much attention toward
improving simulation technology and correcting conversion rules. Furthermore, little
attention has been paid toward the need for a more conceptual understanding of the
underlying causes of LULC [20].

Therefore, for decision-makers, the existing CA models often: (1) play a limited role in
exploring the causes of land use changes [21], and (2) experience difficulties when dynami-
cally simulating patch-level changes of multiple land use types in time and space [22]. This
is especially true for natural land types, such as woodland and grassland. The existing CA
models have certain deficiencies in the conversion rule mining strategy and the landscape
dynamic change simulation strategy, which has led to insufficient progress in the research
concerning these two aspects in recent years.

Two possible ways to combine CA with other artificial intelligence algorithms to
obtain better simulation accuracy include: (1) Combination with the agent-based model.
The goal of intelligent agent model research is human activities. It is an autonomous model
that connects social behavior and land use by simulating individual behavior and pushing
up the scale [23]. CA can simulate the spatiotemporal evolution of complex systems,
and it is easy to understand and program the model [23]. In recent years, researchers
have widely used this model to study land use change and urban expansion [24–26]. The
transformation rule is the dynamic basis of the CA simulation of complex system evolution,
which influences the simulation process and its results [27,28]. The combination of an agent-
based model and CA can significantly improve the predictive ability of the comprehensive
model [29]. (2) Combination with the system dynamics model. System dynamics is a
discipline that is based on system cybernetics, system theory, and information theory. The
feedback structure, function, and dynamic characteristics of the model can be combined
with the cellular automata model to analyze the complex system structure of the city from
a macro-perspective, resulting in land changes and trends in different scenarios being
obtained. System dynamics, combined with CA, for land use change simulation, mainly
includes neural network 111 [30–33], rough set algorithm 21 [34], Markov chain 22 [35],
genetic algorithm 25 [36,37], ant colony algorithm 37 [38], support vector machine 1 [39],
and so on. Both ways have been proven to better support planning policies to achieve
sustainable development, but further adjustments are always expected.

This study proposes a patch-generating land use simulation (PLUS) model to combine
the Land use Expansion Analysis Strategy (LEAS) and CA model, based on the multi-class
random patch seed (CARS) model. This combination contained a new multi-type seed
growth mechanism and multi-objective optimization algorithms [40]. As a result, it was
expected to gain a better excavation of the inducements of various land use changes.

2. Study Area and Data Sources
2.1. Overview of the Study Area

The study area selected in this paper was the metropolitan area, with Hangzhou as the
center, and Shaoxing, Huzhou, Jiaxing, Jinhua, Xuancheng, Huangshan, and Quzhou as
the sub-centers (See Figure 1). The metropolitan area of Hangzhou is located in the Yangtze
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River Delta, one of the most economically active regions in China, accounting for about
a quarter of China’s total economic output. Dramatic land changes occur there, in order
to support its fast economic development. Therefore, the simulation of land use change is
urgently needed to provide a theoretical basis for the future planning of the study area and
the formulation of relevant policies.
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Figure 1. Study area.

The latitude and longitude span of the study area is 28◦15′~30◦22′ N, 117◦02′ E~121◦16′.
Located in the subtropical monsoon area, it contains a subtropical monsoon climate, with
four distinct seasons and abundant rainfall [40]. At present, the total area of the study
area is 76,521 square kilometers, including Jiande City, Chun’an County, Tonglu County,
Haining City, Tongxiang City, Anji County, Deqing County, She County, Zhuji City, and
other county-level cities.

This paper selected the MCD12Q1 data of the study area from 2001 to 2019 as the
basic urban land use data. It used these data to perform artificial-intelligence-based urban
land use interpretation. For this purpose, the characteristics of the development of other
first-tier cities in China and the acquisition of remote-sensing data, were comparatively
analyzed. At the same time, the LULC data of the study area in 2005, 2010, 2015, and 2018
were selected as the basic urban land use data. The urban expansion simulation was based
on cellular automata.

2.2. Data and Criteria

The data collected and used in this study included data graphs of driving factors
such as GDP, subway, digital elevation model (EDM), elevation, highway, river, slope,
population, soil, school, and hospital, from 2005, 2010, 2015, and 2018. Moreover, four
LULC maps and LULC maps with a resolution of 500 m × 500 m from 2001 to 2019 were
used. The driving-factor data maps were from the Institute of Remote Sensing and Digital
Earth, the Chinese Academy of Sciences, and the LULC maps were from USGS. Specifics
are shown in Table 1.
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Table 1. Summary of data sets.

Data Criteria Year Description Source Data Format

Driving
factor

GDP

2005
2010
2015
2018

30 arc-rec
spatial resolution

Institute of Remote Sensing and
Digital Earth, Chinese Academy of
Sciences (http://www.radi.cas.cn/
index_65411.html (accessed on 10

October 2021))

GeoTIFF

Subway
EDM

Elevation
Highway

River
Slope

Population
Soil

School
Hospital

LULC map LULC 2001~2019 500 arc-rec
spatial resolution

United States Geological Survey
(USGS)

(https://earthexplorer.usgs.gov/
(accessed on 10 November 2021))

GeoTIFF

LULC map LULC

2005
2010
2015
2018

30 arc-rec
spatial resolution

United States Geological Survey
(USGS)

(https://earthexplorer.usgs.gov/
(accessed on 10 November 2021))

GeoTIFF

Administrative
map

Hangzhou

2021

A satellite image
from Landsat,

USGS and
LAPAN

Ministry of Environment and
Forestry, Indonesia

(http://webgis.dephut.go.id:
8080/kemenhut/index.php/id/
fitur/unduhan (accessed on 10

November 2021) ,
https://earthexplorer.usgs.gov/
(accessed on 10 November 2021))

KML

Shaoxing
Huzhou
Jiaxing
Jinhua

Xuancheng
Huangshan

Quzhou

3. Methodology
3.1. LULC Data Processing

The obtained LULC map was spliced in ENVI, then the spliced data were rendered
using ArcMap10.7 (the main application used in ArcGIS). Finally, the data type was con-
verted into the corresponding type that the model was able to handle through the PLUS
model to complete the preprocessing of the data.

3.2. Introduction of the Patch-Generating Land Use Simulation (PLUS) Model

Step 1: Land use Expansion Analysis Strategy (LEAS) [40] (see Figure 2). This strategy
extracts the expansion of various types of land between the two phases of land use change.
Moreover, sampling from the added part uses a random forest algorithm to mine the factors
of various types of land use expansion and driving forces. As a result, the development
probabilities of various types of land and the contribution of driving factors to the expan-
sion of various types of land during this period are obtained. This strategy integrates
advantages of the existing TAS and PAS, avoids the analysis of conversion types that
increase exponentially with the number of categories, retains the model’s ability to analyze
the mechanism of land use change within a certain period, and has better interpretability.

Step 2: The CA model is based on multi-class random patch seed (CARS) [40] (see
Figure 3). Combining the random seed generation and threshold-decreasing mechanism,
the PLUS model can dynamically simulate the automatic generation of plaques in time and
space, under the constraints of development probability.

http://www.radi.cas.cn/index_65411.html
http://www.radi.cas.cn/index_65411.html
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://webgis.dephut.go.id:8080/kemenhut/index.php/id/fitur/unduhan
http://webgis.dephut.go.id:8080/kemenhut/index.php/id/fitur/unduhan
http://webgis.dephut.go.id:8080/kemenhut/index.php/id/fitur/unduhan
https://earthexplorer.usgs.gov/
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The basic formula for the total probability of each land use type is as follows [40]:

OPd=1,t
i,k = Pd=1

i,k ×Ωt
i,k × Dt

k (1)

where Pd=1
i,k represents the growth probability of type k land use at i; Dt

k represents the
impact of future land use demand of type k, which depends on the gap between the current
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amount of land at t and the land use target demand k; and Ωt
i,k represents the domain effect

of unit i, which is the following neighbor of the coverage ratio of the land use component
of k within the domain [40].

Ωt
i,k =

con
(

Ct−1
i = k

)
n× n− 1

× wk (2)

Among them, con
(

Ct−1
i = k

)
represents the last iteration. In the window of n × n,

wk represents different land use types having different neighborhood effects. The default
value of wk is 1, but it can be freely defined. The adaptation method is as follows [41]:

Dt
k =


Dt−1

k if
∣∣∣Gt−1

k

∣∣∣ ≤ ∣∣∣Gt−2
k

∣∣∣
Dt−1

k × Gt−2
k

Gt−1
k

if 0 > Gt−2
k > Gt−1

k

Dt−1
k × Gt−1

k
Gt−2

k
if Gt−1

k > Gt−2
k > 0

(3)

where the sum is the difference between the number of land use types k, in iterations Gt−1
k

and Gt−2
k and the future demand. Finally, according to the overall probability of all land

use types, a wheel is constructed to select the land use status in the next iteration [42].
At the same time, in order to simulate the patch evolution of multiple land use types,

a multi-type random patch-seeding mechanism based on threshold drop is adopted, which
is realized through a calculation process.

OPd=1,t
i,k =

{
Pd=1

i,k × (r× µk)× Dt
k i f Ωt

i,k = 0 and r < Pd=1
i,k

Pd=1
i,k ×Ωt

i,k × Dt
k all others

(4)

Among them, r is a random value from 0 to 1, and µk is the threshold for generating
a new land use patch for k-type land use, which the model user determines in order to
control the organic growth and spontaneous growth of multiple land use types. If a new
land use type wins a round of competition, a lowered threshold τ is used to evaluate the
selected candidate land use types, as follows:

If ∑N
k=1
∣∣Gt−1

c
∣∣−∑N

k=1
∣∣Gt

c
∣∣ < Step Then,l = l + 1{

Change Pd=1
i,c > τ and TMk,c = 1

No change Pd=1
i,c ≤ τ or TMk,c = 0

(5)

Among them, the step length is the step length of the PLUS model, to approximate the
land use demand; δ is the attenuation factor of the decreasing threshold τ, ranging from
0 to 1, which the expert sets; r1 is the random value of the normal distribution, the mean
value is 1, the range is 0~2; l is the number of attenuation steps. TMk,c is the transition
matrix, which defines whether the land use type K-type is allowed to be converted to
C-type. Through this descending threshold, new land use patches will spontaneously grow
and develop freely under the constraints of growth probability [43].

3.3. Selection of Driving Factors
3.3.1. Geomorphology and Geology

The terrain of Zhejiang is high in the southwest and slopes from the southwest to the
northeast. The northeast is a low and flat alluvial plain, hills and coastal plains dominate
the east, the middle is dominated by hills and basins, and the southwest is dominated by
mountains and hills. It can be roughly divided into six terrain areas: the North Zhejiang
Plain, the hills and basins in the southwest of Zhejiang, the coastal plains, and the coastal
islands in the southeast of Zhejiang. Alluvial plains with dense water networks in northern
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Zhejiang, coastal plains and hills in eastern Zhejiang, basins in central Zhejiang, hills and
mountains in southwestern Zhejiang, and island landforms in Zhoushan all include various
types of landforms. Mountains with sizes over a kilometer mostly surround the southwest.
Huangmaojian, located in Longquan, has an elevation of 1929 m, and it is the highest peak
in Zhejiang Province. Again, plains, hills, and basins dominate the terrain.

By combining the results of land use classification in the study area, the main built-up
areas of the study area are concentrated in the eastern region dominated by plains. In
contrast, the cultivated land is concentrated in the southern and northern regions and
dominated by low mountains and hills, and woodlands are widely distributed throughout
the entire research area. For this reason, the expansion of land use in the study area is
mainly concentrated within the eastern, southern, and northern plains and the middle–low
mountain areas.

3.3.2. Climatic Settings

Due to the subtropical monsoon climate, the climate characteristics of the study area
are high in temperature: the annual average temperature is 15~23 ◦C. Taking July as the
highest temperature, there is much precipitation, with the annual average precipitation
being 1200~2000 mm. The rainfall distribution during the year is relatively even, with there
being no drought and less rain areas. There is much sunshine, with the annual average
sunshine period being more than 1800 h. Sunshine is most abundant from June to December.
The wind speed is low: the average wind speed in urban areas is not high, with an average
speed of only 1.9 m/s. Except for the wind direction, which directly affects the layout of
the industrial land and residential land, other climatic conditions indirectly influence land
use distribution in the study area.

3.3.3. Economic Development

Urban expansion and economic development present a cyclical relationship, and most
of the expansion of construction land is influenced by economic development. In the
Hangzhou metropolitan area, four rounds of urban expansion have been observed. From
1984 to 1985, the first round of rapid economic development since the economic reform
caused the first instance of out-of-control land use in most parts of Hangzhou and the
surrounding cities. In the subsequent years from 1988 to 1989, from 1993 to 1994, and after
2000, there were three rounds of urban land expansion under the influence of excessive
economic growth.

3.3.4. Industrialization Policies

In China, with mixed-use urban planning, the issue of land transfer permits, and
government investment in infrastructures and public amenities occurring, governments in
Chinese cities have proven their robust control in defining the development of a city [44]. In
Hangzhou and the surrounding cities, the local governments have introduced measures for
the macro-control of urban expansion, from limiting the supply of construction land, to land
planning and design. Although most measures have failed to address the increasing need
for construction land during rapid economic development, these policies and measures
have defined the direction of legal urban expansion, and they are decisive for certain issues,
such as “return farmland to forest”.

4. Results
4.1. Land Use Interpretation

Based on GIS and LULC raster data, processing and analysis were performed to
describe land-cover types. Generally speaking, the data set contained 17 main land-cover
types. According to the International Geosphere-Biosphere Program (IGBP), this included
11 natural vegetation and 3 land development land types, mosaic land types, and 3 non-
vegetable land types. According to the analysis of the study area, it was found that the
land-cover types in the study area were mainly limited to 12 to 14 types, as shown in
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Figure 4. The specific area changes of each type are shown in Figure 5. The results showed
a tremendous increase in urban built-up land from 2001 to 2019, which corresponded to a
decrease in the area of farmland and other land types. At the same time, the forest land
also increased significantly.
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Figure 5. Areas of various types of land use in 2001, 2010, and 2019 (note: some land use types with a
very small area are ignored).

4.2. Urban Expansion Simulation Based on PLUS Model

By inputting the LULC map in 2005 and 2010, 2010 and 2015, and 2015 and 2018, and
by extracting the expansion of various types of land between the two phases of land use
changes in different years in the study area, this study extracted the land use expansion for
Zhejiang for different periods, as shown in Figure 6.
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We sampled the additional part obtained from Step 1 and used the random forest
algorithm. The sampling methods were uniform sampling and random sampling, and
the sampling rate was set to 0.01 to excavate various land uses and driving forces one by
one. Eight driving factors were selected for this excavation, including GDP, subway, EDM,
elevation, highway, river, slope, population, soil, school, and hospital.

The contribution of all these driving factors to the expansion of various land use
types is outputted, as shown in Figures 7–10. The higher the brightness, the greater the
contribution rate. As shown, the driving factors had the highest contribution rates toward
grassland, forest, farmland, and urban land, and the contribution rates to forest and urban
land kept rising.
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4.3. Verification of PLUS Model

Combining random seed generation and the threshold-decreasing mechanism, the
PLUS model in this study dynamically simulated the automatic generation of plaques in
time and space, under the constraints of development probability. The simulation was
implemented for 2005–2010, 2010–2015, and 2015–2018 in turn, and the results are shown
in Figure 10.

According to the above results, the simulation accuracy was verified, and the results
are shown in Table 2. According to the advanced comparison between the PLUS model
simulation results and the real land use type data, the results are shown in Table 3.
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Table 2. Simulation accuracy verification for 2005–2010, 2010–2015, and 2015–2018.

Year
Kappa

Coefficient
(%)

User’s Accuracy (%)

Grass Deciduous
Forest

Cultivated
Field

Urban
Land Bare Land Waters Evergreen

Forest

2005–2010 0.956 0.988 0.976 0.965 0.842 0.954 0.988 0.988
2010–2015 0.918 0.933 0.934 0.929 0.854 0.910 0.925 0.971
2015–2018 0.923 0.944 0.901 0.936 0.891 0.792 0.930 0.976

Table 3. Comparison of the area of the land use type simulation and the real land use type in 2010,
2015, and 2018 (km2).

Year Grass Deciduous
Forest

Cultivated
Field Urban Land Bare Land Waters Evergreen

Forest

2005–2010 2,620,709 8,157,319 23,216,915 4,817,324 15,459 2,151,630 44,151,632
Real (2010) 2,809,602 8,248,160 23,216,938 4,817,326 20,945 2,349,566 43,688,758
2010–2015 2,784,092 8,278,020 22,533,997 5,478,163 10,133 2,338,896 43,727,994
Real (2015) 2,784,850 8,545,279 22,536,173 5,609,103 22,292 2,340,847 43,312,322
2015–2018 2,668,851 8,566,745 22,075,873 5,916,046 19,137 2,327,583 43,576,631
Real (2018) 2,820,751 8,127,297 22,080,545 6,189,235 19,141 2,328,292 43,580,324

According to the above data, the results of the three simulations reached over 80%,
the accuracy of centralized urban land use reached over 84%, and the kappa coefficient
reached over 91%. Therefore, the accuracy of the model was high.

4.4. Application of PLUS Model for Prediction

According to the data, the study area has, in recent years, reduced mainly in farmland
and increased in forest area, as a result of the protection and development of the ecological
environment. At the same time, the area of urban land in the study area has been increasing
year by year, and the level of urbanization has increased significantly. Therefore, some
environmental issues are echoed in the strengthening of ecological civilization within the
study area. Based on the above results from the simulation of land use types in 2024, 2027,
and 2030, these results are shown in Figure 11, and the specific values are shown in Table 4.
According to the simulation of the future years, 2024, 2027, and 2030, it can be seen that the
area of urban land in the study area will continue to increase significantly, which may be
related to the rapid economic development of the study area in the future. The increase
in land use in these cities was mainly achieved by reducing the grassland area, while the
changes in area for other types of land use were relatively small.
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Table 4. Simulation of land use types in 2024, 2027, and 2030 (km2).

Year Grass Deciduous
Forest

Cultivated
Field Urban Land Bare Land Waters Evergreen

Forest

2024 2,888,345 7,412,612 21,330,385 7,156,186 14,780 2,305,684 44,025,773
2027 2,919,596 7,107,580 21,029,018 7,560,284 13,299 2,295,743 44,208,246
2030 2,949,129 6,832,732 20,767,392 7,919,104 12,149 2,286,461 44,366,799

5. Conclusions and Discussion

Scholars have long pursued models for better accuracy in predicting land use change.
For example, Salem et al. used the logistic regression model to analyze Delhi over the past
30 years, based on various driving factors, but the maximum regression coefficient only
reached 0.8646 [45]. Gantumur et al. used CA and an artificial neural network (ANN)
to study the urban growth rate of Ulan Bator, but the kappa coefficient only reached
barely higher than 70% [46]. The kappa coefficient was raised to 80% and 78% when
Pijanowski et al. established a UEM model with GIS, ANN, and RS. ROC curve and kappa
statistics were used to conduct a calibration for the study of land use changes in the Tehran
metropolitan area [47]. Since then, it seems extremely difficult to increase the accuracy.

This paper interprets and predicts the expansion of seven land use types in the study
area from 2001 to 2019, based on the PLUS model, which combines LEAS and CARS. By
choosing a variety of driving factors, the PLUS model simulates urban expansion in the
metropolitan area of Hangzhou. The results show that the accuracy of the simulation,
manifested as the kappa coefficient of urban land, has increased to more than 84%, and the
kappa coefficient of other land use types is more than 90%. Compared with other models,
such as the cellular automata and Markov chain, this model has better accuracy and can
better simulate the future land use changes of the city. Cellular automata and Markov
chain are used to study the driving mechanisms of land use change. The results show that
economy and policy lead to urban change, compared with population and natural factors.
This study further simulates and predicts land use over the next eight years and finds that
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except for the fast growth (more than 10.6%) of urban land, grassland and evergreen forest
would also grow, at the cost of reducing other types of land use.

To a certain extent, the PLUS model used in this paper solves the CA model’s defi-
ciencies in the conversion rule-mining strategy and landscape dynamic change simulation
strategy. A new analysis strategy is applied to better uncover the inducements of vari-
ous land use changes by containing a new multi-type seed growth mechanism that can
better simulate multi-type land use patch-level changes. At the same time, coupled with
multi-objective optimization algorithms, the simulation results can better support planning
policies to achieve sustainable development.

However, this study lacks consideration towards many restrictive factors when con-
sidering driving factors, such as topography, which would affect the final accuracy to a
certain extent. In the future, there should be more consideration toward restrictive factors.
Furthermore, during the research process, it was found that the PLUS model could not
effectively simulate long-term land use change. Therefore, a new method for the prediction
of long-term land use is still needed, and neural networks or deep-learning methods might
be helpful in this regard.
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