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1. Introduction

VOLATILITY FORECASTING IS AN important
task in financial markets, and it has held

the attention of academics and practitioners
over the last two decades. At the time of
writing, there are at least 93 published and
working papers that study forecasting per-
formance of various volatility models, and
several times that number have been written
on the subject of volatility modelling without
the forecasting aspect. This extensive re-
search reflects the importance of volatility in
investment, security valuation, risk manage-
ment, and monetary policy making.

Volatility is not the same as risk. When it is
interpreted as uncertainty, it becomes a key
input to many investment decisions and
portfolio creations. Investors and portfolio
managers have certain levels of risk which
they can bear. A good forecast of the volatil-
ity of asset prices over the investment hold-
ing period is a good starting point for assess-
ing investment risk.

Volatility is the most important variable in
the pricing of derivative securities, whose
trading volume has quadrupled in recent
years. To price an option, we need to know
the volatility of the underlying asset from
now until the option expires. In fact, the
market convention is to list option prices in
terms of volatility units. Nowadays, one can
buy derivatives that are written on volatility
itself, in which case the definition and mea-
surement of volatility will be clearly speci-
fied in the derivative contracts. In these new
contracts, volatility now becomes the under-
lying “asset.” So a volatility forecast and a
second prediction on the volatility of volatil-
ity over the defined period is needed to price
such derivative contracts.

Financial risk management has taken a cen-
tral role since the first Basle Accord was estab-
lished in 1996. This effectively makes volatility
forecasting a compulsory risk-management
exercise for many financial institutions around
the world. Banks and trading houses have to
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set aside reserve capital of at least three times
that of value-at-risk (VaR), which is defined as
the minimum expected loss with a 1-percent
confidence level for a given time horizon (usu-
ally one or ten days). Sometimes, a 5-percent
critical value is used. Such VaR estimates are
readily available given volatility forecast, mean
estimate, and a normal distribution assump-
tion for the changes in total asset value. When
the normal distribution assumption is dis-
puted, which is very often the case, volatility is
still needed in the simulation process used to
produce the VaR figures.

Financial market volatility can have a wide
repercussion on the economy as a whole.
The incidents caused by the terrorists’ attack
on September 11, 2001, and the recent fi-
nancial reporting scandals in the United
States have caused great turmoil in financial
markets on several continents and a negative
impact on the world economy. This is clear
evidence of the important link between fi-
nancial market uncertainty and public confi-
dence. For this reason, policy makers often
rely on market estimates of volatility as a
barometer for the vulnerability of financial
markets and the economy. In the United
States, the Federal Reserve explicitly takes
into account the volatility of stocks, bonds,
currencies, and commodities in establishing
its monetary policy (Sylvia Nasar 1992). The
Bank of England is also known to make fre-
quent references to market sentiment and
option implied densities of key financial vari-
ables in its monetary policy meetings.

Given the important role of volatility fore-
casting and that so much has been written
on the subject, this paper aims to provide
comprehensive coverage of the status of this
research. Taking a utilitarian viewpoint, we
believe that the success of a volatility model
lies in its out-of-sample forecasting power. It
is impossible, in practice, to perform tests on
all volatility forecasting models on a large
number of data sets and over many different
periods. By carefully reviewing the method-
ologies and empirical findings in 93 papers,
the contribution of this review is to provide a

bird’s-eye view of the whole volatility fore-
casting literature and to provide some rec-
ommendations for the practice and future
research. John Knight and Stephen Satchell
(1998), which we draw upon frequently, is
the first book to cover many issues and early
empirical results related to volatility fore-
casting. Our focus here, however, is on the
93 papers and the collective findings in this
pool of research. We have excluded in this
review all papers that do not produce out-
of-sample volatility forecasts and papers 
that forecast correlations, though the latter
might be useful for forecasting portfolio risk.

The remaining sections are organized as
follows. Section 2 provides some preliminar-
ies such as the definition and measurement
of volatility, and lists some confounding fac-
tors such as forecast horizons and data fre-
quency. Section 3 introduces the two broad
categories of methods widely used in making
volatility forecasts, namely time series mod-
els and option ISD (implied standard devia-
tion). Section 4 lists a number of forecast
performance measures and raises various
issues related to forecast evaluation. Sections
5 and 6 are the core sections of this paper;
section 5 reviews research papers that fore-
cast volatility based on historical price infor-
mation only; section 6 reviews research pa-
pers that use option ISD alone or in addition
to historical price information to forecast fu-
ture volatility. Section 7 discusses our views
about research and achievement in volatility
forecasting and provides some directions for
future research. Section 8 summarizes and
concludes. The technical specifications of
volatility models are listed in an appendix. A
list containing a short summary of each of
the 93 papers is provided at the end.

2. Some Preliminaries

2.1 Volatility, Standard Deviation, 
and Risk

Many investors and generations of finance
students often have an incomplete appreciation
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of the differences between volatility, standard
deviation, and risk. It is worth elucidating some
of the conceptual issues here. In finance,
volatility is often used to refer to standard devi-
ation, s, or variance, s2, computed from a set
of observations as

(1)ˆ¼ 2 =
1

N 1

NX

t = 1

(Rt R)2,

where R is the mean return. The sample
standard deviation statistic ˆ¼ is a distribution
free parameter representing the second
moment characteristic of the sample. Only
when s is attached to a standard distribu-
tion, such as a normal or a t distribution, can
the required probability density and cumu-
lative probability density be derived analyti-
cally. Indeed, s can be calculated from any
irregular shape distribution, in which case
the probability density will have to be de-
rived empirically. In the continuous time
setting, s is a scale parameter that multiplies
or reduces the size of the fluctuations gener-
ated by the standard wiener process.
Depending on the dynamic of the underly-
ing stochastic process and whether or not
the parameters are time varying, very differ-
ent shapes of returns distributions may re-
sult. So it is meaningless to use s as a risk
measure unless it is attached to a distribu-
tion or a pricing dynamic. When s is used to
measure uncertainty, the users usually have
in mind, perhaps implicitly, a normal distri-
bution for the returns distribution.

Standard deviation, s, is the correct dis-
persion measure for the normal distribution
and some other distributions, but not all.
Other measures that have been suggested
and found useful include the mean absolute
return and the inter-quantile range.
However, the link between volatility and risk
is tenuous; in particular, risk is more often
associated with small or negative returns,
whereas most measures of dispersion make
no such distinction. The Sharpe ratio, for ex-
ample, defined as return in excess of risk

free rate divided by standard deviation, is
frequently used as an investment perfor-
mance measure. It incorrectly penalizes oc-
casional high returns. The idea of “semi-
variance,” an early suggestion by Harry
Markowitz (1991), which only uses the
squares of returns below the mean, has not
been widely used, largely because it is not
operationally easy to apply in portfolio 
construction.

2.2 Volatility Definition and Measurement

As mentioned previously, volatility is often
calculated as the sample standard deviation,
which is the square root of equation (1).
Stephen Figlewski (1997) notes that since
the statistical properties of sample mean
make it a very inaccurate estimate of the
true mean, especially for small samples, tak-
ing deviations around zero instead of the
sample mean as in equation (1) typically in-
creases volatility forecast accuracy. There
are methods for estimating volatility that are
designed to exploit or reduce the influence
of extremes.2 While equation (1) is an unbi-
ased estimate of s2, the square root of ̂¼ 2 is a
biased estimate of s due to Jensen inequal-
ity.3 Zhuanxin Ding, Clive Granger, and
Robert Engle (1993) suggest measuring
volatility directly from absolute returns.4

To understand the continuous time
analogue of (1), we assume for the ease of 
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2 For example, the Maximum likelihood method
proposed by Clifford Ball and Walter Torous (1984),
the high-low method proposed by Michael Parkinson
(1980) and Mark Garman and Michael Klass (1980).

3 See Jeff Fleming (1998, footnote 10.) John Cox and
Mark Rubinstein (1985) explain how this bias can be
corrected assuming a normal distribution for Rt.
However, in most cases, the impact of this adjustment
is small.

4 Marie Davidian and Raymond Carroll (1987) show
absolute returns volatility specification is more robust
against asymmetry and non-normality. There is some
empirical evidence that deviations or absolute returns
based models produce better volatility forecasts than
models based on squared returns (Stephen Taylor
1986; Louis Ederinton and Wei Guan 2000a; and
Michael McKenzie 1999) but the majority of time se-
ries volatility models are squared returns models.



exposition that the instantaneous returns
are generated by the continuous time
martingale,

dpt = ¼ tdWp;t (2)

where dWp;t denotes a standard wiener
process. From (2) the conditional variance
for the one-period returns, rt + 1 pt + 1 pt,

is 
Z 1

0

¼ 2
t + ½ d½ , which is also known as the in-

tegrated volatility over the period t to t + 1.
This quantity is of central importance in the
pricing of derivative securities under sto-
chastic volatility (see John Hull and Alan
White 1987). While pt can be observed at
time t, st is an unobservable latent variable
that scales the stochastic process dWp;t

continuously through time.

Let m be the sampling frequency and
there are m continuously compounded
returns in one time unit such that

rm;t pt rt  1=m . 

If the discretely sampled returns are serially
uncorrelated and the sample path for st is
continuous, it follows from the theory of
quadratic variation (Ioannis Karatzas and
Stephen Shreve 1988) that

p lim
m

0

@
Z 1

0

¼ 2
t+ ½ d½

X

j = 1; · · · ;m
r2

m;t+ j=m

1

A = 0:

Hence, time t volatility is theoretically ob-
servable from the sample path of the return
process so long as the sampling process is
frequent enough. The term realized volatil-
ity has been used in William Fung and
David Hsieh (1991), and Torben Andersen
and Tim Bollerslev (1998), to mean the sum
of intraday squared returns at short intervals
such as fifteen- or five-minutes.5 Such a

volatility estimator has been shown to pro-
vide an accurate estimate of the latent
process that defines volatility. Characteris-
tics of financial market data used in these
studies suggest that returns measured at an
interval shorter than five minutes are
plagued by spurious serial correlation
caused by various market microstructure ef-
fects including nonsynchronous trading, dis-
crete price observations, intraday periodic
volatility pattern, and bid-ask bounce. An-
dersen and Bollerslev (1998) and George
Christodoulakis and Satchell (1988) show
how the inherent noise in the approximation
of actual and unobservable volatility by
square returns results in misleading forecast
evaluation. These theoretical results turn
out to have a major implication for volatility
forecasting research. We shall return to this
important issue in section 4.4.

2.3 Stylized Facts about Financial 
Market Volatility

There are several salient features about fi-
nancial time series and financial market
volatility that are now well documented.
These include fat tail distributions of risky as-
set returns, volatility clustering, asymmetry
and mean reversion, and comovements of
volatilities across assets and financial markets.
More recent research finds correlation
among volatility is stronger than that among
returns and both tend to increase during bear
markets and financial crises. Since volatility of
financial time series has complex structure,
Francis Diebold et al. (1998) warn that fore-
cast estimates will differ depending on the
current level of volatility, volatility structure
(e.g. the degree of persistence and mean re-
version, etc.) and the forecast horizon. These
will be made clearer in the discussions below.

If returns are iid (independent and identi-
cally distributed, or strict white noise), then
variance of returns over a long horizon can
be derived as a simple multiple of single pe-
riod variance. But, this is clearly not the case
for many financial time series because of the
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stylized facts listed above. While a point
forecast of ˆ¼ T  1;T | t 1 becomes very noisy as
T ® ¥, a cumulative forecast, ˆ¼ t;T | t 1 ,
becomes more accurate because of errors
cancellation and volatility mean reversion
unless there is a fundamental change in 
the volatility level or structure.6

Some studies find volatility time series ap-
pear to have a unit root (Philip Perry 1982,
and Adrian Pagan and G. William Schwert
1990). That is,

¼ t = ¿ ¼ t 1 + ° t,

with f indistinguishable from 1. Other pa-
pers find some volatility measures of daily
and intra-day returns have a long memory
property (see Granger, Ding, and Scott
Spear 2000 for examples and references).
The autocorrelations of variances, and par-
ticularly those of mean absolute deviations,
stay positive and significantly above zero for
lags up to a thousand or more. These find-
ings are important because they imply that a
shock in the volatility process will have a
long-lasting impact.

Complication in relation to the choice of
forecast horizon is partly due to volatility
mean reversion. In general, volatility fore-
cast accuracy improves as data sampling fre-
quency increases relative to forecast horizon
(Andersen, Bollerslev, and Steve Lange
1999). However, for volatility forecasts over
a long horizon, Figlewski (1997) finds fore-
cast error doubled in size when daily data,
instead of monthly data, is used to forecast
volatility over 24 months. In some cases,
e.g. when the forecast horizon exceeds ten
years, a volatility estimate calculated using

weekly or monthly data is better because
volatility mean reversion is difficult to adjust
using high frequency data. In general,
model based forecasts lose supremacy when
the forecast horizon increases with respect
to the data frequency. For forecast horizons
that are longer than six months, a simple
historical method using low frequency 
data over a period at least as long as the
forecast horizon works best (Andrew Alford
and James Boatsman 1995; and Figlewski
1997).

As far as sampling frequency is con-
cerned, Feike Drost and Theo Nijman
(1993) prove, theoretically and for a special
case (i.e. the GARCH(1,1) process, which
will be introduced in section 3.1.2 later),
that volatility structure should be preserved
through intertemporal aggregation. This
means that whether one models volatility at
the hourly, daily, or monthly intervals, the
volatility structure should be the same. But
it is well known that this is not the case in
practice; volatility persistence, which is
highly significant in daily data, weakens as
the frequency of data decreases.7 This fur-
ther complicates any attempt to generalize
volatility patterns and forecasting results.

3. Models Used in Volatility Forecasting

In this section, we first describe various
popular time series volatility models that use
the historical information set to formulate
volatility forecasts and a second approach
that derives market estimates of future
volatility from traded option prices.
Nonparametric methods for volatility fore-
casting have been suggested. But, as non-
parametric methods were reported to perform
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6 ˆ¼ t;T | t  1 denotes a volatility forecast formulated 
at time t  1 for volatility over the period from t to T. In
pricing options, the required volatility parameter is the
expected volatility over the life of the option. The pric-
ing model relies on a riskless hedge to be followed
through until the option reaches maturity. Therefore
the required volatility input, or the implied volatility
derived, is a cumulative volatility forecast over the
option maturity and not a point forecast of volatility at
option maturity. The interest in forecasting ˆ¼ t;T | t 1
goes beyond the riskless hedge argument, however.

7 See Diebold (1988), Richard Baillie and Bollerslev
(1989), and Poon and Stephen Taylor (1992) for exam-
ples. Note that Daniel Nelson (1992) points out sepa-
rately that as the sampling frequency becomes shorter,
volatility modelled using a discrete time model
approaches its diffusion limit and persistence is to be
expected provided that the underlying return is a
diffusion or a near diffusion process with no jumps.



poorly (Pagan and Schwert 1990; and
Kenneth West and Dongchul Cho 1995),
they will not be discussed here. Also ex-
cluded from discussion here are volatility
models that are based on neural networks
(Michael Hu and Christ Tsoukalas 1999; ge-
netic programming, e.g. Zumbach, Pictet,
and Masutti 2001; time change and duration,
e.g. Cho and Frees 1988, and Engle and
Russell 1998).

3.1 Times Series Volatility 
Forecasting Models

Stephen Brown (1990), Engle (1993), and
Abdurrahman Aydemir (1998) contain lists
of time series models for estimating and
modelling volatility. Kroner (1996) explains
how volatility forecasts can be created and
used. In this section, we narrow our discus-
sion to models that are used in the 93 papers
reviewed here. The specifications of these
volatility models are provided in appendix A.

All models described in this section cap-
ture volatility persistence or clustering.
Others take into account volatility asymme-
try also. It is quite easy to construct a supply
and demand model for financial assets, with
supply a constant and demand partly driven
by an external instrument that enters non-
linearity, that will produce a model for finan-
cial returns that is heteroskedastic. Such a
model is to some extent “theory based” but
is not necessarily realistic. The pure time se-
ries models discussed in this section are not
based on theoretical foundations but are se-
lected to capture the main features of
volatility found with actual returns. If suc-
cessful in this, it is reasonable to expect that
they will have some forecasting ability.

3.1.1 Predictions Based on Past 
Standard Deviations

This group of models starts on the basis
that ¼ t  ½ for all t > 0 is known or can be es-
timated at time t  1. The simplest historical
price model is the Random Walk model,
where ¼ t 1 is used as a forecast for st.

Extending this idea, we have the Historical
Average method, the simple Moving Average
method, the Exponential Smoothing method
and the Exponentially Weighted Moving
Average method. The Historical Average
method makes use of all historical standard
deviations while the Moving Average
method discards the older estimates. Simi-
larly, the Exponential Smoothing method
uses all historical estimates, and the Expo-
nentially Weighted Moving Average
(EWMA ) method uses only the more recent
ones. But unlike the previous two, the two
exponential methods place greater weights
on the more recent volatility estimates. All
together, the four methods reflect a tradeoff
between increasing the number of observa-
tions and sampling nearer to time t.

The Riskmetrics™ model uses the
EWMA method. The Smooth Transition
Exponential Smoothing model, proposed by
James Taylor (2001), is a more flexible
version of exponential smoothing where the
weight depends on the size, and sometimes
the sign as well, of the previous return. Next
we have the Simple Regression method that
expresses volatility as a function of its past
values and an error term. The Simple
Regression method is principally autoregres-
sive. If past volatility errors are also in-
cluded, one gets the ARMA model for
volatility. Introducing a differencing order
I(d), we get ARIMA when d = 1 and
ARFIMA when d < 1. Finally, we have the
Threshold Autoregressive model, where the
thresholds separate volatility into states with
independent simple regression models and
noise processes for volatility in each state.

Apart from Random Walk and Historical
Average, successful applications of models
described in this section normally involve
searching for the optimal lag length or
weighting scheme in an estimation period
for out-of-sample forecasting. Such opti-
mization generally involves minimizing in-
sample volatility forecast errors. A more
sophisticated forecasting procedure would
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involve constant updating of parameter esti-
mates when new information is observed
and absorbed into the estimation period.

3.1.2 ARCH Class Conditional 
Volatility Models

A more sophisticated group of time series
models is the ARCH family, which is exten-
sively surveyed in Anil Bera and Matthew
Higgins (1993), Bollerslev, Ray Chou, and
Kenneth Kroner (1992), Bollerslev, Engle,
and Nelson (1994), and Diebold and Jose
Lopez (1995). In contrast to models de-
scribed in section 3.1.1, ARCH class models
do not make use of sample standard devia-
tions, but formulate conditional variance, ht,
of returns via maximum likelihood proce-
dure. Moreover, because of the way ARCH
class models are constructed, ht is known at
time t  1. So the one-step ahead forecast is
readily available. Forecasts that are more
than one step ahead can be formulated
based on an iterative procedure.

The first example of ARCH model is
ARCH(q) (Engle 1982) where ht is a func-
tion of q past squared returns. In GARCH
(p, q) (Bollerslev 1986, and Taylor 1986), ad-
ditional dependencies are permitted on p
lags of past ht. Empirical findings suggest
that GARCH is a more parsimonious model
than ARCH, and GARCH(1,1) is the most
popular structure for many financial time se-
ries. It turns out that Riskmetrics™ EWMA
is a non-stationary version of GARCH(1,1)
where the persistence parameters sum to 1
and there is no finite fourth moment. Such a
model is often called an integrated model,
which should not be confused with inte-
grated volatility described in section 2.2.
While unconvincing theoretically as a
volatility generating process, an integrated
model for volatility can nevertheless be esti-
mated and has been shown to be powerful
for prediction over a short horizon, as it is
not conditioned on a mean level of volatility,
and as a result it adjusts to changes in un-
conditional volatility quickly.

The EGARCH (Exponential GARCH)
model (Nelson 1991) specifies conditional
variance in logarithmic form, which means
that there is no need to impose estimation
constraint in order to avoid negative vari-
ance. With appropriate conditioning of the
parameters, this specification captures the
stylized fact that a negative shock leads to a
higher conditional variance in the subse-
quent period than a positive shock would.
Other models that allow for nonsymmetrical
dependencies are the TGARCH (Threshold
GARCH) which is similar to the GJR-
GARCH (Lawrence Glosten, Ravi Jagan-
nathan, and David Runkle 1993), QGARCH
(Quadratic GARCH) and various other non-
linear GARCH reviewed in Philip Franses
and Dick van Dijk (2000).

Both ARCH and GARCH models have
been implemented with a James Hamilton
(1989) type regime switching framework,
where volatility persistence can take differ-
ent values depending on whether it is in high
or low volatility regimes. The most general-
ized form of regime switching model is the
RS-GARCH(1,1) model used in Stephen
Gray (1996) and Franc Klaassen (2002).

As mentioned before, volatility persistence
is a feature that many time series models are
designed to capture. A GARCH model fea-
tures an exponential decay in the autocorre-
lation of conditional variances. However, it
has been noted that squared and absolute re-
turns of financial assets typically have serial
correlations that are slow to decay, similar to
those of an I(d) process. A shock in the
volatility series seems to have very “long
memory” and impact on future volatility over
a long horizon. The Integrated GARCH
(IGARCH) model of Engle and Bollerslev
(1986) captures this effect but a shock in this
model impacts upon future volatility over an
infinite horizon, and the unconditional vari-
ance does not exist for this model. This gives
rise to FIGARCH(p, d, q) in Richard Baillie,
Bollerslev, and Hans Mikkelsen (1996) and
FIEGARCH(p, d, q) in Bollerslev and
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Mikkelsen (1996) with d ³ 0. Provided that 
d < 0.5, the fractional integrated model is
covariance stationary. However, as Soosung
Hwang and Satchell (1998) and Granger
(2001) point out, positive I(d) process has a
positive drift term or a time trend in volatility
level which is not observed in practice. This
is a major weakness of the fractionally inte-
grated model for it to be adopted as a theo-
retically sound model for volatility.

It is important to note that there are many
data generating processes, other than an I(d)
process, that also exhibit long memory in
covariances. The short-memory stationary
series with occasional breaks in mean in
Granger and Namwon Hyung (2000) is an
example. Diebold and Atsushi Inoue (2001)
show stochastic regime switching can be eas-
ily confused with long memory if only a small
amount of regime switching occurs. Gilles
Zumbach (2002), on the other hand, cap-
tures long memory using IGARCH(2) (i.e.
the sum of two IGARCH) and an LM model
which aggregates high frequency squared
returns with a set of power law weights.

3.1.3 Stochastic Volatility Models

In the stochastic volatility (SV) modelling
framework, volatility is subject to a source of
innovations that may or may not be related
to those that drive returns. Modelling
volatility as a stochastic variable immediately
leads to fat tail distributions for returns.
Autoregressive term in the volatility process
introduces persistence, and correlation be-
tween the two innovative terms in the
volatility process and the return process pro-
duces volatility asymmetry (Hull and White
1987, 1988). Long memory SV models have
also been proposed by allowing volatility to
have a fractional integrated order (see
Andrew Harvey 1998).

For an excellent survey of SV work see
Eric Ghysels, Harvey, and Eric Renault
(1996), but the subject is rapidly changing.
The volatility noise term makes the SV
model a lot more flexible, but as a result the

SV model has no closed form, and hence
cannot be estimated directly by maximum
likelihood. The quasi-maximum likelihood
estimation (QMLE) approach of Harvey,
Esther Ruiz, and Neil Shephard (1994) is
inefficient if volatility proxies are non-
Gaussian (Andersen and Bent Sorensen
1997). The alternatives are the generalized
method of moments (GMM) approach
through simulations (Durrell Duffie and
Kenneth Singleton 1993), or analytical solu-
tions (Singleton 2001), and the likelihood
approach through numerical integration
(Moshe Fridman and Lawrence Harris
1988) or Monte Carlo integration using ei-
ther importance sampling (Jon Danielsson
1994; Michael Pitt and Shephard 1997; J.
Durbin and S. J. Koopman 2000) or Markov
Chain (e.g. Eric Jacquier, Nicholas Polson,
and Peter Rossi 1994; Sangjoon Kim,
Shephard, and Siddhartha Chib 1998).

3.2 Options-Based Volatility Forecasts

A European style call (put) option is a
right, but not an obligation, to purchase
(sell) an asset at a strike price on option ma-
turity date, T. An American style option is a
European option that can be exercised prior
to T. The Black-Scholes model for pricing
European equity options (Fischer Black and
Myron Scholes 1973) assumes stock price
has the following dynamics

(3)dS = · Sdt + ¼ Sdz,

and for the growth rate on stock

(4)
dS

S
= · dt + ¼ dz.

From Ito lemma, the logarithmic of stock
price has the following dynamics

dlnS =

µ
·

1

2
¼ 2

¶
dt + ¼ dz, (5)

which means that stock price has a lognormal
distribution or the logarithm of stock price
has a normal distribution. Using a riskless
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hedge argument, Black-Scholes proved that
under certain assumptions, options prices
could be derived using a risk neutral valua-
tion relationship where all derivative assets
generate only risk-free returns. Under this
risk-neutral setting, investor risk preference
and the required rate of returns on stock, m
in (4), are irrelevant as far as the pricing of
derivatives is concerned. The Black-Scholes
assumptions include constant volatility, s,
short sell with full use of proceeds, no trans-
action costs or taxes, divisible securities, no
dividend before option maturity, no arbi-
trage, continuous trading, and a constant
risk-free interest rate, r.

Empirical findings suggest that option
pricing is not sensitive to the assumption 
of a constant interest rate. There are now
good approximating solutions for pricing
American-style options which can be exer-
cised early and options that encounter
dividend payments before option maturity.
The impact of stochastic volatility on option
pricing is much more profound, an issue we
shall return to shortly. Apart from the con-
stant volatility assumption, the violation of
any of the remaining assumptions will result
in the option price being traded within a
band instead of at the theoretical price.

The Black-Scholes European option pric-
ing formula states that option price at time t
is a function of St (the price of the underlying
asset), X (the strike price), r (the risk-free in-
terest rate), T (time to option maturity) and s
(volatility of the underlying asset over the pe-
riod from t to T). Given that St, X, r, and T are
observable, once the market has produced a
price (either a quote or a transaction price)
for the option, we could use a backward
induction technique to derive s that the mar-
ket used as an input. Such a volatility estimate
is called option implied volatility. Since the
reference period is from t to T in the future,
option implied volatility is often interpreted
as a market’s expectation of volatility over the
option’s maturity, i.e. the period from t to T.

Given that each asset can have only one s,
it is a well-known puzzle that options of the

same time to maturity but differing in strikes
appeared to produce different implied
volatility estimates for the same underlying
asset. Volatility smile, smirk, and sneer are
names given to nonlinear shapes of implied
volatility plots (against strike price). There are
at least two theoretical explanations (viz. dis-
tributional assumption and stochastic volatil-
ity) for this puzzle. Other explanations that
are based on market microstructure and
measurement errors (e.g. liquidity, bid-ask
spread and tick size) and investor risk prefer-
ence (e.g. model risk, lottery premium and
portfolio insurance) have also been proposed.

3.2.1 Distributional Assumption

To understand how Black-Scholes distri-
butional assumption produces volatility
smile, we need to make use of the positive
relationship between volatility and option
price, and the put-call parity8

(6)ct + Xer(T  t) = pt + St

which established the positive relationship
between call and put option prices. Since
implied volatility is positively related to op-
tion price, equation (6) suggests there is also
a positive relationship between implied
volatilities derived from call and put options
that have the same strike price and the same
time to maturity.

As mentioned before Black-Scholes re-
quires stock price in (5) to follow a lognormal
distribution or the logarithmic stock returns
to have a normal distribution. There is now
widely documented empirical evidence that
risky financial asset returns have leptokurtic
tails. In the case where strike price is very
high, the call option is deep-out-of-the-
money9 and the probability for this option to
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when it is not profitable to exercise the option. For call op-
tion, this happens when S < X, and in the case of put, the
condition is S > X. The reverse is true for in-the-money
option. A call or a put is said to be at the money (ATM)
when S = X. Near-the-money option is an option that is
not exactly ATM, but close to being ATM. Sometimes,
discounted values of S and X are used in the conditions.



be exercised is very low. Nevertheless, a
leptokurtic right tail will give this option a
higher probability, than that from a normal
distribution, for the terminal asset price to
exceed the strike price and the call option
to finish in the money. This higher proba-
bility leads to a higher call price and a
higher Black-Scholes implied volatility at
high strike.

Next, we look at the case when strike
price is low. First note that option value has
two components; intrinsic value and time
value. Intrinsic value reflects how deep the
option is in the money. Time value reflects
the amount of uncertainty before the option
expires; hence it is most influenced by
volatility. Deep-in-the-money call option has
high intrinsic value and little time value, and
a small amount of bid-ask spread or transac-
tion tick size is sufficient to perturb the im-
plied volatility estimation. We could use the
argument in the previous paragraph but
apply it to out-of-the-money (OTM) put op-
tion at low strike price. OTM put option has
a close to nil intrinsic value and the put op-
tion price is due mainly to time value. Again
because of the thicker tail on the left, we ex-
pect the probability that OTM put option
finishes in the money to be higher than that
for a normal distribution. Hence the put op-
tion price (and hence the call option price
through put-call parity) should be greater
than that predicted by Black-Scholes. If we
use Black-Scholes to invert volatility esti-
mates from these option prices, the Black-
Scholes implied will be higher than actual
volatility. This results in volatility smile
where implied volatility is much higher at
very low and very high strikes.

The above arguments apply readily to the
currency market where exchange rate re-
turns exhibit thick tail distributions that are
approximately symmetrical. In the stock
market, volatility skew (i.e., low implied at
high strike but high implied at low strike) is
more common than volatility smile after the
October 1987 stock market crash. Since the
distribution is skewed to the far left, the right

tail can be thinner than the normal distribu-
tion. In this case implied volatility at high
strike will be lower than that expected from a
volatility smile.

3.2.2 Effect of Stochastic Volatility

The thick tail and nonsymmetrical distri-
bution referred to in the previous section
could be a result of volatility being stochas-
tic. First, we rewrite (3) as

(7)dSt = · sStdt + ¼ tStdzS ,

and now st has its own dynamics

(8)d¼ 2
t =

¡
· v  ¼ 2

t

¢
dt + ¼ v ¼ 2

t dzv ;

where b is the speed of the volatility process
mean reverting to the long-run average
( · v= ), sv is the volatility of volatility, and r,
not shown above, is the correlation between
dzS and dzv.

When r = 0, the price process and the
volatility process are not correlated; sv alone
is enough to produce kurtosis and Black-
Scholes volatility smile. When r < 0, large
negative return corresponds to high volatility
stretching the left tail further into the left.
On the other hand, when return is very high,
volatility is low, “squashing” the right tail
nearer to the centre. This will give rise to low
implied volatility at high strikes and volatility
skew. The reverse is true when r > 0.

Given that volatility is not a directly trad-
able asset, the hedging mechanism used in
Black-Scholes may not apply and the risk
neutral valuation principle has to be modi-
fied since volatility may command a risk pre-
mium. Different approaches to this problem
have been adopted. Hull and White (1987)
assume volatility risk is not priced. Wiggins
(1987) derives various specifications of
volatility risk premium according to different
assumptions for risk preference. Steven
Heston (1993) provides a specification where
volatility risk premium is proportional to
variance and extracts this volatility risk pre-
mium from option prices in the same manner
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as implied volatility is extracted. Despite the
variety of approaches adopted, consensus
emerges on the degree of Black-Scholes pric-
ing bias as a result of stochastic volatility. In
the case where volatility is stochastic and r =
0, Black-Scholes overprices near-the-money
(NTM) or at-the-money (ATM) options and
the degree of overpricing increases with ma-
turity. On the other hand, Black-Scholes un-
derprices both in- and out-of-the-money op-
tions. In terms of implied volatility, ATM
implied volatility would be lower than actual
volatility while implied volatility of far-from-
the-money options (i.e. either very high or
very low strikes) will be higher than actual
volatility. The pattern of pricing bias will be
much harder to predict if r is not zero, there
is a premium for bearing volatility risk, and if
either or both values vary through time.

Some of the early work on option implied
volatility focused on finding an optimal
weighting scheme to aggregate implied
volatility of options across strikes. (See
David Bates 1996 for a comprehensive sur-
vey of these weighting schemes.) Since the
plot of implied volatility against strikes can
take many shapes, it is not likely that a single
weighting scheme will remove all pricing
errors consistently. For this reason and
together with the liquidity argument pre-
sented below, ATM option implied volatility
is often used for volatility forecast but not
implied volatilities at other strikes.

3.2.3 Market Microstructure 
and Measurement Errors

Early studies of option implied volatility
suffered many estimation problems10 such
as the improper use of the Black-Scholes
model for American-style options, the omis-
sion of dividend payments, the option price
and the underlying asset prices not being
recorded at the same time, or the use of

stale prices. Since transactions may take
place at bid or ask prices, transaction prices
of option and the underlying assets are sub-
ject to bid-ask bounce making the implied
volatility estimation unstable. Finally, in the
case of S&P 100 OEX option, the privilege
of a wildcard option is often omitted.11 In
more recent studies, much of these mea-
surement errors have been taken into ac-
count. Many studies use futures and options
futures because these markets are more
active than the cash markets and hence 
the smaller risk of prices being stale.

Conditions in the Black-Scholes model in-
clude no arbitrage, transaction cost of zero and
continuous trading. The lack of such a trading
environment will result in options being traded
within a band around the theoretical price.
This means that implied volatility estimates
extracted from market option prices will also
lie within a band even without the complica-
tions described in sections 3.2.1 and 3.2.2.
Figlewski (1997) shows that implied volatility
estimates can differ by several percentage
points due to bid-ask spread and discrete tick
size alone. To smooth out errors caused by
bid-ask bounce, Harvey and Whaley (1992)
use a nonlinear regression of ATM option
prices observed in a ten-minute interval be-
fore the market close on model prices.

Indication of a non-ideal trading environ-
ment is usually reflected in poor trading vol-
ume. This means implied volatility of op-
tions written on different underlying assets
will have different forecasting power. For
most option contracts, ATM option has 
the largest trading volume. This supports
the popularity of ATM implied volatility
referred to in section 3.2.2.

3.2.4 Investor Risk Preference

In the Black-Scholes’s world, investor risk
preference is irrelevant in pricing options.
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on such complications involved in estimating implied
volatility from option prices, and Hentschel (2001) pro-
vides a discussion of the confidence intervals for im-
plied volatility estimates.
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ket closes later than the option market. An option
trader is given the choice to decide, before the stock
market closes, whether or not to trade on an option
whose price is fixed at an earlier closing time.



Given that some of the Black-Scholes as-
sumptions have been shown to be invalid,
there is now a model risk. Figlewski and T.
Clifton Green (1999) simulate option
writers’ positions in the S&P 500, DM/$, US
LIBOR, and T-Bond markets using actual
cash data over a 25-year period. The most
striking result from the simulations is that
delta hedged short maturity options, with no
transaction costs and a perfect knowledge of
realised volatility, finished with losses on av-
erage in all four markets. This is clear evi-
dence of Black-Scholes model risk. If option
writers are aware of this model risk and
mark up option prices accordingly, the
Black-Scholes implied volatility would be
greater than the true volatility.

In some situations, investor risk prefer-
ence may override the risk neutral valuation
relationship. Figlewski (1997), for example,
compares the purchase of an OTM option to
buying a lottery ticket. Investors are willing
to pay a price that is higher than the fair price
because they like the potential payoff and the
option premium is so low that mispricing be-
comes negligible. On the other hand, we also
have fund managers who are willing to buy
comparatively expensive put options for fear
of the collapse of their portfolio value. Both
types of behavior could cause the market
price of an option to be higher than the
Black-Scholes price, translating into a higher
Black-Scholes implied volatility. The arbi-
trage argument does not apply here because
there is unique risk preference (or aversion)
associated with some groups of individuals.
Guenter Franke, Richard Stapleton, and
Martin Subrahmanyam (1998) provide a
theoretical framework in which such option
trading behavior may be analyzed.

3.2.5 Option Implied Volatility Measure
and Forecast

From the discussion above, we may de-
duce that the construction of VIX by the
Chicago Board of Options Exchange is an
example of good practice. VIX, short for
volatility index, is an implied volatility com-

posite compiled from eight options written
on the S&P 100. It is constructed such that it
is at-the-money (by combining just-in and
just-out-of-the-money options) and has a
constant 28 calendar days to expiry (by com-
bining the first nearby and second nearby
options around the targeted 28 calendar
days to maturity). Eight option prices are
used, including four calls and four puts, to
reduce any pricing bias and measurement
errors caused by staleness in the recorded
index level. Since options written on the
S&P 100 are American style, a cash-dividend
adjusted binomial model was used to cap-
ture the effect of early exercise. The mid
bid-ask option price is used instead of traded
price because transaction prices are subject
to bid-ask bounce. (See Robert Whaley
1993; and Fleming, Barbara Ostdiek, and
Whaley 1995 for further details.) Due to the
calendar day adjustment, VIX is about 1.2
times (i.e. 

p
365=252) greater than historical

volatility computed using trading day data.
Once an implied volatility estimate is ob-

tained, it is usually scaled by n to get an n-
day ahead volatility forecast. In some cases,
a regression model may be used to adjust for
historical bias (e.g. Louis Ederington and
Wei Guan 2000), or the implied volatility
may be parameterized within a GARCH/
ARFIMA model with or without its own
persistence adjustment (e.g. Ted Day and
Craig Lewis 1992; Bevan Blair, Poon, and
Taylor 2001; Hwang and Satchell 1998).

As mentioned earlier, option implied
volatility is perceived as a market’s expecta-
tion of future volatility and hence it is a mar-
ket based volatility forecast. Arguably it
should be superior to a time series volatility
forecast. On the other hand, we explained
before that option model based forecast re-
quires a number of assumptions to hold for
the option theory to produce a useful volatil-
ity estimate. Moreover, option implied also
suffers from many market driven pricing ir-
regularities detailed above. Nevertheless, as
we will learn in section 6, option implied
volatility appears to have superior forecasting

Poon and Granger: Forecasting Volatility in Financial Markets 489



capability, outperforming many historical
price volatility models and matching the per-
formance of forecasts generated from time
series models that use a large amount of high
frequency data.

4. Forecast Evaluation

Comparing forecasting performance of
competing models is one of the most impor-
tant aspects of any forecasting exercise. In
contrast to the efforts made in the construc-
tion of volatility models and forecasts, little
attention has been paid to forecast evalua-
tion in the volatility forecasting literature.

4.1 Measuring Forecast Errors

Ideally, an evaluation exercise should
measure the relative or absolute usefulness
of a volatility forecast to investors. However,
to do that one needs to know the decision
process that will include these forecasts and
the costs or benefits that result from using
these forecasts. Other utility-based crite-
rion, such as that used in West, Edison, and
Cho (1993), requires some assumptions
about the shape and property of the utility
function. In practice these costs, benefits
and utility function are not known and it is
usual to simply use measures suggested by
statisticians.

Popular evaluation measures used in the lit-
erature include Mean Error (ME), Mean
Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percent Error (MAPE).
Other less commonly used measures include
Mean Logarithm of Absolute Errors (MLAE),
Theil-U statistic and LINEX. Except for the
last two performance measures, all the other
performance measures are self-explanatory.
Assume that the subject of interest is Xi, X̂i is
the forecast of Xi, and that there are N fore-
casts. The Theil-U measure is:

Theil U =

PN
i = 1

³
X̂i Xi

´2

PN
i = 1

³
X̂BM

i Xi

´2 (9)

where X̂BM
i is the Benchmark forecast,

used here to remove the effect of any scalar
transformation applied to X.

In the LINEX loss function below the
positive errors are weighted differently from
the negative errors:

LINEX =
1

N

NX

i = 1

h
exp

n
a(X̂i Xi)

o

(10)

+a(X̂i Xi) 1
i
.

The choice of the parameter a is subjec-
tive. If a > 0, the function is approximately
linear for over-prediction and exponential
for under-prediction. Granger (1999) de-
scribes a variety of nonsymmetric cost, or
loss, functions of which the LINEX is an
example. Given that most investors would
treat gains and losses differently, use of such
functions may be advisable, but their use is
not common in the literature.

4.2 Comparing Forecast Errors 
of Different Models

In the special case where the error distri-
bution of one forecasting model dominates
that of another forecasting model, the com-
parison is straightforward (Granger 1999).
In practice, this is rarely the case, and most
comparisons are based on the average
figure of some statistical measures de-
scribed in section 4.1. For statistical infer-
ence, West (1996), West and Cho (1995),
and West and M. McCracken (1998) show
how standard errors for ME, MSE, MAE,
and RMSE may be derived taking into ac-
count serial correlation in the forecast er-
rors and uncertainty inherent in model pa-
rameters estimates that were used to
produce the forecasts. In general, West’s
(1996) asymptotic theory works for recur-
sive scheme only, where newly observed
data is used to expand the estimation pe-
riod. However, a rolling fixed estimation-
period method, where the oldest data is
dropped whenever new data is added,
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might be more appropriate if there is
nonstationarity or time variation in model
parameters estimates.

Diebold and Roberto Mariano (1995)
propose three tests for “equal accuracy” be-
tween two forecasting models. The tests re-
late prediction error to some very general
loss function and analyze loss differential
derived from errors produced by two com-
peting models. The three tests include an
asymptotic test that corrects for series corre-
lation and two exact finite sample tests based
on the sign test and the Wilcoxon’s signed-
rank test. Simulation results show that the
three tests are robust against non-Gaussian,
nonzero mean, serially, and contemporane-
ously correlated forecast errors. The two
sign-based tests in particular continue to
work well among small samples.

Instead of striving to make some statistical
inference, model performance could be
judged on some measures of economic signif-
icance. Examples of such an approach in-
clude portfolio improvement based on volatil-
ity forecasts (Fleming, Chris Kirby, and
Ostdiek 2000, 2002). Some papers test fore-
cast accuracy by measuring the impact on op-
tion pricing errors (G. Andrew Karolyi 1993).
In this case, if there is any pricing error in the
option model, the mistake in volatility fore-
cast will be cancelled out when the option im-
plied is reintroduced into the pricing formula.
So it is not surprising that evaluation that
involves comparing option pricing errors
often prefers the implied volatility method to
all other time series methods.

What has not yet been done in the litera-
ture is to separate the forecasting period into
“normal” and “exceptional” periods. It is con-
ceivable that different forecasting methods
are suited for different trading environments.

4.3 Regression Based Forecast Efficiency
and Orthogonality Test

The regression-based method for examin-
ing the informational content of forecasts

entails regressing the “actual”, Xi, on the
forecasts, X̂i , as shown below

(11)Xi = ¬ +  X̂i + ¾ t.

Conditioning upon the forecast, the predic-
tion is unbiased only if a = 0 and b = 1. The
standard errors of the parameter estimates
are often computed based on Hansen and
Hodrick (1980) since the error term, ui, is
heteroskedastic and serially correlated when
overlapping forecasts are evaluated. In cases
where there are more than one forecasting
models, additional forecasts are added to the
right-hand side of (11) to check for incre-
mental explanatory power. Such forecast en-
compassing testing dates back to Henri
Theil (1966). Yock Chong and David
Hendry (1986), and Ray Fair and Robert
Shiller (1989, 1990), provide further theo-
retical exposition of such method for testing
forecast efficiency. The first forecast is said
to subsume information contained in other
forecasts if these additional forecasts do not
significantly increase the adjusted regression
R2. Alternatively, an orthogonality test may
be conducted by regressing the residuals
from (11) on other forecasts. If these fore-
casts are orthogonal, i.e. do not contain addi-
tional information, then the regression coef-
ficients will not be different from zero.

While it is useful to have an unbiased
forecast, it is important to distinguish be-
tween biasness and predictive power. A bi-
ased forecast can have predictive power if
the bias can be corrected. An unbiased fore-
cast is useless if forecast errors are always
big. For Xi to be considered as a good fore-
cast, Var(ui) should be small and R2 for the
regression should tend to 100 percent. Blair,
Poon, and Taylor (2001) use the proportion
of explained variability, P, to measure
explanatory power

(12)P = 1

P
(Xi X̂i)

2

P
(Xi · X)2

.

The ratio in the right-hand side of (12) com-
pares the sum of squared prediction errors
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(assuming a = 0 and b = 1 in (11)) with the
sum of squared variations of Xi. P compares
the amount of variations in the forecast er-
rors with that in actual volatility. If predic-
tion errors are small, P is closer to 1. Given
that a regression model that produces (12) is
more restrictive than (11), P is likely to be
smaller than conventional R2. P can even be
negative since the ratio in the right hand
side of (12) can be greater than 1. A negative
P means that the forecast errors have a
greater amount of variations than the actual
volatility, which is not a desirable character-
istic for a well-behaved forecasting model.

4.4 Using Squared Return to Proxy 
Actual Volatility

Given that volatility is a latent variable,
the actual volatility X is often estimated from
a sample using equation (1), which is not en-
tirely satisfactory when the sample size is
small. Before high frequency data becomes
widely available, many researchers have re-
sorted to using daily squared return, calcu-
lated from market closing prices, to proxy
daily volatility. As shown in Lopez (2001),
while ° 2

t is an unbiased estimator of ¼ 2
t , it is

very imprecise due to its asymmetric distri-
bution. Let

(13)Yt = · + ° t; ° t = ¼ tzt,

and zt ~ (0,1). Then

E
£
° 2

t | t 1

¤
= ¼ 2

t E
£
z2

t | t 1

¤
= ¼ 2

t

since z2
t À 2

(1) . However, since the median
of a À 2

(1) distribution is 0.455, ° 2
t < 1

2
¼ 2

t more
than 50 percent of the time. In fact

P r

µ
° 2

t

·
1

2
¼ 2

t ;
3

2
¼ 2

t

¸¶
= P r

µ
z2

t

·
1

2
;

3

2

¸¶

= 0:2588 ,

which means that ° 2
t is 50 percent greater or

smaller than ¼ 2
t nearly 75 percent of the

time.
Under the null hypothesis that returns in

(13) are generated by a GARCH(1,1) process,

Andersen and Bollerslev (1998) show that
the population R2 for the regression

° 2
t = ¬ +  ˆ¼ 2

t + ¸ t

is equal to k–1 where k is the kurtosis of the
standardized innovations and k is finite. For
conditional Gaussian error, the R2 from a
correctly specified GARCH(1,1) model is
bounded from above by 1

3
. Christodoulakis

and Satchell (1998) extend the results to
include compound normals and the Gram-
Charlier class of distributions and show that
the misestimation of forecast performance is
likely to be worsened by non-normality
known to present in financial data.

Hence, the use of ° 2
t as volatility proxy will

lead to low R2 and undermine the inference
regarding forecast accuracy. Extra caution is
called for when interpreting empirical find-
ings in studies that adopt such a noisy volatil-
ity estimator. Blair, Poon, and Taylor (2001)
report an increase of R2 by three to four
times for the one-day ahead forecast when
intra-day five-minute square returns instead
of daily square returns are used to proxy the
actual volatility. 

4.5 Further Issues in Forecast Evaluation

In all forecast evaluations, it is important
to distinguish in-sample and out-of-sample
forecasts. In-sample forecast, which is based
on parameters estimated using all data in the
sample, implicitly assumes parameter esti-
mates are stable through time. In practice,
time variation of parameter estimates is a
critical issue in forecasting. A good forecast-
ing model should be one that can withstand
the robustness of an out-of-sample test, a
test design that is closer to reality. In our
analyses of empirical findings in sections 5
and 6, we focus our attention only on studies
that implement out-of-sample forecasts.

An issue not addressed previously is
whether volatility X in (9), (10), (11), and
(12) should be standard deviation or vari-
ance. The complication generated by this
choice could be further compounded with
the choice of performance measure (e.g.
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MAE or MSE). The square of a variance er-
ror is the 4th power of the same error mea-
sured from standard deviation. This can
complicate the task of forecast evaluation,
given the difficulty in estimating fourth mo-
ments with common distributions let alone
the thick-tailed ones in finance. The confi-
dence interval of the mean error statistic can
be very wide when forecast errors are mea-
sured from variances and worse if they are
squared. This leads to difficulty in finding
significant differences between alternative
forecasting methods. For this reason, one
may even consider using a logarithmic trans-
formation (as in Pagan and Schwert 1990) to
reduce the impact of outliers.

Marie Davidian and Raymond Carroll
(1987) make similar observations in their
study of variance function estimation for
heteroskedastic regression. Using high order
theory, they show that the use of square re-
turns for modelling variance is appropriate
only for approximately normally distributed
data, and becomes non-robust when there is
a small departure from normality. Estima-
tion of the variance function that is based on
logarithmic transformation or absolute re-
turns is more robust against asymmetry and
non-normality. More recently, Andersen
Bollerslev, Diebold, and Labys (2001) and
Andersen, Bollerslev, Diebold, and Ebens
(2001) find realized volatility estimated from
high frequency currency and stock returns
are approximately lognormal. These findings
are generally consistent with X being log-
arithmic volatility.

Bollerslev and Ghysels (1996) further sug-
gest a heteroskedasticity-adjusted version of
MSE called HMSE where

HMSE=
1

N

NX

t = 1

·
XT + t

X̂T + t

1

¸2

.

In this case, the forecast error is effectively
scaled by actual volatility. This type of per-
formance measure is not appropriate if the
absolute magnitude of the forecast error is a
major concern.

5. Volatility Forecasting Based On 
Time Series Models

In this section, we review major findings
in 44 papers that construct volatility fore-
casts based on historical information only.
We will make some references to implied
volatility forecasts when we discuss forecast-
ing performance of SV and long memory
volatility models. Main findings regarding
implied volatility forecasts will be discussed
in section 6.

5.1 Pre-ARCH Era and Non-ARCH Debate

Taylor (1987) is one of the earliest to test
time series volatility forecasting models be-
fore ARCH/GARCH permeated the volatility
literature. Taylor (1987) studies the use of
high, low, and closing prices to forecast one to
twenty days DM/$ futures volatility and finds
a weighted average composite forecast to
perform best. Wiggins (1992) also gives sup-
port to extreme value volatility estimators.

In the pre-ARCH era, there were many
other findings covering a wide range of is-
sues. Dimson and Marsh (1990) find ex ante
time-varying optimized weighting schemes
do not always work well in out-of-sample
forecasts. Sill (1993) finds S&P 500 volatility
is higher during recession and that commer-
cial T-Bill spread helps to predict stock
market volatility. Andrew Alford and James
Boatman (1995) find, from a sample of 6,879
stocks, that adjusting historical volatility
towards volatility estimates of comparable
firms in the same industry and size provides
a better five-year ahead volatility forecast.
Alford and Boatman (1995), Figlewski
(1997), and Figlewski and Green (1999) all
stress the importance of having a long
enough estimation period to make good
volatility forecasts over a long horizon.

5.2 The Explosion of ARCH/GARCH
Forecasting Contests

Vedat Akigray (1989) is one of the earliest
to test the predictive power of GARCH and
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is commonly cited in many later GARCH
studies, though an earlier investigation
appeared in Taylor (1986). In the following
decade, there were no less than twenty
papers testing GARCH’s predictive power
against other time series methods and
against option implied volatility forecasts.
The majority of these forecast volatility of
major stock indices and exchange rates.

The ARCH/GARCH models and their
variants have many supporters. Akgiray 
finds GARCH consistently outperforms
EWMA and HIS (i.e. historical volatility de-
rived from standard deviation of past returns
over a fixed interval) in all subperiods and
under all evaluation measures. Pagan and
Schwert (1990) find EGARCH is best espe-
cially in contrast to nonparametric methods.
Despite a low R2, Cumby, Figlewski, and
Hasbrouck (1993) conclude that EGARCH
is better than naïve historical methods.
Figlewski (1997) finds GARCH superiority
confined to stock market and for forecasting
volatility over a short horizon only. Cao and
Tsay (1992) find TAR provides the best fore-
cast for large stocks and EGARCH gives the
best forecast for small stocks, and they sus-
pect that the latter might be due to a lever-
age effect. Bali (2000) documents the use-
fulness of GARCH models, the nonlinear
ones in particular, in forecasting one-week
ahead volatility of U.S. T-Bill yields.

Other studies find no clear-cut result.
These include Keun Yeong Lee (1991), West
and Cho (1995), Chris Brooks (1998), and
David McMillan, Alan Speight, and Dwain
Gwilym (2000). Some models work best
under different error statistics (e.g. MAE,
MSE), different sampling schemes (e.g.
rolling fixed sample estimation, or recursive
expanding sample estimation), different
time periods and for different assets.
Timothy Brailsford and Robert Faff (1996)
comment that the GJR-GARCH model has
a marginal lead while Franses and Van Dijk
(1996) claim the GJR forecast cannot be rec-
ommended. Many of these inconclusive
studies  share one or more of the following

characteristics: (i) they test a large number
of very similar models all designed to
capture volatility persistence; (ii) they use a
large number of error statistics, each of
which has a very different loss function; 
(iii) they forecast and calculate error  statis-
tics for variance and not standard deviation,
which makes the difference between fore-
casts of different models even smaller, yet
the standard error is large as the fourth
moment is unstable; and (iv) they use
squared daily, weekly, or monthly returns to
proxy daily, weekly, or monthly “actual
volatility,” which results in extremely noisy
volatility estimates; the noise makes the
small differences between forecasts of
similar models indistinguishable.

Unlike the ARCH class model, the “sim-
pler” methods, including the EWMA
method, do not separate volatility persist-
ence from volatility shocks and most of them
do not incorporate volatility mean reversion.
The GJR model allows the volatility persis-
tence to change relatively quickly when re-
turn switches sign from positive to negative
and vice versa. If unconditional volatility of
all parametric volatility models is the same,
then GJR will have the largest probability of
an underforecast.12 The “simpler” methods
tend to provide larger volatility forecasts
most of the time because there is no con-
straint on stationarity or convergence to the
unconditional variance, and may result in
larger forecast errors. This possibly explains
why GJR was the worst performing model in
Franses and Van Dijk (1996) because they
use MedSE (median squared error) as their
sole evaluation criteria. In Brailsford and
Faff (1996), the GJR(1,1) model outper-
forms the other models when MAE, RMSE,
and MAPE are used.
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There are some merits to using “simpler”
methods, and especially models that include
long distributed lags. As ARCH class models
assume variance stationarity, the forecasting
performance suffers when there are changes
in volatility level. Parameters estimation be-
comes unstable when data period is short or
when there is a change in volatility level.
This has led to GARCH convergence prob-
lem in several studies (e.g. Tse and Tung
1992, and Walsh and Tsou 1998). Stephen
Taylor (1986), Tse (1991), Tse and Tung
(1992), Boudoukh, Richardson, and White-
law (1997), Walsh and Tsou (1998), Edering-
ton and Guan (1999), Ferreira (1999), and
James Taylor (2001) all favor some forms of
exponential smoothing method to GARCH
for forecasting volatility of a wide range of
assets across equities, exchange rates and
interest rates.

In general, models that allow for volatility
asymmetry came out well in the forecasting
contest because of the strong negative rela-
tionship between volatility and shock.
Charles Cao and Ruey Tsay (1992), Ronald
Heynen and Harry Kat (1994), Lee (1991),
and Adrian Pagan and G. William Schwert
(1990) favor the EGARCH model for
volatility of stock indices and exchange rates,
whereas Brailsford and Faff (1996) and
Taylor (2001) find GJR-GARCH to outper-
form GARCH in stock indices. Turan Bali
(2000) finds a range of nonlinear models
works well for interest rate volatility. 

5.3 The Arrival of SV Forecasts

The SV model has an additional innova-
tive term in the volatility dynamics and,
hence, is more flexible than ARCH class
models and was found to fit financial market
returns better and have residuals closer to
standard normal. It is also closer to theoreti-
cal models in finance and especially those in
derivatives pricing. However, largely due to
the computation difficulty, volatility forecast
based on the SV model was not studied until
the mid 1990’s, a decade later than
ARCH/GARCH development. In a PhD

thesis, Heynen (1995) finds SV forecast is
best for a number of stock indices across
several continents. At the time of writing,
there are only six other SV studies and their
view about SV forecasting performance is by
no means unanimous.

Heynen and Kat (1994) forecast volatility
for seven stock indices and five exchange
rates and find SV provides the best forecast
for indices but produces forecast errors that
are ten times larger than EGARCH’s and
GARCH’s for exchange rates. Jun Yu (2002)
ranks SV top for forecasting New Zealand
stock market volatility, but the margin is very
small, partly because the evaluation is based
on variance and not standard deviation.
Lopez (2001) finds no difference between
SV and other time series forecasts using
conventional error statistics. All three papers
have the 1987 crash in the in-sample period,
and the impact of the 1987 crash on their
result is unclear.

Three other studies—Hagen Bluhm and
Yu (2000); Chris Dunis, Jason Laws, and
Stephane Chauvin (2000); and Eugenie Hol
and Koopman (2002)—compare SV and
other time series forecasts with option im-
plied volatility forecast. Dunis et al. (2000)
find combined forecast is the best for six ex-
change rates so long as the SV forecast is ex-
cluded. Bluhm and Yu (2000) rank SV equal
to GARCH. Both Bluhm and Yu (2000) and
Hol and Koopman (2002) conclude that im-
plied is better than SV for forecasting stock
index volatility.

5.4 Recent Development in Long Memory
Volatility Models

Volatility forecasts based on models that
exploit the long memory (LM) characteris-
tics of volatility appear rather late in the lit-
erature. These include Andersen, Bollerslev,
Diebold and Labys (2002), Jon Vilasuso
(2002), Zumbach (2002) and three other pa-
pers that compare LM forecasts with option
implied volatility, viz. Kai Li (2002), Martens
Martens and Jason Zein (2002), and Shiu-
Yan Pong et al. (2002). We pointed out in
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section 3.1.2 that other short memory mod-
els (e.g. extreme values, breaks, mixture of
distribution, and regime switching) are also
capable of producing long memory in sec-
ond moments, and each of them entails a
different data generating process. At the
time of writing, there is no direct contest be-
tween these and the LM models.

An earlier LM paper by Hwang and
Satchell (1998) uses LM models to forecast
Black-Scholes implied volatility of equity
option. This paper contains some useful in-
sights about properties of LM models, but
since we are focusing on forecasting volatil-
ity of the underlying asset rather than im-
plied volatility, the results of Hwang and
Satchell (1998) will not be discussed here.

Examples of LM models include the FI-
GARCH in Baillie, Bollerslev, and Mikkel-
sen (1996) and FIEGARCH in Bollerslev
and Mikkelsen (1996). In Andersen,
Bollerslev, Diebold, and Labys (2002) a vec-
tor autoregressive model with long distrib-
uted lags was built on realized volatility of
three exchange rates, which they called the
VAR-RV model. In Zumbach (2002) the
weights apply to time series of realized
volatility following a power law, which he
called the LM-ARCH model.

As noted before in section 3.1.2, all frac-
tional integrated models of volatility have a
non-zero drift in the volatility process. In
practice the estimation of fractional inte-
grated models requires an arbitrary trunca-
tion of the infinite lags and as a result, the
mean will be biased. Zumbach’s (2002) 
LM-ARCH will not have this problem be-
cause of the fixed number of lags and the way
in which the weights are calculated. Hwang
and Satchell’s (1998) scaled-truncated log-
ARFIMA model is mean adjusted to control
for the bias that is due to this truncation and
the log transformation.

Among the historical price models,
Vilasuso (2002) finds FIGARCH produces
significantly better one- and ten-day ahead
volatility forecasts for five major exchange
rates. Zumbach (2002) produces only 

one-day ahead forecasts and finds no differ-
ence among model performance. Andersen,
Bollerslev, Diebold, and Labys (2002) find
the realized volatility constructed VAR model,
i.e. VAR-RV, produces the best one- and ten-
day ahead volatility forecasts. It is difficult to
attribute this superior performance to the LM
model alone because the VAR structure allows
a cross series linkage that is absent in all other
univariate models, and we also know that the
more accurate realized volatility estimates
would result in improved forecasting per-
formance, everything else equal.

The other three papers that compare
forecasts from LM models with implied
volatility forecasts generally find implied
volatility forecast produces the highest ex-
planatory power. Martiens and Zein (2002)
find log-ARFIMA forecast beats implied in
S&P 500 futures but not in ¥US$ and crude
oil futures. Li (2002) finds implied produces
better short-horizon forecast, whereas the
ARFIMA provides better forecast for a six-
month horizon. However, when regression
coefficients are constrained to be a = 0 and
b = 1, the regression R2 becomes negative at
long horizons. From our discussion in sec-
tion 4.3, this suggests that volatility at the
six-month horizon might be better forecast
using the unconditional variance instead of
model-based forecasts.

As all LM papers in this group were writ-
ten very recently and after the publication of
Andersen and Bollerslev (1998), the realized
volatilities are constructed from intra-day
high frequency data. When comparison is
made with implied volatility forecast, how-
ever, the implied volatility is usually extracted
from daily closing option prices. Despite the
lower data frequency, option implied volatil-
ity appears to outperform forecasts from LM
models built on high-frequency data.

5.5 Regime Switching Models

It has long been argued that the financial
market reacts to large and small shocks dif-
ferently, and the rate of mean reversion is
faster for large shocks. Benjamin Friedman
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and David Laibson (1989), Charles Jones,
Owen Lamont, and Robin Lumsdaine
(1998) and Ederington and Lee (2001) all
provide explanations and empirical support
for the conjecture that volatility adjustment
in high and low volatility states follows a
twin-speed process; slower adjustment and
more persistent volatility in a low volatility
state and faster adjustment and less volatility
persistence in a high volatility state.

One approach for modelling changing
volatility persistence is to use a Hamilton
(1989) type regime switching (RS) model,
which like GARCH model is strictly station-
ary and covariance stationary. The TAR
model used in Cao and Tsay (1992) is similar
to a SV model with regime switching, and
Cao and Tsay (1992) prefers TAR to
EGARCH and GARCH. The earlier RS ap-
plications, such as Pagan and Schwert (1990)
and Hamilton and Susmel (1994) tend to be
more rigid, where conditional variance is
state dependent but not time dependent.
Until recently, only ARCH class conditional
variance is permitted. Recent extensions by
Gray (1996) and Klaassen (2002) allow
GARCH type heteroskedasticity in each
state and the probability of switching be-
tween states to be time dependent.

Hamilton and Rauli Susmel (1994) find
regime switching ARCH with leverage effect
produces better volatility forecast than asym-
metry version of GARCH. Hamilton and
Gang Lin (1996) use a bivariate RS model
and find stock market returns are more
volatile during recession periods. Gray (1996)
fits an RSGARCH (1,1) model to U.S. one-
month T-Bill rates, where the rate of mean
level reversion is permitted to differ under
different regimes, and find substantial im-
provement in forecasting performance.
Klaassen (2002) also applies RSGARCH (1,1)
to the foreign exchange market and finds a
superior, though less dramatic, performance.

It is worth noting that interest rates are
different from the other assets in that inter-
est rates exhibit a “level” effect, i.e., volatility
depends on the level of the interest rate. It is

plausible that it is this level effect that Gray
(1996) is picking up that results in superior
forecasting performance. This level effect
also appears in some European short rates
(Ferreira 1999). There is no such level effect
in exchange rates and so it is not surprising
that Klaassen (2002) does not find similar
dramatic improvement.13

5.6 Extreme Values and Outliers

There are at least two stylized facts about
volatility in the financial markets that were
not captured by ARCH models: (i) The stan-
dardized residuals from ARCH models still
display large kurtosis (see Thomas McCurdy
and Ieuan Morgan 1987; Anders Milhoj 1987;
Hsieh 1989; and Baillie and Bollerslev 1989).
Conditional heteroskedasticity alone could
not account for all the tail thickness. This is
true even when the Student-t distribution is
used to construct the likelihood function (see
Bollerslev 1987; and Hsieh 1989); (ii) The
ARCH effect is significantly reduced or dis-
appears once large shocks are controlled for
(Reena Aggarwal, Carla Inclan, and Ricardo
Leal 1999). Franses and Hendrik Ghijsels
(1999) find forecasting performance of the
GARCH model is substantially improved in
four out of five stock markets studied when
the additive outliers are removed.

Diebold and Peter Pauly (1987), and
Christopher Lamoureux and William
Lastrapes (1990) show that the high volatil-
ity persistence in the GARCH model could
be due to structural changes in the variance
process. A shift in unconditional variance
will result in volatility persistence in
GARCH that assumes covariance stationar-
ity. Philip Kearns and Pagan (1993) investi-
gate whether volatility persistence was an
artifact of extremes or outliers by symmetri-
cally trimming the scores of the largest ob-
servations, but find volatility persistence re-
mained in Australian stock index returns. On
the other hand, Aggarwal, Inclan, and Leal
(1999) use the Inclan and George Tiao
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(1994) method to identify and adjust for
volatility level changes and find a big differ-
ence after these level shifts are controlled
for. The difference between the two ap-
proaches is tenuous, however. As the time
between volatility level changes gets smaller,
the second approach converges to the first.

At the time of writing, there is no consen-
sus about the treatment of extreme values
and outliers; whether they should simply be
removed or trimmed or their impact on
volatility be separately handled. The financial
market literature is also rather loose in its ter-
minology regarding outliers and extremes,
which can lead to opaque discussions. To a
statistician, there are two extremes in each
sample, the minimum and the maximum, al-
though this can extend to the first few ordinal
statistics at each end. It follows that the num-
ber of extremes does not increase with sam-
ple size, n. The number of terms in the 
5-percent tail of the distribution does in-
crease with sample size, being 0.05n, so that
tails and extremes are not identical concepts;
extremes lie in the tails but tails include data
that are not extremes. Of course, for small
samples, the two sets become almost identi-
cal, but they are quite different for large sam-
ples. Tails are part of the distribution but for
large samples true extremes can be consid-
ered to be drawn from an extreme-value dis-
tribution. In the far tail the two could be the
same. “Outliers” could be drawn from a quite
different distribution when the market goes
into a different mode, in which case the ob-
served distribution is a mixture of the two. An
obvious problem is that there are rather few
observations from the outlier distributions
and so estimation is difficult.

The volume-volatility literature has docu-
mented a strong link between contempora-
neous trading volume and conditional
volatility. It is plausible that residuals that
are scaled by trading volume might be ap-
proximately Gaussian and the thick tails re-
moved. No doubt, the Christmas wish list of
volatility forecasters must be for a method of
forecasting crashes, even if it is for a short

period ahead. It may be possible to find such
a method using options or very high fre-
quency data, but a great deal of further ex-
ploration is required.

5.7 Getting the Right Conditional Variance
and Forecast with the “Wrong” Models

Many of the time series volatility models
including the GARCH models can be
thought of as approximating a deeper time-
varying volatility construction, possibly in-
volving several important economic explana-
tory variables. Since time series models
involve only lagged returns but have consid-
ered many forms of specification, it seems
likely that they will provide an adequate,
possibly even a very good approximation to
actuality for long periods but not at all times.
This means that they will forecast well on
some occasions, but less well on others, de-
pending on fluctuations in the underlying
driving variables.

Daniel Nelson (1992) proves that if the
true process is a diffusion or near-diffusion
model with no jumps, then even when mis-
specified, appropriately defined sequences
of ARCH terms with a large number of
lagged residuals may still serve as consistent
estimators for the volatility of the true un-
derlying diffusion, in the sense that the dif-
ference between the true instantaneous
volatility and the ARCH estimates con-
verges to zero in probability as the length of
the sampling frequency diminishes. Nelson
(1992) shows that such ARCH models may
misspecify both the conditional mean and
the dynamic of the conditional variance; in
fact the misspecification may be so severe
that the models make no sense as data gen-
erating processes; they could still produce
consistent one-step-ahead conditional vari-
ance estimates and short-term forecasts.

Nelson and Dean Foster (1995) provide
further conditions for such misspecified
ARCH models to produce consistent fore-
casts over medium and long terms. They
show that forecasts of the process and its
volatility generated by these misspecified
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models will converge in probability to the
forecast generated by the true diffusion or
near diffusion process provided that all un-
observable state variables are consistently
estimated and that the conditional mean and
conditional covariances of all state variables
are correctly specified. An example of a true
diffusion process given by Nelson and
Foster (1995) is the stochastic volatility
model described in section 3.2.2.

These important theoretical results con-
firm our empirical observations that under
normal circumstances, i.e. no big jumps in
prices, there may be little practical differ-
ence in choosing between volatility models
provided that the sampling frequency is
small and that whichever model one has
chosen, it contains long enough lagged
residuals. This might be an explanation for
the success of high-frequency and long-
memory volatility models (e.g. Blair, Poon,
and Taylor 2001; and Andersen et al. 2002).

6. Volatility Forecasting Based 
On Option ISD

In contrast to time series volatility fore-
casting models described in section 6, the
use of option ISD (Implied Standard
Deviation) as a volatility forecast involves
some extra complexities. A test on the fore-
casting power of option ISD is a joint test of
option market efficiency and a correct op-
tion pricing model. Since trading frictions
differ across assets, some options are easier
to replicate and hedge than others. It is
therefore reasonable to expect different lev-
els of efficiency and different forecasting
power for options written on different as-
sets. We will focus on this aspect of the fore-
casting contest in section 6.1 and compare
implied and time series volatility forecasts
within each asset class.

While each historical price constitutes an
observation in the sample used in calculating
volatility forecast, each option price consti-
tutes a volatility forecast over the option ma-
turity, and there can be many option prices

at any one time. As mentioned in section 3.2,
there are also problems of volatility smile and
volatility skew. Options of different strike
prices produce different Black-Scholes im-
plied volatility estimates. Section 6.2 discusses
the information content of ISD across strikes
and the effectiveness of different weighting
schemes used to produce an implied volatility
composite for volatility forecasting.

The issue of a correct option pricing
model is more fundamental in finance.
Option pricing has a long history and various
extensions have been made since Black-
Scholes to cope with dividend payments,
early exercise, and stochastic volatility.
However, none of the option pricing models
(except Heston 1993) that appeared in the
volatility forecasting literature allows for a
premium for bearing volatility risk. In the
presence of a volatility risk premium, we ex-
pect the option price to be higher, which
means implied volatility derived using an op-
tion pricing model that assumes zero volatil-
ity risk premium (such as the Black-Scholes
model) will also be higher, and hence auto-
matically be more biased. Section 6.3 exam-
ines the issue of biasness of ISD forecasts
and evaluates the extent to which implied
biasness is due to the omission of volatility
risk premium.

6.1 Predictability Across Different Assets

As noted in section 3.2.3, early studies
that test forecasting power of option ISD are
fraught with various deficiencies. Despite
these complexities, option ISD has been
found empirically to contain a significant
amount of information about future volatil-
ity and it often beats volatility forecasts pro-
duced by sophisticated time series models.
Such a superior performance appears to be
common across assets.

6.1.1 Individual Stocks

Henry Latane and Richard Rendleman
(1976) were the first to discover the forecast-
ing capability of option ISD. They find actual
volatilities of 24 stocks calculated from 
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in-sample periods and extended partially into
the future are more closely related to implied
than historical volatility. Donald Chiras and
Steven Manaster (1978) and Stan Beckers
(1981) find prediction from implied can ex-
plain a large amount of the cross-sectional
variations of individual stock volatilities.
Chiras and Manaster (1978) document an R2

of 34–70 percent for a large sample of stock
options traded on CBOE whereas Beckers
(1981) reports R2 of 13–50 percent for a sam-
ple that varies from 62 to 116 U.S. stocks over
the sample period. Gordon Gemmill (1986)
produces R2 of 12–40 percent for a sample of
thirteen U.K. stocks. Richard Schmalensee
and Robert Trippi (1978) find implied volatil-
ity rises when stock price falls and that im-
plied volatilities of different stocks tend to
move together. From a time series perspec-
tive, Lamoureux and Lastrapes (1993) and
George Vasilellis and Nigel Meade (1996)
find implied could also predict time series
variations of equity volatility better than fore-
casts produced from time series models.

The forecast horizons of this group of
studies are usually quite long, ranging from
three months to three years. Studies that ex-
amine incremental information content of
time series forecasts find volatility historical
average provides significant incremental in-
formation in both cross-sectional (Beckers
1981; Chiras and Manaster 1978; Gemmill
1986) and time series settings (Lamoureux
and Lapstrapes 1993) and that combining
GARCH and implied produces the best
forecast (Vasilellis and Meade 1996). These
findings have been interpreted as an evi-
dence of stock option market inefficiency
since option implied does not subsume all
information. In general, stock option im-
plied exhibits instability and suffers most
from measurement errors and bid-ask
spread because of the low liquidity.

6.1.2 Stock Market Index

There are 22 studies that use index option
ISD to forecast stock index volatility; seven
of these forecast volatility of S&P 100, ten

forecast volatility of S&P 500, and the re-
maining five forecast index volatility of
smaller stock markets. The S&P 100 and
S&P 500 forecasting results make an inter-
esting contrast as almost all studies that fore-
cast S&P 500 volatility use S&P 500 futures
options, which are more liquid and less
prone to measurement errors than the OEX
stock index option written on S&P 100. We
will return to the issue of measurement er-
rors when we discuss biasness in section 6.3.

All but one study (viz. Linda Canina and
Stephen Figlewski 1993) conclude that im-
plied contains useful information about fu-
ture volatility. Blair, Poon, and Taylor (2001)
and Allen Poteshman (2000) record the
highest R2 for S&P 100 and S&P 500 respec-
tively. About 50 percent of index volatility is
predictable up to a four-week horizon when
actual volatility is estimated more accurately
using very high frequency intra-day returns.

Similar, but less marked, forecasting per-
formance emerged from the smaller stock
markets, which include the German,
Australian, Canadian, and Swedish markets.
For a small market such as the Swedish mar-
ket, Per Frennberg and Bjorn Hanssan (1996)
find seasonality to be prominent and that im-
plied forecast cannot beat simple historical
models such as the autoregressive model and
random walk. Very erratic and unstable fore-
casting results were reported in Brace and
Hodgson (1991) for the Australian market.
Craig Doidge and Jason Wei (1998) find the
Canadian Toronto index is best forecast with
GARCH and implied combined, whereas
Bluhm and Yu (2000) find VDAX, the
German version of VIX, produces the best
forecast for the German stock index volatility.

A range of forecast horizons were tested
among this group of studies though the most
popular choice is one month. There is
evidence that the S&P implied contains
more information since the 1987 crash (see
Christensen and Prabhala 1998 for S&P 100;
and Ederington and Guan 2002 for S&P
500). Some described this as the “awaken-
ing” of the S&P option markets.
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About half of the papers in this group test
if there is incremental information contained
in time series forecasts. Day and Lewis
(1992), Ederington and Guan (1999, 2002),
and Martin and Zein (2002) find ARCH class
models and volatility historical average add a
few percentage points to the R2, whereas
Blair, Poon, and Taylor (2001); Christensen
and Prabhala (1998); Fleming (1998);
Fleming, Ostdiek, and Whaley (1995); Hol
and Koopman (2002); and Szamany, Ors,
Kim, and Davidson (2002) all find option
implied dominates time series forecasts.

6.1.3 Exchange Rate

The strong forecasting power of implied is
again confirmed in the currency markets.
Sixteen papers study currency options for a
number of major currencies, the most popu-
lar of which are DM/US$ and ¥/US$. Most
studies find implied to contain information
about future volatility for short horizons up
to three months. Li (2002) and Scott and
Tucker (1989) find implied forecasts well for
up to a six- to nine-months horizon. Both
studies register the highest R2 in the region
of 40–50 percent.

A number of studies in this group find im-
plied beats time series forecasts including
volatility historical average (see Hung-Gay
Fung, Chin-Jen Lie, and Abel Moreno 1990;
and Wei and Frankel 1991) and ARCH class
models (see Dajiang Guo 1996a,b; Phillip
Jorion 1995, 1996; Martens and Zein 2002;
Pong et al. 2002; Andrew Szakmary et al.
2002; and Xu and Taylor 1995). Some stud-
ies find combined forecast is the best choice
(see Dunis, Law, and Chauvin 2000; and
Taylor and Xu 1997).

Two studies find high frequency intra-day
data can produce more accurate time series
forecast than implied. Fung and Hsieh
(1991) find one-day ahead time series fore-
cast from a long-lag autoregressive model
fitted to fifteen-minute returns is better
than implied. Li (2002) finds the ARFIMA
model outperformed implied in long hori-
zon forecasts while implied dominates over

shorter horizons. Implied forecasts were
found to produce higher R2 than other long
memory models, such as the Log-ARFIMA
model in Martens and Zein (2002), and
Pong et al. (2002). All these long memory
forecasting models are more recent and are
built on volatility compiled from high fre-
quency intra-day returns, while the implied
volatility remains to be constructed from less
frequent daily option prices.

6.1.4 Other Assets

The forecasting power of implied from in-
terest rate options was tested in Malcolm
Edey and Graham Elliot (1992), Fung and
Hsieh (1991), and Kaushik Amin and Victor
Ng (1997). Interest rate option models are
very different from other option pricing mod-
els because of the need to price all interest rate
derivatives consistently at the same time in or-
der to rule out arbitrage opportunities. Trad-
ing in interest rate instruments is highly liquid
as trading friction and execution cost are neg-
ligible. Practitioners are more concerned
about the term structure fit than the time se-
ries fit, as millions of pounds of arbitrage prof-
its could change hands instantly if there is any
inconsistency in contemporaneous prices.

Earlier studies such as Edey and Elliot
(1992), and Fung and Hsieh (1991) use the
Black model (a modified version of Black-
Scholes), which prices each interest rate op-
tion without cross referencing to prices of
other interest rate derivatives. The single
factor Heath-Jarrow-Morton model used in
Amin and Ng (1997), and fitted to short rate
only, works in the same way, although these
authors have added different constraints to
the short rate dynamics, as the main focus of
their paper is to compare different variants
of short rate dynamics. Despite the added
complications, all three studies find signifi-
cant forecasting power in implied volatility
of interest rate (futures) options. Amin and
Ng (1997) in particular report R2 of 21 per-
cent for twenty-day ahead volatility fore-
casts, and volatility historical average adds
only a few percentage points to the R2.
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Implied volatilities from options written
on non-financial assets were examined in
Day and Lewis (1993, crude oil); Kroner,
Kneafsey, and Claessens (1995, agriculture
and metals); Martens and Zein (2002, crude
oil); and Szakmary et al. (2002; 35 futures op-
tions contracts across nine markets including
S&P 500, interest rates, currency, energy,
metals, agriculture, and livestock futures). All
four studies find implied dominates time se-
ries forecasts, although Kroner, Kneafsey, and
Claessens (1995) find combining GARCH
and implied produces the best forecast.

6.2 ATM (At-the-Money) 
or Weighted Implied?

Since options of different strikes have
been known to produce different implied
volatilities, a decision has to be made as to
which of these implied volatilities should be
used, or which weighting scheme should be
adopted, to produce a forecast that is most
superior. The most common strategy is to
choose the implied derived from ATM op-
tion based on the argument that ATM option
is the most liquid and hence ATM implied is
least prone to measurement errors. ATM
implied is also theoretically the most sound.
Feinstein (1989a) shows that for the stochas-
tic volatility process described in Hull and
White (1987), implied volatility from ATM
and near expiration option provides the clos-
est approximation to the average volatility
over the life of the option provided that
volatility risk premium is either zero or a
constant. This means that if volatility is sto-
chastic, ATM implied is least prone to bias as
well compared with implied at other strikes.

If ATM implied is not available, then
NTM (nearest-to-the-money) option is used
instead. Sometimes, to reduce measurement
errors and the effect of bid-ask bounce, an
average is taken from a group of NTM im-
plied volatilities. VIX described in section
3.2.5, for example, is an average of eight im-
plied volatilities derived from four calls and
four puts and a weighting scheme aiming to
produce a composite implied that is of a con-

stant maturity of 28 calendar days and ap-
proximately ATM. Other weighting schemes
that also give greater weight to ATM implied
are vega (i.e. the partial derivative of option
price w.r.t. volatility) weighted or trading vol-
ume weighted, weighted least square (WLS)
and some multiplicative versions of these
three. The WLS method, which first ap-
peared in Whaley (1982), aims to minimize
the sum of squared errors between the mar-
ket and the theoretical prices of a group of
options. Since ATM option has the highest
trading volume and ATM option price is the
most sensitive to volatility input, all three
weighting schemes (and the combinations
thereof) have the effect of placing the great-
est weight on ATM implied. Other weighting
schemes such as equally weighted, and
weight based on the elasticity of option price
to volatility, that do not emphasize ATM im-
plied, are less popular.

The forecasting power of individual and
composite implied volatilities has been
tested in Ederington and Guan (2000);
Fung, Lie, and Moreno (1990); Gemmill
(1986); Kroner, Kevin Kneafsey, and Stijn
Classens (1995); Scott and Tucker (1989);
and Vasilellis and Meade (1996). The gen-
eral consensus is that among the weighted
implied volatilities, those that have a VIX-
style composite weight seem to be the best,
followed by schemes that favor ATM option
such as the WLS and the vega weighted
implied. The worst performing ones are
equally weighted and elasticity weighted
implied using options across all strikes.
Different findings emerged as to whether an
individual implied forecasts better than a
composite implied. Becker (1981), Feinstein
(1989b), Fung, Lie, and Moreno (1990), and
Gemmill (1986) find evidence to support in-
dividual implied although they all prefer a
different implied (viz. ATM, Just-OTM,
OTM, and ITM respectively for the four
studies). Kroner, Kneafsey, and Claessens
find composite implied forecasts better than
ATM implied. On the other hand, Scott and
Tucker (1989) conclude that when emphasis
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is placed on ATM implied, which weighting
scheme one chooses does not really matter.

As mentioned in section 6.1.1, implied
volatility, especially that of stock option, can
be quite unstable across time. Beckers
(1981) finds taking a five-day average im-
proves forecasting power of stock option im-
plied. Shaikh Hamid (1998) finds such an in-
tertemporal averaging is also useful for stock
index option during very turbulent periods.
On a slightly different note, Xu and Taylor
(1995) find implied estimated from sophisti-
cated volatility term structure model pro-
duces similar forecasting performance as
implied from the shortest maturity option.

A series of studies by Ederington and
Guan have reported some interesting find-
ings. Ederington and Guan (1999) report
that information content of implied volatility
of S&P 500 futures options exhibits a frown
shape across strikes with options that are
NTM and have moderately high strike (i.e.
OTM calls and ITM puts) possess the largest
information content with R2 equal to 17 per-
cent for calls and 36 percent for puts. In a
follow-on paper, Ederington and Guan
(2000) find that using regression coefficients
that are produced from in-sample regression
of forecast against realized volatility is very
effective in correcting implied forecasting
bias. They also find that after such a bias cor-
rection, there is little to be gained from aver-
aging implied across strikes. This means that
ATM implied together with a bias correction
scheme could be the simplest, and yet the
best, way forward.

Findings in Ederington and Guan (1999,
2000) raise a very profound issue in finance.
So far the volatility forecasting literature has
been relying heavily on ATM implied.
Implied from options that are far away from
ATM were found to be bad forecasts and are
persistently biased. This reflects a crucial
fact that we have not yet found an option
pricing model that is capable of pricing far-
from-the-money option accurately and con-
sistently. Although this is a tremendously
important issue in finance, it is a research

question different from the one we are
addressing here, and we shall leave it as a
challenge for future research.

6.3 Implied Biasness

Usually, forecast unbiasedness is not an
overriding issue in any forecasting exercise.
Forecast bias can be estimated and cor-
rected if the degree of bias remains stable
through time. However, biasness in implied
volatility can have a more serious undertone
since it means options might be over- or
under-priced, which can only be a result of
an incorrect option pricing model or an inef-
ficient option market. Both deficiencies
have important implications in finance.

As mentioned in section 4.3, testing for bi-
asness is usually carried out using regression
equation (11), where X̂i = X̂t is the implied
forecast of period t volatility. For a forecast to
be unbiased, one would require a = 0 and 
b = 1. Implied forecast is upwardly biased if 
a > 0 and b = 1, or a = 0 and b > 1. In the case
where a > 0 and b < 1, which is the most
common scenario, implied under-forecasts
low volatility and over-forecasts high volatility.

It has been argued that implied bias will
persist only if it is difficult to perform arbi-
trage trades that may remove the mispricing.
This is more likely in the case of stock index
options and less likely for futures options.
Stocks and stock options are traded in differ-
ent markets. Since trading of a basket of
stocks is cumbersome, arbitrage trades in re-
lation to a mispriced stock index option may
have to be done indirectly via index futures.
On the other hand, futures and futures op-
tions are traded alongside each other.
Trading in these two contracts are highly liq-
uid. Despite these differences in trading
friction, implied biasness is reported in both
the S&P 100 OEX market (Canina and
Figlewski 1993; Christensen and Prabhala
1998; Fleming, Ostdiek, and Whaley 1995;
and Fleming 1998) and the S&P 500 futures
options market (Feinstein 1989b; and
Ederington and Guan 1999, 2002).
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Biasness is equally widespread among im-
plied volatilities of currency options (see Guo
1996b; Jorion 1995; Li 2002; Scott and Tucker
1989; and Wei and Frankel 1991). The only
exception is Jorion (1996) who cannot reject
the null hypothesis that the one-day ahead
forecasts from implied are unbiased. The five
studies that reported biasness use implied to
forecast exchange rate volatility over a much
longer horizon, from one to nine months.

Unbiasness of implied forecast was not re-
jected in the Swedish market (Frennberg
and Hansson 1996) though we already know
from section 6.1.2 that the forecasting power
of implied is not very strong anyway in this
small stock market. Unbiasness of implied
forecast was rejected for U.K. stock options
(Gemmill 1986), U.S. stock options
(Lamoureux and Lastrapes 1993), options
and futures options across a range of assets
in Australia (Edey and Elliot 1992), and for
35 futures options contracts traded over
nine markets ranging from interest rate to
livestock futures (Szakmary et al. 2002).
Similarly, Amin and Ng (1997) find the hy-
pothesis that a = 0 and b = 1 cannot be re-
jected for the Eurodollar futures options
market.

Where unbiasness was rejected, the bias
in all but two cases is due to a > 0 and b < 1.
These two exceptions are Fleming (1998),
who reports a = 0 and b < 1 for S&P 100
OEX options, and Day and Lewis (1993)
who find a > 0 and b = 1 for distant term oil
futures options contracts.

Christensen and Prabhala (1998) argue
that implied is biased because of error-
in-variable caused by measurement errors
described in section 3.2.3. Using last period
implied and last period historical volatility as
instrumental variables to correct for these
measurement errors, Christensen and
Prabhala (1998) find unbiasness cannot be
rejected for implied of S&P 100 OEX
options. Ederington and Guan (1999, 2002)
find bias in S&P 500 futures options implied
also disappeared when similar instrument
variables were used.

It has been suggested to us that implied
biasness could not have been caused by
model misspecification or measurement er-
rors because this has relatively small effects
for ATM options, which is used in most of
the studies that report implied biasness. In
addition, the clientele effect cannot explain
the bias either because it only affects OTM
options. Research now turns to volatility risk
premium as an explanation.14

Poteshman (2000) finds half of the bias in
S&P 500 futures options implied was re-
moved when actual volatility was estimated
with a more efficient volatility estimator
based on intra-day five-minute returns. The
other half of the bias was almost completely
removed when a more sophisticated and less
restrictive option pricing model, i.e. the
Heston (1993) model, was used. The Heston
model allows volatility to be stochastic simi-
lar to the Hull-While model used in Guo
(1996b) and Lamoureux and Lastrapes
(1993), who both report implied biasness.
But unlike the Hull-White model, the
Heston model also allows the market price
of risk to be non-zero.

Further research on option volatility risk
premium is currently underway in Luca
Benzoni (2001) and Mikhail Chernov (2001).
Chernov (2001) finds, similar to Poteshman
(2000), when implied volatility is discounted
by a volatility risk premium and when the er-
rors-in-variables problems in measures of his-
torical and realized volatility are removed, the
unbiasness of VIX cannot be rejected over
the sample period from 1986 to 2000. The
volatility risk premium debate on the ques-
tions continues if we are able to predict the
magnitude and variations of the volatility pre-
mium and if implied from an option pricing
model that permits a non-zero market price
of risk will continue to outperform time series
models when all forecasts (including forecasts
of volatility risk premium) are made in an ex
ante manner.
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7. Where Next?

The volatility forecasting literature is still
very active. Many more new results are ex-
pected in the near future. There are several
areas where future research could seek to
improve upon. First is the issue about fore-
cast evaluation and combining forecasts of
different models. It will be useful if statistical
tests were conducted to test if the forecast
errors from Model A are significantly
smaller, in some sense, than those from
Model B, and so on for all pairs. Even if
Model A is found to be better than all the
other models, the conclusion is NOT one
should henceforth forecast volatility with
Model A and ignore the other models, as it is
very likely that a combination of all the fore-
casts will be superior. To find the weights one
can either run a regression of empirical
volatility (the quantity being forecast) on the
individual forecasts, or as approximation just
use equal weights. Testing the effectiveness
of a composite forecast is just as important as
testing the superiority of the individual mod-
els, but this has not been done more often
and across different data sets.

A mere plot of any measure of volatility
against time will show the familiar “volatility
clustering” which indicates some degree of
forecastability. The biggest challenge lies in
predicting changes in volatility. If implied
volatility is agreed to be the best performing
forecast, on average, this is in agreement
with general forecast theory, which empha-
sizes the use of a wider information set than
just the past of the process being forecast.
Implied volatility uses option prices and so
potentially the information set is richer.
What needs further consideration is
whether all of its information is being ex-
tracted and if it could still be widened to fur-
ther improve forecast accuracy, especially of
long horizon forecast. To achieve this we
need to understand better the cause of
volatility (both historical and implied). Such
understanding will help improve time series
methods, which are the only viable methods

when options, or market based forecast, are
not available.

Closely related to the above is to under-
stand the source of volatility persistence, and
the volume-volatility research appears to be
promising in providing a framework in 
which volatility persistence may be closely
scrutinized. The Mixture of Distribution
Hypothesis (MDH) proposed by Peter Clark
(1973), the link between volume-volatility
and market trading mechanism in George
Tauchen and Mark Pitts (1983), and the em-
pirical findings of the volume-volatility rela-
tionship surveyed in Jonathan Karpoff (1987)
are useful starting points. Given that
Lamoureux and Lastrapes (1990) find vol-
ume to be strongly significant when it is in-
serted into the ARCH variance process,
while returns shocks become insignificant,
and that Ronald Gallant, Rossi, and Tauchen
(1993) find lagged volume substantially at-
tenuates the “leverage” effect, the volume-
volatility research may lead to a new and bet-
ter way for modelling returns distributions.
To this end, Andersen (1996) puts forward a
generalized framework for the MDH where
the joint dynamics of returns and volume are
estimated, and reports a significant reduction
in the estimated volatility persistence. Such a
model may be useful for analyzing the eco-
nomic factors behind the observed volatility
clustering in returns, but this line of research
has not yet been pursued vigorously.

There are many old issues that have been
around for a long time. These include con-
sistent forecasts of interest rate volatilities
that satisfy the no-arbitrage relationships
simultaneously across all interest rate instru-
ments; more tests on the use of absolute
returns models in comparison with squared
returns models in forecasting volatility; and
a multivariate approach to volatility forecast-
ing where cross correlation and volatility
spillover may be accommodated.

There are many new adventures that are
currently underway as well.15 These include
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the realized volatility approach noticeably
driven by Andersen, Bollerslev, Diebold,
and various co-authors, the estimation and
forecast of volatility risk premium described
in section 6.3, the use of spot and option
price data simultaneously (e.g., Chernov and
Ghysels 2000), and the use of Bayesian and
other methods to estimate stochastic volatil-
ity models (e.g. Jones 2001), etc.

It is difficult to envisage in which direction
volatility forecasting research will flourish in
the next five years. If, within the next five
years, we can cut the forecast error by half
and remove the option pricing bias in ex ante
forecast, this will be a very good achievement
indeed. Producing by then forecasts of large
events will also be worthwhile.

8. Summary and Conclusion

This survey has concentrated on two
questions: is volatility forecastable? If it is,
which method will provide the best fore-
casts? To consider these questions, a num-
ber of basic methodological viewpoints need
to be discussed, mostly about the evaluation
of forecasts. What exactly is being forecast?
Does the time interval (the observation in-
terval) matter? Are the results similar for
different speculative markets? How does
one measure predictive performance?

Volatility forecasts are classified in this
section as belonging in one of the following
four categories:

� HISVOL; for historical volatility mod-
els, which includes random walk, histor-
ical averages of squared returns, or
absolute returns. Also included in this
category are time series models based
on historical volatility using moving av-
erages, exponential weights, autoregres-
sive models, or even fractionally inte-
grated autoregressive absolute returns,
for example. Note that HISVOL models
can be highly sophisticated. The multi-
variate VAR realized volatility model in
Andersen et al. (2002) is classified here

as a “HISVOL” model. All models in
this group model volatility directly omit-
ting the goodness of fit of the returns
distribution or any other variables such
as option prices.

� GARCH; any members of the ARCH,
GARCH, EGARCH, and so forth fami-
lies are included.

� ISD; for option implied standard devia-
tion, based on the Black-Scholes model
and various generalizations.

� SV; for stochastic volatility model fore-
casts.

The survey of papers includes 93 studies,
but 27 of them did not involve comparisons
between methods from at least two of these
groups, and so were not helpful for compar-
ison purposes.

The following table involves just pair-wise
comparisons. Of the 66 studies that were rel-
evant, some compared just one pair of fore-
casting techniques, others compared several.
For those involving both HISVOL and
GARCH models, 22 found HISVOL better at
forecasting than GARCH (56 percent of the
total), and seventeen found GARCH superior
to HISVOL (44 percent). The full table is:

Number of Studies 
Studies Percentage

HISVOL > GARCH 22 56%
GARCH > HISVOL 17 44%

HISVOL > ISD 8 24%
ISD > HISVOL 26 76%

GARCH > ISD 1 6
ISD > GARCH 17 94

SV > HISVOL 3
SV > GARCH 3
GARCH > SV 1
ISD > SV 1

The combination of forecasts has a mixed
picture. Two studies find it to be helpful but
another does not.

The overall ranking suggests that ISD
provides the best forecasting with HISVOL
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and GARCH roughly equal, although possi-
bly HISVOL does somewhat better in the
comparisons. The success of the implied
volatility should not be surprising, as these
forecasts use a larger, and more relevant, in-
formation set than the alternative methods
as they use option prices. They are also less
practical, not being available for all assets.

Among the 93 papers, seventeen studies
compared alternative versions of GARCH. It is
clear that GARCH dominates ARCH. In gen-
eral, models that incorporate volatility asym-
metry such as EGARCH and GJR-GARCH
perform better than GARCH. But certain spe-
cialized specifications, such as fractionally inte-
grated GARCH (FIGARCH) and regime
switching GARCH (RSGARCH) do better in
some studies. However, it seems clear that one
form of study that is included is conducted just
to support a viewpoint that a particular
method is useful. It might not have been sub-
mitted for publication if the required result
had not been reached. This is one of the obvi-
ous weaknesses of a comparison such as this;
the papers being reported are being prepared
for different reasons, use different data sets,
many kinds of assets, various intervals between
readings, and a variety of evaluation tech-
niques. Rarely discussed is if one method is
significantly better than another. Thus, al-
though a suggestion can be made that a partic-
ular method of forecasting volatility is the best,
no statement is available about the cost-benefit
from using it rather than something simpler,
or how far ahead the benefits will occur.

Financial market volatility is clearly fore-
castable. The debate is on how far ahead one
could accurately forecast and to what extent
could volatility changes be predicted. This
conclusion does not violate market effi-
ciency since accurate volatility forecast is not
in conflict with underlying asset and option
prices being correct. The option implied
volatility being a market based volatility
forecast has been shown to contain most
information about future volatility. The
supremacy among historical time series
models depends on the type of asset being

modelled. But, as a rule of thumb, historical
volatility methods work equally well com-
pared with more sophisticated ARCH class
and SV models. Better reward could be
gained by making sure that actual volatility is
measured accurately. These are broad-brush
conclusions omitting the fine details which
we outline in this document. Because of the
complex issues involved and the importance
of volatility measure, volatility forecasting
will continue to remain as a specialist sub-
ject and be studied vigorously.

Appendix A: 
Historical Price Volatility Models

A.1 Prediction Models Built on Sample
Standard Deviations

Volatility, st, in this section is the sample standard
deviation of period t returns, and ˆ¼ t is the forecast of
st. If t is a month, then st is often calculated as the
sample standard deviation of all daily returns in the
month. For a long time, st is proxied by daily squared
return if t is a day. More recently and with the avail-
ability of high frequency data, daily st is derived from
the cumulation of intra-day returns. 

Random Walk (RW)

(14)ˆ¼ t = ¼ t  1

Historical Average (HA)

(15)ˆ¼ t = ( ¼ t  1 + ¼ t  2 + : : : + ¼ 1)=(t 1)

Moving Average (MA)

(16)ˆ¼ t = (¼ t  1 + ¼ t  2 + : : : + ¼ t  ½ )=½

Exponential Smoothing (ES)

(17)ˆ¼ t = (1  ) ¼ t  1 +  ˆ¼ t  1 and 0  1

Exponentially Weighted Moving Average (EWMA)

(18)ˆ¼ t =

½X

i = 1

 i ¼ t  i

Á ½X

i = 1

 i

EWMA is a truncated version of ES with a finite t. 

Smooth Transition Exponential Smoothing (STES)

(19)
ˆ¼ t = ¬ t  1 ° 2

t  1 + (1 ¬ t  1)ˆ¼ 2
t  1

¬ t  1 =
1

1 + exp( + ® t  1)
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where Vt–1 is the transition variable; Vt–1 = et–1 for
STES-E, Vt–1 = |et–1| for STES-AE and Vt–1 is a function
of both et–1 and |et–1| for STES-EAE. 

Simple Regression (SR)

ˆ¼ t = ® 1;t  1 ¼ t  1 + ® 2;t  1 ¼ t  2 + : : : (20)

Threshold autoregressive (TAR)

ˆ¼ t = ¿
(i)
0 + ¿

(i)
1 ¼ t  1 + : : : + ¿ (i)

p ¼ t  p;

i = 1; 2; : : : ; k

(21)

A.2 ARCH Class Conditional 
Volatility Models

For all models described in this section, returns, rt,
has the following process

rt = · + ° t

° t =
p

htzt

and ht follows one of the following ARCH class models.

ARCH (q)

(22)ht = ! +

qX

k = 1

¬ k ° 2
t  k

where ! > 0 and ak ³ 0.

GARCH (p, q)

(23)ht = ! +

qX

k = 1

¬ k ° 2
t  k +

pX

j = 1

 j ht  j

where ! > 0. (See Nelson and Cao 1992 for constraints
on ak and bj.) For finite variance, 

X
¬ k +

X
 j < 1.

EGARCH (p, q)

lnht = ¬ 0 +

qX

j = 1

 j lnht  j

+

pX

k = 1

¬ k

·
³ Á t  k + ®

³
| Á t  k | (

2

º
)

1
2

´¸
(24)

Á t = · t=
p

ht
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Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

1. Akigray (1989) CRSP VW & Jan. 63–Dec. 86 D GARCH(1,1)
EW indices (Precrash) Split ARCH(2)

into 4 subperiods EWMA
of 6 years each. HIS

(ranked) 

2. Alford and 6879 stocks 12/66–6/87 W, M “Shrinkage” forecast (HIS adjusted 
Boatman listed in towards comparable firms)
(1995) NYSE/ASE & HIS

NASDAQ Median HIS vol of “comparable” 
firm (ranked) 

3. Amin and Ng 3M Eurodollar 1/1/88–1/11/92 D Implied American All Call+Put (WLS, 5 
(1997) futures & variants of the HJM model)

futures HIS
options (ranked)

4. Andersen and DM/$, ¥/$ In: 1/10/87–30/9/92 D GARCH(1,1)
Bollerslev Out: 1/10/92–30/9/93 (5 min) 
(1998) 
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Forecasting Horizon Evaluation & R-square Comments

20 days ahead estimated from ME, RMSE, MAE, GARCH is least biased and produced best forecast 
rolling 4 years data. Daily MAPE especially in periods of high volatility and when 
returns used to construct changes in volatility persist.
“actual vol”; adjusted for Heteroskedasticity is less strong in low frequency 
serial correlation. data and monthly returns are approximately 

normal.

5 years starting from 6 months MedE, MedAE To predict 5-year monthly volatility one should 
after firm’s fiscal year use 5 years worth of weekly or monthly data.

Adjusting historical forecast using industry and 
size produced best forecast.  

20 days ahead (1 day ahead R2 is 21% for implied Interest rate models that incorporate volatility 
forecast produced from in- and 24% for term structure (e.g. Vasicek) perform best.
sample with lag implied in combined. H0: aimplied Interaction term capturing rate level and 
GARCH/GJR not discussed = 0, b implied = 1 volatility contribute additional forecasting 
here.) cannot be rejected power.

with robust SE. 

1 day ahead, use 5-min returns R2 is 5 to 10% for daily R2 increases monotonically with sample frequency.
to construct “actual vol” squared returns, 50% 

for 5-min square 
returns. 

(Continued)

TGARCH (1,1) or GJR-GARCH (1,1) 

ht = ! + ¬ ° 2
t  1 + ¯ Dt  1 ° 2

t  1 +  ht  1

Dt  1 =

½
1 if ° t  1 < 0

0 if ° t  1 0

(25)

QGARCH (1,1)

(26)ht = ! + ¬ ( ° t  1 ® )2 +  ht  1

STGARCH (Smooth Transition GARCH)

ht = ! + [1 F (° t  1)] ¬ ° 2
t  1

+ F (° t  1) ¯ ° 2
t  1 +  ht  1

(27)

where

F ( ° t  1) =
1

1 + exp( ³ ° t  1)

for logistic STGARCH,

F ( ° t  1) = 1 + exp( ³ ° 2
t  1)

for exponential STGARCH,

GARCH(1,1) regime switching

ht;St 1
= !St 1

+ ¬ St 1
° 2

t  1 +  St 1
ht  1;St 1

where St indicates the state of regime at time t.

CGARCH(1,1) (Component GARCH)

ht = !t + ¬ t( °
2
t  1 !t  1) +  1(ht  1 !t  1)

!t = ! + » !t  1 + ¹ ( ° 2
t  1 ht  1)

(28)

where wt represents a time-varying trend or perma-
nent component in volatility which is driven by volatil-
ity prediction error ( ° 2

t 1 ht  1) and is inte-
grated if » = 1.

A.3 Stochastic Volatility Model

Stochastic Volatility (SV)

rt = · + ° t

° t = zt exp(0:5ht) (29)

ht = ! +  ht  1 + ¾ t

ut may or may not be independent of zt.



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

5. Andersen, ¥/US$, 1/12/86–30/6/99 Tick VAR-RV, AR-RV, FIEGARCH-RV
Bollerslev, DM/US$ In: 1/12/86–1/12/96, (30min) GARCH-D, RM-D, 
Diebold and Reuters 10 years FIEGARCH-D
Labys (2002) FXFX quotes Out: 2/12/96–30/6/99, VAR-ABS

2.5 years (ranked) 

6. Andersen, DM/US$ 1/12/86–30/11/96 5 min GARCH(1,1) at 5-min, 10-min, 
Bollerslev and Reuters 1-hr, 8-hr, 1-day, 5-day, 20-day 
Lange (1999) quotes In: 1/10/87–30/9/92 interval. 

7. Bali (2000) 3-, 6-, 12-month 8/1/54–25/12/98 W NGARCH
T-Bill rates GJR, TGARCH

AGARCH, QGARCH
TSGARCH
GARCH
VGARCH
Constant vol (CKLS)
(ranked, forecast both level and 

volatility) 

8. Beckers (1981) 62 to 116 28/4/75–21/10/77 D FBSD
Stocks options Implied ATM call, 5 days ave

Implied vega call, 5 days ave
RW last quarter
(ranked, both implieds are 5-day 

average because of large 
variations in daily stock implied.)

50 stock option 4 dates: 18/10/76, D TISDvega
24/1/77, 18/4/77, (from Implied ATM call, 1 days ave
18/7/77 Tick) (ranked) 

9. Bera and Daily SP500, SP 1/1/88-28/5/93 D GARCH
Higgins (1997) Weekly $/£, $/£ 12/12/85-28/2/91 W Bilinear model

Monthly US IndProd 1/60–3/93 M (ranked) 
Ind Prod 

10. Blair, Poon & S&P 100 (VIX) 2/1/87 –31/12/99 Tick Implied VIX
Taylor (2001) Out: GJR

4/1/93–31/2/99 HIS100
(ranked) 
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Forecasting Horizon Evaluation & R-square Comments

1 and 10 days ahead.  “Actual 1-day ahead R2 ranges RV is realised volatility, D is daily return, and ABS
vol” derived from 30-min between 27–40% (1- is daily absolute return. VAR allows all series to 
returns. day ahead) and 20- share the same fractional integrated order and 

33% (10-day ahead). cross series linkages. Forecast improvement is 
largely due to the use of high frequency data 
(and realised volatility) instead of the model(s). 

1, 5 and 20 days ahead, use RMSE, MAE, HRMSE, HRMSE and HMAE are heteroskedasticity 
5-min returns to construct HMAE, LL adjusted error statistics; LL is the logarithmic 
“actual vol” loss function.  High frequency returns and high

frequency GARCH(1,1) models improve fore-
cast accuracy. But, for sampling frequencies
shorter than 1 hour, the theoretical results and
forecast improvement break down.

1 week ahead. Use weekly R2 increases from 2% to CKLS: Chan, Karolyi, Longstaff and Sanders 
interest rate absolute change 60% by allowing for (1992).  
to proxy “actual vol”. asymmetries, level 

effect and changing 
volatility. 

Over option’s maturity (3 MPE, MAPE. Cross FBSD: Fisher Black’s option pricing service takes 
months), 10 non-overlapping sectional R2 ranges into account stock vol tend to move together, 
cycles.  Use sample SD of between 34–70% mean revert, leverage effect and implied can 
daily returns over option across models and predict future.  ATM, based on vega WLS, 
maturity to proxy “actual vol”. expiry cycles. FBSD outperforms vega weighted implied, and is not 

appears to be least sensitive to ad hoc dividend adjustment. 
biased with a = 0, b =1. Incremental information from all measures 
a > 0, b < 1 for the suggests option market inefficiency. 
other two implieds. Most forecasts are upwardly biased as actual 

vol was on a decreasing trend.

Ditto Cross sectional R2 ranges TISD: Single intra-day transaction data that has 
between 27–72% the highest vega. The superiority of TISD over 
across models and implied of closing option prices suggest 
expiry cycles. significant non-simultaneity and bid-ask spread

problems.

One step ahead. Reserve 90% Cox MLE Consider if heteroskedasticity is due to bilinear in 
of data for estimation RMSE level.  Forecasting results show strong 

(LE: logarithmic error) preference for GARCH.  

1, 5, 10 and 20 days ahead 1-day ahead R2 is 45% Using squared returns reduces R2 to 36% for both
estimated using a rolling for VIX, and 50% for VIX and combined. Implied volatility has its 
sample of 1,000 days.  combined. VIX is own persistence structure.  GJR has no 
Daily actual volatility is downward biased in incremental information though integrated 
calculated from 5-min returns. out-of-sample period. HIS vol can almost match IV forecasting power.
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Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

11. Bluhm and Yu German DAX In: 1/1/88–28/6/96 D Implied VDAX
(2000) stock index Out: 1/7/66-30/6/99 GARCH(-M), SV

and VDAX EWMA, EGARCH, GJR, 
the DAX HIS
volatility (approx ranked) 
index 

12. Boudoukh, 3-month US 1983–92 D EWMA, MDE
Richardson T-bill GARCH(1,1), HIS
and Whitelaw (ranked) 
(1997) 

13. Brace and Futures option 1986–87 D HIS 5, 20, 65 days
Hodgson on Australian Implied NTM call, 20–75 days
(1991) Stock Index (ranked) 

(Marking to 
market is 
needed for 
this options) 

14. Brailsford and Australian 1/1/74–30/6/93 D GJR,
Faff (1996) Statex- Regr, HIS, GARCH, MA, EWMA,

Actuaries In: Jan. 74–Dec. 85 RW, ES
Accumulation Out: Jan. 86–Dec. 93 (rank sensitive to error statistics) 
Index for top (include 87’s crash 
56 period) 

15. Brooks (1998) DJ Composite 17/11/78–30/12/88 D RW, HIS, MA, ES, EWMA, AR, 
Out: 17/10/86–30/12/88 GARCH, EGARCH, GJR, 

Neural network
(all about the same) 

16. Canina and S&P 100 15/3/83–28/3/87 D HIS 60 calendar days
Figlewski (OEX) (Pre-crash) Implied Binomial Call
(1993) (ranked)

Implied in 4 maturity gp, each 
subdivided into 8 intrinsic gp. 

17. Cao and Tsay Excess returns 1928–89 M TAR
(1992) for S&P, VW EGARCH(1,0)

EW indices ARMA(1,1)
GARCH(1,1)
(ranked) 

18. Chiras and All stock 23 months from June M Implied (weighted by price 
Manaster options from 73–April 75 elasticity)
(1978) CBOE HIS20 monthss

(ranked) 
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Forecasting Horizon Evaluation & R-square Comments

45 calendar days, 1, 10 and 180 MAPE, LINEX Ranking varies a lot depend on forecast horizons 
trading days. “Actual” is the and performance measures.  
sum of daily squared returns. 

1 day ahead based on 150-day MSE & regression. MDE is multivariate density estimation where 
rolling period estimation. MDE has the highest R2 volatility weights depend on interest rate level 
Realized volatility is the daily while EWMA has the and term spread. EWMA and MDE have 
squared changes averaged smallest MSE.  comparable performance and are better than 
across t + 1 to t + 5. HIS and GARCH.

20 days ahead. Use daily returns Adj R2 are 20% (HIS), Large fluctuations of R2 from month to month.
to calculate standard 17% (HIS+ implied).   Results could be due to the difficulty in valuing
deviations. All a > 0 & sig. Some futures style options.  

uni. regr. coeff. are sig. 
negative (for both HIS 
& implied). 

1 month ahead. ME, MAE, RMSE, Though the ranks are sensitive, some models 
Models  estimated from MAPE, and a dominate others; MA12 > MA5 and Regr >

a rolling 12-year window. collection of MA > EWMA > ES. GJR came out quite well 
asymmetric loss but is the only model that always underpredict.
functions. 

1 day ahead squared returns MSE, MAE of variance, Similar performance across models especially 
using rolling 2,000 % over-predict. R2 is when 87’s crash is excluded. Sophisticated 
observations for estimation. around 4% increases models such as GARCH and neural net did not 

to 24% for pre-crash dominate. Volume did not help in forecasting 
data. volatility.

7 to 127 calendar days matching Combined R2 is 17% Implied has no correlation with future volatility 
option maturity, overlapping with little contribution and does not incorporate info contained in 
forecasts with Hansen std from implied. recently observed volatility. Results appear to 
error. Use sample SD of daily All a implied > 0, be peculiar for pre-crash period. Time horizon 
returns to proxy “actual vol”. implied b < 1 with of “actual vol” changes day to day. Different 

robust SE. level of implied aggregation produces similar 
results.  

1 to 30 months. Estimation MSE, MAE TAR provides best forecasts for large stocks. 
period ranges from 684 to 743 EGARCH gives best long-horizon forecasts for 
months. Daily returns used to small stocks (may be due to Leverage effect).  

construct “actual vol”. Difference in MAE can be as large as 38%.  

20 month ahead. Use SD of 20 Cross sectional R2 of Implied outperformed HIS especially in the last 
monthly returns to proxy implied ranges 13-50% 14 months.  Find implied increases and better 
“actual vol”. across 23 months.  behave after dividend adjustments and evidence 

HIS adds 0–15% to R2. of mispricing possibly due to the use European
pricing model on American style options.
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Author(s) Asset(s) Period Freq Methods & Rank

19. Christensen S&P 100 Nov. 83–May 95  M Implied BS ATM 1-month Call
and Prabhala (OEX) HIS18 days
(1998) (ranked) 

Monthly expiry 
cycle 

20. Christoffersen 4 stk indices 1/1/73–1/5/97 D No model.
and Diebold 4 ex rates (No rank; Evaluate volatility 
(2000) US 10 year forecastibility (or persistence) by 

T-Bond checking interval forecasts.) 

21. Cumby, ¥/$, stocks(¥, $), 7/77 –9/90 W EGARCH
Figlewski and bonds (¥, $) HIS
Hasbrouck (ranked) 
(1993) 

22. Day and S&P 100 OEX Out: 11/11/83– W Implied BS Call (shortest but > 7 
Lewis (1992) option 31/12/89 days, volume WLS)

HIS1 week
Reconstructed In: 2/1/76–11/11/83 GARCH
S&P 100 EGARCH

(ranked) 

23. Day and Lewis Crude oil 14/11/86–18/3/91 D Implied Binomial ATM Call
(1993) futures HIS forecast horizon

options GARCH-M
EGARCH-AR(1)

Crude oil 8/4/83–18/3/91 (ranked) 
futures coincide with 

Kuwait invasion by 
Iraq in second half 
of sample. 

24. Dimson and UK FT All 1955–89 Q ES, Regression
Marsh (1990) Share RW, HA, MA

(ranked) 

25. Doidge and Toronto 35 In: 2/8/88–31/12/91 D Combine3
Wei (1998) stock index Out: 1/92–7/95 Combine2

& European GARCH
options EGARCH

HIS100 days
Combine1
Implied BS Call + Put (All maturities 

> 7 days, volume WLS) 
(ranked) 
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Forecasting Horizon Evaluation & R-square Comments

Non-overlapping 24 calendar R2 of log var are 39% Not adj for dividend and early exercise. Implied 
(or 18 trading) days. Use SD (implied), 32% (HIS) dominates HIS.  HIS has no additional 
of daily returns to proxy and 41% (combined). information in subperiod analysis. Proved that 
“actual vol”. a < 0 (because of log), results in Canina & Figlewski (1993) is due to 

b < 1 with robust SE. pre-crash characteristics and high degree of 
Implied is more data overlap relative to time series length.
biased before the Implied is unbiased after controlling for 
crash. measurement errors using impliedt–1 and HISt–1.

1 to 20 days Run tests and Equity & FX: forecastibility decrease rapidly from 
Markov transition 1 to 10 days.  Bond: may extend as long as 15 to 
matrix eigenvalues 20 days. Estimate bond returns from bond 
(which is basically yields by assuming coupon equal to yield.
1st-order serial 
coefficient of the hit 
sequence in the run 
test).

1 week ahead, estimation period R2 varies from 0.3% to EGARCH is better than naïve in forecasting 
ranges from 299 to 689 10.6%. volatility though R-square is low. Forecasting 
weeks. correlation is less successful.   

1 week ahead estimated from a R2 of variance regr are Omit early exercise. Effect of 87’s crash is unclear.
rolling sample of 410 2.6% (implied) & When weekly squared returns were used to 
observations.  Use sample 3.8% (encomp).  proxy “actual vol”, R2 increase and was max for 
variance of daily returns to All forecasts add HIS contrary to expectation (9% compared with 
proxy weekly “actual vol”. marginal info. 3.7% for implied).  

H0: a implied = 0, 
b implied = 1 cannot be 
rejected with robust SE. 

Option maturity of 4 nearby ME, RMSE, MAE. R2 Implied performed extremely well. Performance 
contracts, (average 13.9, 32.5, of variance regr are of HIS and GARCH are similar. EGARCH 
50.4 & 68 trading days to 72% (short mat) and much inferior. Bias adjusted and combined 
maturity). Estimated from 49% (long maturity). forecasts do not perform as well as unadjusted 
rolling 500 observations. With robust SE a > 0 implied. GARCH has no incremental 

for short and b = 0 for information.
long, b = 1 for all Result likely to be driven by Kuwait invasion by 
maturity. Iraq.  

Next quarter. Use daily returns MSE, RMSE, MAE, Recommend exponential smoothing and 
to construct “actual vol”. RMAE regression model using fixed weights. Find ex 

ante time-varying optimization of weights does
not work well ex post.

1 month ahead from rolling MAE, MAPE, RMSE Combine1 equal weight for GARCH and implied 
sample estimation. No forecasts. Combine2 weighs GARCH and 
mention on how “actual vol” implied based on their recent forecast accuracy.
was derived. Combine3 puts implied in GARCH conditional 

variance. Combine3 was estimated using full 
sample due to convergence problem; so not 
really out-of-sample forecast.
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Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

26. Dunis, Laws DM/¥, £/DM, In: 2/1/91–27/2/98 D GARCH(1,1)
and Chauvin £/$, $/CHF, Out: 2/3/98–31/12/98 AR(10)-Sq returns
(2000) $/DM, $/¥ AR(10)-Abs returns

SV(1) in log form
HIS 21 or 63 trading days
1- & 3-M forward Implied ATM quotes
Combine
Combine (except SV)
(rank changes across currencies 

and forecast horizons)

27. Ederington S&P 500 1 Jan. 88–30 April 98 D Implied BK 16 Calls 16 Puts
and Guan futures HIS40 days
(1999) options (ranked) 
“Frown” 

28. Ederington 5 DJ Stocks 2/7/62–30/12/94 D GW MAD
and Guan S&P 500 2/7/62–29/12/95 GWSTD, 
(2000) 3m Euro$ rate 1/1/73–20/6/97 GARCH, EGARCH
“Forecasting 10y T-Bond 2/1/62–13/6/97 AGARCH
Volatility” yield HISMAD,n, HISSTD,n

DM/$ 1/1/71–30/6/97 (ranked, error statistics are close; 
GW MAD leads consistently 
though with only small margin.) 

29. Ederington S&P 500 In 4/1/88–31/12/91 D Implied*: 99%, VIX
and Guan futures HIS40 trading days
(2000) options Out: Implied: VIX > Eq4
“Averaging” 2/1/92–31/12/92 Implied: WLS > vega > Eq32 >

elasticity
(ranked) 

30. Ederington S&P 500 1/1/83–14/9/95 D Implied Black 4NTM
and Guan futures GARCH, HIS40 days
(2002) options (ranked)
“Efficient 
Predictor” 

31. Edey and Futures options Futures options: W Implied BK NTM,call
Elliot (1992) on A$ 90d- inception to 12/88 Implied BK NTM,put

Bill, 10yr 
bond, (No rank, 1 call and 1 put, selected 
Stock index based on highest trading volume) 

A$/US$ options A$/US$ option: W
12/84–12/87 
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Forecasting Horizon Evaluation & R-square Comments

1 and 3 months (21 & 63 trading RMSE, MAE, MAPE, No single model dominates though SV is 
days) with rolling estimation.  Theil-U, CDC consistently worst, and implied always improves 
Actual volatility is calculated (Correct Directional forecast accuracy. Recommend equal weight 
as the average absolute return Change index) combined forecast excluding SV.
over the forecast horizon. 

Overlapping 10 to 35 days Panel R2 19% and Information content of implied across strikes 
matching maturity of nearest individual R2 ranges exhibit a frown shape with options that are 
to expiry option. Use SD of 6–17% (calls) and NTM and have moderately high strikes possess 
daily returns to proxy “actual 15–36% (puts). largest information content.  HIS typically adds 
vol”. Implied is biased & 2–3% to the R2 and nonlinear implied terms add 

inefficient, a implied > 0 another 2–3%. Implied is unbiased & efficient 
and b implied < 1 with when measurement error is controlled using 
robust SE. Implied t–1 and HIS t–1.

n=10, 20, 40, 80 & 120 days RMSE, MAE GW: geometric weight, MAD: mean absolute 
ahead estimated from a 1260- deviation, STD: standard deviation.
day rolling window; Volatility aggregated over a longer period produces
parameters re-estimated a better forecast. Absolute returns models 
every 40 days. Use daily generally perform better than square returns 
squared deviation to proxy models (except GARCH > AGARCH). As 
“actual” vol. horizon lengthens, no procedure dominates.  

GARCH & EGARCH estimations were 
unstable at times.

Overlapping 10 to 35 days RMSE, MAE, MAPE VIX: 2calls + 2puts, NTM weighted to get ATM. 
matching maturity of nearest Eq4(32): calls + puts equally weighted. WLS, 
to expiry option. Use SD of ‘*’ indicates individual vega and elasticity are other weighting scheme. 
daily returns to proxy implieds were 99% means 1% of regr error used in weighting 
“actual vol”. corrected for biasness all implieds.  Once the biasness has been 

first before averaging corrected using regr, little is to be gained by any 
using in-sample regr averaging in such a highly liquid S&P 500 futures
on realised. market.

Overlapping option maturity R2 ranges 22-12% from GARCH parameters were estimated using whole 
7–90, 91–180, 181–365 and short to long horizon. sample.  GARCH and HIS add little to 7–90 day 
7–365 days ahead. Use Post 87’s crash R2 R2. When 87’s crash was excluded HIS add sig. 
sample SD over forecast nearly doubled.  explanatory power to 181–365 day forecast.  
horizon to proxy “actual vol”. Implied is efficient but When measurement errors were controlled 

biased; a implied > 0 and using implied t–5 and implied t+5 as instrument 
b implied < 1 with robust variables implied becomes unbiased for the 
SE. whole period but remains biased when crash 

period was excluded.

Option maturity up to 3M. Use Regression (see R2 cannot be compared with other studies because 
sum of (return square plus comment). In most of the way “actual” is derived and lagged squares
Implied t+1) as “actual vol”. cases a implied > 0 and returns were added to the RHS.

b implied < 1 with robust 
SE. For stock index 

Constant 1M. Use sum of option b implied = 1  
weekly squared returns to cannot be rejected 
proxy “actual vol”. using robust SE. 
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Author(s) Asset(s) Period Freq Methods & Rank

32. Engle, Ng and 1 to 12 months Aug. 64–Nov. 85 M 1-Factor ARCH
Rothschild T-Bill returns, Univariate ARCH-M
(1990) VW index of (ranked) 

NYSE & 
AMSE stocks 

33. Feinstein S&P 500 June 83–Dec. 88 Option Implied:
(1989) futures expiry Alanta > average > vega > elasticity

options cycle Just-OTMCall > P+C > Put
(CME) HIS20 days

(ranked, note pre-crash rank is very 
different and erratic) 

34. Ferreira French & In: Jan. 81–Dec. 89 W ES, HIS26, 52, all
(1999) German Out: Jan. 90–Dec. 97 GARCH(-L)

interbank (E)GJR(-L)
1M mid rate (ERM crises: (rank varies between French & 

Sep. 92-Sep. 93) German rates, sampling method 
and error statistics.) 

35. Figlewski S&P 500 1/47–12/95 M HIS 6, 12, 24, 36, 48, 60m
(1997) 3M US T-Bill 1/47–12/95 GARCH(1,1) for S&P and bond 

20Y T-Bond 1/50–7/93 yield.
DM/$ 1/71–11/95 (ranked)

S&P 500 2/7/62–29/12/95 D GARCH(1,1)
3M US T-Bill 2/1/62–29/12/95 HIS 1, 3, 6, 12, 24, 60 months
20Y T-Bond 2/1/62–29/12/95 (S&P’s rank, reverse for the 
DM/$ 4/1/71–30/11/95 others) 

36. Figlewski & S&P 500 1/4/71–12/31/96 D HIS 3, 12, 60 months
Green (1999) US LIBOR Out: From Feb. 96 ES

10 yr T-Bond (rank varies)
yield

DM/$ 1/4/71–12/31/96 M HIS 26, 60, all months
Out: From Jan. 92 ES

(ranked) 

37. Fleming S&P 100 10/85–4/92 D Implied FW ATM calls 
(1998) (OEX) (All observations that Implied FW ATM puts (Both implieds 

overlap with 87’s are WLS using all ATM options 
crash were removed.) in the last 10 minutes before 

market close)
ARCH/GARCH
HISH-L 28 days
(ranked) 

38. Fleming, S&P 500, T- 3/1/83–31/12/97 D Exponentially weighted var-cov 
Kirby and Bond and matrix 
Ostdiek gold futures 
(2000) 
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Forecasting Horizon Evaluation & R-square Comments

1 month ahead volatility and Model fit Equally weighted bill portfolio is effective in 
risk premium of 2 to 12 predicting (i.e. in an expectation model) 
months T-Bills volatility and risk premia of individual 

maturities.  

23 non-overlapping forecasts of MSE, MAE, ME. T-test Alanta: 5-day average of Just-OTM call implied 
57, 38 and 19 days ahead.  indicates all ME > 0 using exponential weights.  In general Just-OTM
Use sample SD of daily (except HIS) in the Implied call is the best.  
returns over the option post crash period 
maturity to proxy “actual vol.” which means implied 

was upwardly biased.

1 week ahead. Use daily squared Regression, MPE, L: interest rate level, E: exponential. French rate 
rate changes to proxy weekly MAPE, RMSPE. R2 is was very volatile during ERM crises. German 
volatility. 41% for France and rate was extremely stable in contrast. Although 

3% for Germany. there are lots of differences between the two 
rates, best models are non-parametric; ES 
(French) and simple level effect (German).
Suggest a different approach is needed for 
forecasting interest rate volatility.

6, 12, 24, 36, 48, 60 months. RMSE Forecast of volatility of the longest horizon is the 
Use daily returns to compute most accurate. HIS uses the longest estimation 
“actual vol.” period is the best except for short rate.  

1, 3, 6, 12, 24 months RMSE GARCH is best for S&P but gave worst 
performance in all the other markets. In 
general, as out of sample horizon increases, the 
in sample length should also increase.

1, 3, 12 months for daily data. RMSE ES works best for S&P (1–3 month) and short rate 
(all three horizons). HIS works best for bond 
yield, exchange rate and long horizon S&P 
forecast. The longer the forecast horizon, the 
longer the estimation period. 

24 & 60 months for monthly For S&P, bond yield and DM/$, it is best to use all 
data. available “monthly” data. 5 years worth of data 

works best for short rate.

Option maturity (shortest but > R2 is 29% for monthly Implied dominates. All other variables related to 
15 days, average 30 calendar forecast and 6% for volatility such as stock returns, interest rate and 
days), 1 and 28 days ahead.  daily forecast. parameters of GARCH do not possess 
Use daily square return All a implied = 0, information incremental to that contained in 
deviations to proxy “actual b implied < 1 with robust implied. 
vol”. SE for the last two 

fixed horizon forecasts. 

Daily rebalanced portfolio Sharpe ratio (portfolio Efficient frontier of volatility timing strategy 
return over risk) plotted above that of fixed weight portfolio.
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Author(s) Asset(s) Period Freq Methods & Rank

39. Fleming, S&P 100 (VIX) Jan. 86–Dec. 92 D, W Implied VIX
Ostdiek & HIS20 days
Whaley (1995) (ranked) 

40. Franses & Dutch, German, 1983–94 W AO-GARCH (GARCH adjusted for 
Ghijsels Spanish and additive outliers using the ‘less-
(1999) Italian stock one’ method)

market GARCH
returns GARCH-t

(ranked) 

41. Franses and Stock indices 1986–94 W QGARCH
Van Dijk (Germany, RW
(1996) Netherlands, GARCH

Spain, Italy, GJR
Sweden) (ranked) 

42. Frennberg VW Swedish In: 1919–1976 M AR 12 (ABS)-S
and Hansson stock market Out: 1977–82, 1983–90 RW, Implied BS ATM Call (option 
(1996) returns maturity closest to 1 month)

Index option Jan. 87–Dec. 90 GARCH-S, ARCH-S
(European (ranked)
style) Models that are not adj for 

seasonality did not perform as 
well.

43. Fung, Lie and £/$, C$/$, 1/84–2/87 D Implied OTM>ATM
Moreno FFr/$, DM/$, (Pre crash) Implied vega, elasticity
(1990) ¥/$ & SrFr/$ Implied equal weight

options on HIS40 days, Implied ITM
PHLX (ranked, all implied are from calls.) 

44. Fung and S&P 500, 3/83–7/89 D RV-AR(n)
Hsieh (1991) DM/$ (DM/$ futures from (15min) Implied BAW NTM Call/ Put 

US T-bond 26 Feb 85) RV, RW(C-t-C)
Futures and HL

futures (ranked, some of the differences 
options are small) 

45. Gemmill 13 UK stocks May 78–July 83 M Implied ITM
(1986) LTOM options. Implied ATM, vega WLS

Stock price Jan. 78–Nov. 83 D Implied equal, OTM, elasticity
HIS 20 weeks
(ranked, all implied are from calls.) 
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Forecasting Horizon Evaluation & R-square Comments

28 calendar (or 20 trading) days.  R2 increased from 15% VIX dominates HIS, but is biased upward up to 
Use sample SD of daily to 45% when crash is 580 basis point. Orthogonality test rejects HIS 
returns to proxy “actual vol”. excluded. a VIX = 0, when VIX is included. Adjust VIX forecasts with 

b VIX < 1 with robust average forecast errors of the last 253 days helps 
SE. to correct for biasness while retaining implied’s 

explanatory power.

1 week ahead estimated from MSE & MedSE Forecasting performance significantly improved 
previous 4 years. Use weekly when parameter estimates are not influenced by
squared deviations to proxy ‘outliers’.  Performance of GARCH-t is 
“actual vol”. consistently much worse. Same results for all 

four stock markets.

1 week ahead estimated from MedSE QGARCH is best if data has no extremes. RW is 
rolling 4 years. Use weekly best when 87’s crash is included.  GJR cannot be 
squared deviations to proxy recommended. Results are likely to be 
“actual vol”. influenced by MedSE that penalize 

nonsymmetry. 

1 month ahead estimated from MAPE, R2 is 2–7% in S: seasonality adjusted. RW model seems to 
recursively re-estimated first period and 11– perform remarkably well in such a small stock 
expanding sample. Use daily 24% in second, more market where returns exhibit strong seasonality. 
ret to compile monthly vol, volatile period. H0: Option was introduced in 86 and covered 87’s 
adjusted for autocorrelation. a implied = 0 and crash; outperformed by RW. ARCH/GARCH 

b implied = 1 cannot be did not perform as well in the more volatile 
rejected with robust  second period.  
SE. 

Option maturity; overlapping RMSE, MAE of Each day, 5 options were studied; 1 ATM, 2 just in 
periods. Use sample SD of overlapping forecasts. and 2 just out.  Define ATM as S = X, OTM 
daily returns over option marginally outperformed ATM. Mixed together 
maturity to proxy “actual vol”. implied of different contract months.  

1 day ahead. Use 15-min data to RMSE and MAE of RV: Realised vol from 15-min returns. AR(n): 
construct “actual vol”. log s autoregressive lags of order n.  RW(C-t-C): 

random walk forecast based on close to close 
returns. HL: Parkinson’s daily high-low method.
Impact of 1987 crash does not appear to be 
drastic possibly due to taking log. In general,
high frequency data improves forecasting power
greatly.

13-21 non-overlapping option ME, RMSE, MAE Adding HIS increases R2 from 12% to 15%. But 
maturity (each average 19 aggregated across ex ante combined forecast from HIS and 
weeks). Use sample SD of stocks and time. R2 Implied ITM turned out to be worst then 
weekly returns over option are 6–12% (pooled) individual forecasts.  Suffered small sample and 
maturity to proxy “actual vol”. and 40% (panel with nonsynchroneity problems and omitted 

firm specific dividends.  
intercepts).  All a > 0, 
b < 1. 
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Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

46. Gray (1996) US 1M T-Bill 1/70–4/94 W RSGARCH with time varying 
probability

GARCH
Constant Variance
(ranked) 

47. Guo (1996a)  PHLX US$/¥ Jan. 91–Mar. 93 D Implied Heston
options Implied HW

Implied BS
GARCH
HIS60
(ranked) 

48. Guo (1996b) PHLX US$/¥, Jan. 86–Feb. 93 Tick Implied HW (WLS, 0.8 < S/X < 1.2, 
US$/DM 20 < T < 60 days)
options GARCH(1,1)
Spot rate D HIS 60 days

(ranked) 

49. Hamid (1998) S&P 500 3/83–6/93 D 13 schemes (including HIS, 
futures Implied cross strike average and 
options intertemporal averages)

(ranked, see comment) 

50. Hamilton and Excess stock 1/65–6/93 M Bivariate RSARCH
Lin (1996) returns (S&P Uivariate RSARCH

500 minus GARCH+L
T-bill) & Ind ARCH+L
Production AR(1)

(ranked) 

51. Hamilton and NYSE VW 3/7/62–29/12/87 W RSARCH+L
Susmel (1994) stock index GARCH+L

ARCH+L
(ranked) 

52. Harvey and S&P 100 Oct. 85–July 89 D Implied ATM calls+puts (American 
Whaley (OEX) binomial, shortest maturity > 15 
(1992) days)

(Predict changes in implied.) 

53. Heynen and 7 stock indices 1/1/80–31/12/92 D SV(? See comment.)
Kat (1994) and 5 EGARCH

exchange In: 80–87 GARCH
rates Out: 88–92 RW

(ranked) 
(87’s crash included in 

in-sample) 
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Forecasting Horizon Evaluation & R-square Comments

1 week ahead (model not re- R2 calculated without Volatility follows GARCH and CIR square root 
estimated). Use weekly constant term, is 4 to process. Interest rate rise increases probability 
squared deviation to proxy 8% for RSGARCH, of switching into high volatility regime.
volatility. negative for some CV 

and GARCH. Low volatility persistence and strong rate level 
Comparable RMSE mean reversion at high volatility state. At low 
and MAE between volatility state, rate appears random walk and 
GARCH & volatility is highly persistence.  
RSGARCH. 

Information not available. Regression with robust Use mid of bid-ask option price to limit ‘bounce’ 
SE. No information effect.  Eliminate ‘nonsynchroneity’ by using 
on R2 and forecast simultaneous exchange rate and option price. 
biasness. HIS and GARCH contain no incremental 

information. Implied Heston and Implied HW are 
comparable and are marginally better than
Implied BS. Only have access to abstract.

60 days ahead. Use sample US$/DM R2 is 4, 3, 1% Conclusion same as Guo(1996a).  Use 
variance of daily returns to for the three methods. Barone-Adesi/Whaley approximation for 
proxy actual volatility. (9, 4, 1% for US$/¥:) American options. No risk premium for volatility 

All forecasts are biased variance risk.  GARCH has no incremental 
a > 0, b < 1 with  information. Visual inspection of figures 
robust SE. suggests implied forecasts lagged actual. 

Non-overlapping 15, 35 and 55 RMSE, MAE Implied is better than historical and cross strike 
days ahead. averaging is better than intertemporal averaging 

(except during very turbulent periods).  

1 month ahead. Use squared MAE Found economic recessions drive fluctuations in 
monthly residual returns to stock returns volatility. “L” denotes leverage 
proxy volatility. effect. RS model outperformed 

ARCH/GARCH+L.

1, 4 and 8 weeks ahead. Use MSE, MAE, MSLE, Allowing up to 4 regimes with t distribution.  
squared weekly residual MALE. Errors RSARCH with leverage (L) provides best 
returns to proxy volatility. calculated from forecast. Student-t is preferred to GED and 

variance and log Gaussian.  
variance. 

1 day ahead implied for use in R2 is 15% for calls and Implied volatility changes are statistically 
pricing next day option. 4% for puts (excluding predictable, but market was efficient, as 

1987 crash.) simulated transactions (NTM call and put and 
delta hedged using futures) did not produce
profit.

Non-overlapping 5, 10, 15, 20, MedSE SV appears to dominate in index but produces 
25, 50, 75, 100 days horizon errors that are 10 times larger than (E)GARCH 
with constant update of in exchange rate. The impact of 87’s crash is 
parameters estimates. Use unclear. Conclude that volatility model 
sample standard deviations of forecasting performance depends on the asset 
daily returns to proxy “actual class.  
vol”. 
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Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

54. Hol and S&P 100 (VIX) 2/1/86–29/6/2001 D SIV
Koopman SVX+

(2002) Out: Jan. 97–June 01 SV
(ranked) 

55. Hwang and LIFFE stock 23/3/92–7/10/96 D Log-ARFIMA-RV
Satchell options Scaled truncated
(1998) 240 daily out-of- Detrended

sample forecasts. unscaled truncated
MAopt n=20-IV
Adj MAopt n=20-RV
GARCH-RV
(ranked, forecast implied) 

56. Jorion (1995) DM/$, 1/85–2/92 D Implied ATM BS call+put
¥/$, 7/86–2/92 GARCH (1,1), MA20
SrFr/$ futures 3/85–2/92 (ranked) 
options on 
CME 

57. Jorion (1996) DM/$ futures Jan. 85–Feb. 92 D ImpliedBlack, ATM
options on GARCH(1,1)
CME (ranked) 

58. Karolyi (1993) 74 stock options 13/1/84–11/12/85 M Bayesian Implied Call
Implied Call
HIS20,60
(Predict option price not “actual 

vol”.) 

59. Klaassen US$/£, 3/1/78–23/7/97 D RSGARCH
(2002) US$/DM and RSARCH

US$/¥ Out: 20/10/87–23/7/97 GARCH(1,1)
(ranked) 

60. Kroner, Futures options Jan. 87–Dec. 90 D GR>COMB
Kneafsey and on Cocoa, (Kept last 40 Implied BAW Call (WLS>AVG>
Claessens cotton, corn, observations for ATM)
(1995) gold, silver, out of sample HIS 7 weeks > GARCH

sugar, wheat forecast) (ranked)

Futures prices Jan. 87–July 91 

61. Lamoureux Stock options 19/4/82–31/3/84 D Implied Hull-White NTM Call 
and Lastrapes for 10 non- (intermediate term to maturity, 
(1993) dividend WLS)

paying stocks HISupdated expanding estimate
(CBOE) GARCH

(ranked, based on regression result) 
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Forecasting Horizon Evaluation & R-square Comments

1,2, 5, 10, 15 and 20 days ahead. R2 ranges between 17 to SVX is SV with implied VIX as an exogenous 
Use 10-min. returns to 33%, MSE, MedSE, variable while SVX+ is SVX with persistence 
construct “actual vol.” MAE. a and b not adjustment. SIV is stochastic implied with 

reported. All forecasts persistence parameter set equal to zero.  
underestimate actuals. 

1, 5, 10, 20, …, 90, 100, 120 MAE, MFE. Forecast impliedATM BS of shortest maturity option 
days ahead IV estimated from (with at 15 trading days to maturity). Build MA 
a rolling sample of 778 daily in IV and ARIMA on log (IV). Error statistics 
observations.  Different for all forecasts are close except those for 
estimation intervals were GARCH forecasts. The scaling in Log-
tested for robustness. ARFIMA-RV is to adjust for Jensen inequality.  

1 day ahead & option maturity.  R2 is 5% (1-day) or Implied is superior to the historical methods and 
Use squared returns and 10–15% (option least biased. MA and GARCH provide only 
aggregate of square returns to maturity). With robust marginal incremental information. 
proxy actual volatility. SE, a implied > 0 and 

b implied < 1 for long 
horizon and is 
unbiased for 1-day 
forecasts. 

1 day ahead, use daily squared R2 about 5%. H0: R2 increases from 5% to 19% when unexpected 
to proxy actual volatility. a implied = 0, b implied = 1 trading volume is included. Implied volatility 

cannot be rejected subsumed information in GARCH forecast, 
with robust SE. expected futures trading volume and bid-ask 

spread. 

20 days ahead volatility. MSE Bayesian adjustment to implied to incorporate 
cross sectional information such as firm 
size, leverage and trading volume useful in 
predicting next period option price.  

1 and 10 days ahead. Use mean MSE of variance, GARCH(1,1) forecasts are more variable than RS 
adjusted 1- and 10-day return regression though R2 models. RS provides statistically significant 
squares to proxy actual is not reported. improvement in forecasting volatility for 
volatility. US$/DM but not the other exchange rates.

225 calendar day (160 working MSE, ME GR: Granger and Ramanathan (1984)’s regression 
days) ahead, which is longer weighted combined forecast, COMB: lag 
than average. implied in GARCH conditional variance 

equation. Combined method is best suggests 
option market inefficiency. 

90 to 180 days matching option ME, MAE, RMSE. Implied volatility is best but biased. HIS provides 
maturity estimated using Average implied is incremental info to implied and has the lowest 
rolling 300 observations and lower than actual for RMSE. When all three forecasts are included; 
expanding sample. Use all stocks. R2 on a > 0, 1 > b implied > 0, GARCH = 0, b HIS < 0 with 
sample variance of daily variance varies robust SE. Plausible explanations include option 
returns to proxy “actual vol”. between 3–84% across traders overreact to recent volatility shocks, and 

stocks and models. volatility risk premium is non-zero and time
varying.

(Continued)



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

62. Latane and 24 stock options 5/10/73–28/6/74 W Implied vega weighted
Rendleman from CBOE HIS4 years
(1976) (ranked) 

63. Lee (1991) $/DM, $/£, $/¥, 7/3/73–4/10/89 W Kernel (Gaussian, Truncated)
$/FFr, $/C$ (Wed, Index (combining ARMA and 
(Fed Res Out: 21 Oct. 81– 12pm) GARCH)

Bulletin) 11 Oct. 89. EGARCH (1,1)
GARCH (1,1)
IGARCH with trend
(rank changes see comment for 

general assessment) 

64. Li (2002) $/DM, $/£, $/¥ 3/12/86–30/12/99 Tick Implied GK OTC ATM
OTC ATM In: 12/8/86–11/5/95 (5 min) ARFIMA realised

options (Implied better at shorter horizon 
$/£, $/¥ 19/6/94–13/6/99 D and ARFIMA better at long 
$/DM 19/6/94–30/12/98 D horizon.) 

65. Lopez (2001) C$/US$, 1980–1995 D SV-AR(1)-normal
DM/US$, GARCH-gev
¥/US$, US$/£ In: 1980–1993 EWMA-normal

Out: 1994–1995 GARCH-normal, -t
EWMA-t
AR(10)-Sq, -Abs
Constant
(approx rank, see comments) 

66. Loudon, Watt FT All Share Jan. 71–Oct. 97 D EGARCH, GJR, TS-GARCH, 
and Yadav TGARCH NGARCH, VGARCH, 
(2000) Sub-periods: GARCH, MGARCH

Jan. 71–Dec. 80 (No clear rank, forecast GARCH 
Jan. 81–Dec. 90 vol) 
Jan. 91–Oct. 97 

67. Martens and S&P 500 Jan. 94–Dec. 2000 Tick Implied BAW VIX style
Zein (2002) futures, Log-ARFIMA

¥/US$ futures, Jan. 96–Dec. 2000 GARCH
Crude oil June 93–Dec. 2000 (ranked, see comment also) 

futures 

68. McKenzie 21 A$ bilateral Various length from D Square vs. power transformation
(1999) exchange 1/1/86 or 4/11/92 to (ARCH models with various lags.  

rates 31/10/95 See comment for rank.) 
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Forecasting Horizon Evaluation & R-square Comments

In-sample forecast and forecast Cross-section correlation Used European model on American options and 
that extend partially into the between volatility omitted dividends. “Actual” is more correlated 
future. Use weekly and estimates for 38 weeks (0.686) with  “Implied” than HIS volatility 
monthly returns to calculate and a 2-year period. (0.463) Highest correlation is that between 
actual volatility of various implied and actual standard deviations which 
horizons. were calculated partially into the future.  

1 week ahead (451 observations RMSE, MAE. It is not Nonlinear models are, in general, better than 
in sample and 414 clear how actual linear GARCH. Kernel method is best with 
observations out-of-sample) volatility was MAE. But most of the RMSE and MAE are 

estimated. very close. Over 30 kernel models were fitted, 
but only those with smallest RMSE and MAE 
were reported. It is not clear how the non-
linear equivalence was constructed. Multi-step 
forecast results were mentioned but not shown. 

1, 2, 3 and 6 months ahead. MAE. R2 ranges 0.3– Both forecasts have incremental information 
Parameters not re-estimated.  51% (Implied), 7.3– especially at long horizon. Forcing: a = 0, b = 1 
Use 5-min returns to 47%(LM), 16–53% produce low/negative R2 (especially for long 
construct “actual vol”. (emcompass). For horizon).

both models, H0: Model realised standard deviation as ARFIMA 
a = 0, b = 1 are without log transformation and with no constant, 
rejected and typically which is awkward as a theoretical model for 
b < 1 with robust SE. volatility.

1 day ahead and probability MSE, MAE, LL, HMSE, LL is the logarithmic loss function from Pagan and 
forecasts for four “economic GMLE and QPS Schwert (1990), HMSE is the 
events”, viz. cdf of specific (quadratic probability heteroskedasticity-adj MSE from Bollerslev and 
regions. Use daily squared scores). Ghysels (1996) and GMLE is the Gaussian 
residuals to proxy volatility. quasi-ML function from Bollerslev, Engle and 
Use empirical distribution to Nelson (1994).
derive cdf. Forecasts from all models are indistinguishable.  

QPS favours SV-n, GARCH-g and EWMA-n.

Parameters estimated in period RMSE, regression on log TS-GARCH is an absolute return version of 
1 (or 2) used to produce volatility and a list of GARCH. All GARCH specifications have 
conditional variances in diagnostics. R2 is comparable performance though non-linear, 
period 2 (or 3). Use GARCH about 4% in period 2 asymmetric versions seem to fare better.  
squared residuals as “actual” and 5% in period 3. Multiplicative GARCH appears worst, followed 
volatility. by NGARCH and VGARCH (Engle and Ng

1993).

Non-overlapping 1, 5, 10, 20, 30 Heteroskedasticity Scaled down one large oil price. Log-ARFIMA 
and 40 days ahead. 500 daily adjusted RMSE. R2 truncated at lag 100. Based on R2, Implied 
observations in in-sample ranges 25–52% outperforms GARCH in every case, and beats 
which expands on each (implied), 15–48% Log-ARFIMA in ¥/US$ and Crude oil.  Implied 
iteration. (LM) across assets and has larger HRMSE than Log-ARFIMA in most 

horizons. Both models cases. Difficult to comment on implied’s biasness 
provide incremental from information presented.
info to encompassing 
regr. 

1 day ahead absolute returns. RMS, ME, MAE. The optimal power is closer to 1 suggesting 
Regressions suggest all squared return is not the best specification in 
ARCH forecasts are ARCH type model for forecasting purpose.  
biased. No R2 was 
reported.

(Continued)



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

69. McMillan, FTSE100 Jan. 84–July 96 D, W, RW, MA, ES, EWMA
Speight and FT All Share Jan. 69–July 96 M GARCH, TGARCH, EGARCH, 
Gwilym (2000) CGARCH

Out: 1996–1996 for HIS, Regression,
both series. (ranked)

70. Noh, Engle S&P 500 index Oct. 85–Feb. 92 D GARCH adj for weekend & hols
and Kane options Implied BS weighted by trading 
(1994) volume

(ranked, predict option price not 
“actual vol”) 

71. Pagan and US stock 1834–1937 M EGARCH(1,2)
Schwert market Out: 1900–1925 GARCH(1,2)
(1990) (low volatility), 2-step conditional variance

1926–37 (high RS-AR(m)
volatility) Kernel (1 lag)

Fourier (1 or 2 lags)
(ranked) 

72. Pong, US$/£ In: July 87–Dec. 93 5-, 30- Implied ATM, OTC quote (bias adj 
Shackleton, Out: Jan. 94–Dec. 98 minute using rolling regr on last 5 years 
Taylor and monthly data)
Xu (2002) Log-ARMA(2,1)

Log-ARFIMA(1,d,1)
GARCH(1,1)
(ranked) 

73. Poteshman S&P 500 (SPX) 1 Jun. 88–29 Aug. 97 D Implied Heston
(2000) & futures Implied BS (both implieds are from 

Heston estimation: futures WLS of all options < 7 months 
1 June 93–29 Aug. 97 Tick but > 6 calendar days)

HIS 1, 2, 3,6 months
S&P 500 7 June 62–May 93 M (ranked) 

74. Randolph and S&P 500 2/1/1986–31/12/88 Daily MRM ATM HIS
Najand (1991) futures options (Crash included) opening MRM ATM implied

Tick GARCH(1,1)
ATM Calls only In: First 80 HIS20 day

observations Implied Black
(ranked though the error statistics 

are close) 

75. Schmalensee 6 CBOE stock 29/4/74–23/5/75 W Implied BS call (simple average of all 
and Trippi options strikes and all maturities.)
(1978) 56 weekly observations (Forecast implied not actual 

volatility.) 
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Forecasting Horizon Evaluation & R-square Comments

j = 1 day, 1 week and 1 month ME, MAE, RMSE for CGARCH is the component GARCH model.  
ahead based on the three symmetry loss Actual volatility is proxied by mean adjusted 
data frequencies. Use j period function. MME(U) & squared returns, which is likely to be extremely 
squared returns to proxy MME(O), mean noisy. Evaluation conducted on variance, hence 
actual volatility. mixed error that forecast error statistics are very close for most 

penalize under/over models.  RW, MA, ES dominate at low 
predictions. frequency and when crash is included.

Performances of GARCH models are similar
though not as good.

Option maturity. Based on 1,000 Equate forecastibility Regression with call+put implieds, daily dummies 
days rolling period estimation with profitability and previous day returns to predict next day 

under the assumption implied and option prices. Straddle strategy is 
of an inefficient option not vega neutral even though it might be delta 
market neutral assuming market is complete. It is 

possible that profit is due to now well-
documented post 87’s crash higher option 
premium. 

One month ahead. Use squared R2 is 7–11% for 1900–25 The nonparametric models fared worse than the 
residual monthly returns to and 8% for 1926–37. parametric models. EGARCH came out best 
proxy actual volatility. Compared with R2 for because of the ability to capture volatility 

variance, R2 for log asymmetry. Some prediction bias was 
variance is smaller in documented.  
1900–25 and larger in 
1926–37.  

1 month and 3 month ahead at ME, MSE, regression. Implied, ARMA and ARFIMA have similar 
1-month interval R2 ranges between performance. GARCH(1,1) clearly inferior. 

22–39% (1-month) Best combination is Implied+ARMA(2,1).  
and 6–21% (3-month) Log-AR(FI)MA forecasts adjusted for Jensen 

inequality.  Difficult to comment on implied’s 
biasness from information presented.

Option maturity (about 3.5 to BS R2 is over 50%. F test for H0: aBS = 0, bBS = 1 are rejected though 
4 weeks, non-overlapping). Heston implied t-test supports H0 on individual coefficients.
Use 5-min futures inferred produced similar R2 Show biasness is not caused by bid-ask spread. 
index return to proxy “actual but very close to being Using lns, high frequency realised vol, and 
vol”. unbiased. Heston model, all help to reduce implied 

biasness.

Non-overlapping 20 days ahead, ME, RMSE, MAE, Mean reversion model (MRM) sets drift rate of 
re-estimated using expanding MAPE volatility to follow a mean reverting process 
sample. taking implied ATM (or HIS) as the previous day 

vol.  Argue that GARCH did not work as well 
because it tends to provide a persistent forecast, 
which is valid only in period when changes in vol
are small.

1 week ahead. “Actual” proxied Statistical tests reject the Find implied rises when stock price falls, negative 
by weekly range and average hypothesis that IV serial correlation in changes of IV and a 
price deviation. responds positively to tendency for IV of different stocks to move 

current volatility. together. Argue that IV might correspond better
with future volatility.

(Continued)



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

76. Scott and DM/$, £/$, 14/3/83–13/3/87 Daily Implied GK (vega, Inferred ATM, 
Tucker (1989) C$/$, ¥/$ & (Pre crash) closing NTM)

SrFr/$ tick Implied CEV
American (similar rank) 
options on 
PHLX 

77. Sill (1993) S&P 500 1959–92 M HIS with exo variables
HIS
(See comment) 

78. Szakmary, Futures options Various dates between D Implied BK, NTM 2Calls+2Puts equal weight
Ors, Kim and on S&P 500, Jan. 83–May 01 HIS30, GARCH
Davidson 9 interest rates, (ranked) 
(2002) 5 currency, 

4 energy, 
3 metals, 
10 agriculture
3 livestock

79. Taylor JW DAX, S&P 500, 6/1/88–30/8/95 W STES (E, AE, EAE)
(2001) Hang Seng, (equally split GJR (+Smoothed variations)

FTSE100, between in- and GARCH
Amsterdam out-) MA20 weeks, Riskmetrics
EOE, Nikkei, (ranked) 
Singapore All 

Share 

80. Taylor SJ 15 US stocks Jan. 66–Dec. 76 D EWMA
(1986) FT30 July 75–Aug. 82 Log-AR(1)

6 metal Various length ARMACH-Abs
£/$ Nov. 74–Sep.  82 ARMACH-Sq
5 agricultural Various length HIS

futures (ranked)
4 interest rate Various length 

futures ARMACH-Sq is similar to GARCH

81. Taylor SJ DM/$ futures 1977–83 D High, low and closing prices
(1987) (see comment) 

82. Taylor SJ and DM/$ 1/10/92–30/9/93 Quote Implied + ARCH combined
Xu (1997) In: 9 months Implied, ARCH

Out: 3 months HIS 9 months 
DM/$ options D HIS last hour realised vol 

on PHLX (ranked)

See comment for details on implied 
& ARCH

83. Tse (1991) Topix In:  1986–87 D EWMA 
Nikkei Stock HIS
Average Out: 1988–89 ARCH, GARCH

(ranked) 
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Forecasting Horizon Evaluation & R-square Comments

Non-overlapping option MSE, R2 ranges from 42 Simple B-S forecasts just as well as sophisticated 
maturity: 3, 6 and 9 months.  to 49%. In all cases, CEV model. Claimed omission of early exercise 
Use sample SD of daily a > 0, b < 1. HIS has is not important.  Weighting scheme does not 
returns to proxy “actual vol”. no incremental info matter.  Forecasts for different currencies were 

content. mixed together.  

1 month ahead R2 increase from 1% to Volatility is higher in recessions than in expansions,
10% when additional and the spread between commercial-paper and 
variables were added. T-Bill rates predict stock market volatility.

Overlapping option maturity, R2 smaller for financial HIS30 and GARCH have little or no incremental 
shortest but > 10 days.  Use (23–28%), higher for information content. a implied > 0 for 24 cases (or 
sample SD of daily returns metal & agricult (30– 69%), all 35 cases b implied < 1 with robust SE.
over forecast horizon to proxy 37%), highest for 
“actual vol”. livestock & energy 

(47, 58%)  

1 week ahead using a moving ME, MAE, RMSE, R2 Models estimated based on minimizing in-sample 
window of 200 weekly returns. (about 30% for HK forecast errors instead of ML. STES-EAE 
Use daily squared residual and Japan and 6% for (smooth transition exponential smoothing with 
returns to construct weekly US) return and absolute return as transition 
“actual” volatility. variables) produced consistently better 

performance for 1-step ahead forecasts.  

1 and 10 days ahead absolute Relative MSE Represent one of the earliest studies in ARCH 
returns. 2/3 of sample used in class forecasts. The issue of volatility stationarity 
estimation. Use daily absolute is not important when forecast over short 
returns deviation as “actual horizon. Non-stationary series (e.g. EWMA) has 
vol”. the advantage of having fewer parameter 

estimates and forecasts respond to variance 
change fairly quickly.  

1, 5, 10 & 20 days ahead. RMSE Best model is a weighted average of present and 
Estimation period, 5 years. past high, low and closing prices with 

adjustments for weekend and holiday effects.

1 hour ahead estimated from 9 MAE and MSE on std 5-min return has information incremental to daily 
months in-sample period. Use deviation & variance implied when forecasting hourly volatility.
5-min returns to proxy 
“actual vol”. Friday macro news ARCH model includes with hourly and 5-min 

seasonal factors have returns in the last hr plus 120 hour/day/week 
no impact on forecast seasonal factors.  Implied derived from NTM 
accuracy. shortest maturity (> 9 calendar days) Call + Put 

using BAW.  

25 days ahead estimated from ME, RMSE, MAE, Use dummies in mean equation to control for 1987 
rolling 300 observations MAPE of variance of crash. Non-normality provides a better fit but a 

21 non-overlapping poorer forecast. ARCH/GARCH models are 
25-day periods. slow to react to abrupt change in volatility. 

EWMA adjust to changes very quickly.   

(Continued)



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

84. Tse and Tung Singapore, 5 19/3/75–25/10/88 D EWMA
(1992) VW market HIS

& industry GARCH
indices (ranked) 

85. Vasilellis and Stock options In: W Combine(Implied + GARCH)
Meade (1996) 12 UK stocks 28/3/86–27/6/86 Implied (various, see comment)

(LIFFE) In2 (for combine GARCH
forecast): EWMA
28/6/86–25/3/88 HIS 3 months

Out: (ranked, results not sensitive to 
6/7/88–21/9/91 basis use to combine) 

86. Vilasuso C$/$, FFr/$, In:13/3/79–31/12/97 D FIGARCH
(2002) DM/$, ¥/$, £/$ Out: 1/1/98–31/12/99 GARCH, IGARCH

(ranked, GARCH marginally better 
than IGARCH) 

87. Walsh and Australian 1 Jan. 93–31 Dec. 95 5-min EWMA
Tsou (1998) indices: to form GARCH (not for weekly returns)

VW20, VW50 In: 1 year H, D & HIS, IEV (Improved extreme-value 
& VW300 Out: 2 years W method)

returns (ranked) 

88. Wei and SrFr/$, DM/$, 2/83–1/90 M Implied GK ATM call (shortest 
Frankel ¥/$, £/$ options maturity)
(1991) (PHLX)

Spot rates D 

89. West and Cho C$/$, FFr/$, 14/3/73–20/9/89 W GARCH(1,1)
(1995) DM/$, ¥/$, £/$ IGARCH(1,1)

In:14/3/73–17/6/81 AR(12) in absolute
Out: 24/6/81–12/4/89 AR(12) in squares

Homoskedastic
Gaussian kernel
(No clear rank) 

90. Wiggins S&P 500 4/82–12/89 D ARMA model with 2 types of 
(1992) futures estimators:

1. Parkinson/Garmen-Klass extreme 
value estimators

2. Close-to-close estimator
(ranked) 

91. Xu and Taylor £/$, DM/$, In: Jan. 85–Oct. 89 D Implied BAW NTM TS or short
(1995) ¥/$ & SrFr/$ GARCHNormal or GED

PHLX Out: HIS 4 weeks
options 18 Oct. 89–4 Feb. 92 (ranked) 

Corresponding 
futures rates 
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Forecasting Horizon Evaluation & R-square Comments

25 days ahead estimated from RMSE, MAE EWMA is superior, GARCH worst. Absolute 
rolling 425 observations returns > 7% are truncated. Sign of non-

stationarity.  Some GARCH non-convergence

3 months ahead. Use sample RMSE Implied: 5-day average dominates 1-day implid 
SD of daily returns to proxy vol. Weighting scheme: max vega > vega 
“actual vol”. weighted > elasticity weighted > max elasticity 

with ‘>’ indicates better forecasting 
performance. Adjustment for div & early 
exercise: Rubinstein > Roll > constant yield.
Crash period might have disadvantaged time 
series methods.

1, 5 and 10 days ahead. Used MSE, MAE, & Diebold- Significantly better forecasting performance from 
daily squared returns to proxy Mariano’s test for sig. FIGARCH. Built FIARMA (with a constant 
actual volatility. difference. term) on conditional variance without taking log. 

Truncated at lag 250.

1 hour, 1 day and 1 week ahead MSE, RMSE, MAE, Index with larger number of stock is easier to 
estimated from a 1-year MAPE forecast due to diversification, but gets harder as 
rolling sample. Use square of sampling interval becomes shorter due to 
price changes (non problem of non-synchronous trading. None of 
cumulative) as “actual vol”. the GARCH estimations converged for the 

weekly series, probably too few observations.  

Non-overlapping 1 month R2 30%(£), 17% (DM), Use European formula for American style option. 
ahead. Use sample SD of 3%( SrFr), 0%(¥). Also suffers from non-synchronicity problem.
daily exchange rate return to a > 0, b < 1 (except Other tests reveal that Implied tends to 
proxy “actual vol” that for £/$, a > 0, over-predict high vol and under-predict low vol.

b = 1) with heteroske Forecast/implied could be made more accurate 
consistent SE. by placing more weight on long run average.

j = 1, 12, 24 weeks estimated RMSE and regression Some GARCH forecasts mean revert to 
from rolling 432 weeks. Use test on variance, R2 unconditional variance in 12- to 24-weeks. It is 
j period squared returns to varies from 0.1% to difficult to choose between models.  
proxy actual volatility. 4.5%. Nonparametric method came out worst though 

statistical tests for do not reject null of no 
significant difference in most cases.  

1 week ahead and 1 month Bias test, efficiency test, Modified Parkinson approach is least biased.  
ahead. Compute actual regression C-t-C estimator is three times less efficient than 
volatility from daily EV estimators.  Parkinson estimator is also 
observations. better than C-t-C at forecasting. 87’s crash 

period excluded from analysis.  

Non-overlapping 4 weeks ahead, ME, MAE, RMSE. Implied works best and is unbiased. Other 
estimated from a rolling When a implied is set forecasts have no incremental information.  
sample of 250 weeks daily equal to 0, b implied = 1 GARCH forecast performance not sensitive to 
data. Use cumulative daily cannot be rejected. distributional assumption about returns.  The 
squared returns to proxy choice of implied predictor (term structure, TS, 
“actual vol”. or short maturity) does not affect results.

(Continued)



Data Data Forecasting 
Author(s) Asset(s) Period Freq Methods & Rank

92. Yu (2002) NZSE40 Jan. 80-Dec. 98 D SV (of log variance)
In: 1980–93 GARCH(3,2), GARCH(1,1)
Out: 1994–98 HIS, MA 5yr or 10 yr

ES and EWMA (monthly revision)
Regression lag-1
ARCH(9), RW, 
(ranked) 

93. Zumbach USD/CHF, 1/1/89–1/7/2000 H LM-ARCH
(2002) USD/JPY F-GARCH

GARCH
And their integrated counterparts
(ranked) 
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Ranked: models appear in the order of forecasting performance; best performing model at the top.  If two
weighting schemes or two forecasting models appear at both sides of “>”, it means the LHS is better than the
RHS in terms of forecasting performance.  SE: Standard error.

ATM: At the money, NTM: Near the money, OTM: Out of the money, WLS: an implied volatility weighting
scheme used in Whaley (1982) designed to minimize the pricing errors of a collection of options.  In some cases
the pricing errors are multiplied by trading volume or vega to give ATM implied a greater weight.
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Forecasting Horizon Evaluation & R-square Comments

1 month ahead estimated from RMSE, MAE, Theil-U Range of the evaluation measures for most models 
previous 180 to 228 months and LINEX on is very narrow. Within this narrow range, SV 
of daily data.  Use aggregate variance. ranked first, performance of GARCH was 
of daily squared returns to sensitive to evaluation measure; regression and 
construct actual monthly EWMA methods did not perform well. Worst 
volatility. performance from ARCH(9) and RW. Volatile 

periods (Oct. 87 and Oct. 97) included in in- and
out-of samples.

1 day ahead estimated from RMSE. Realized LM-ARCH, aggregates high frequency squared 
previous 5.5 years volatility measured returns with a set of power law weights, is the 

using hourly returns. best though difference is small.  All integrated 
versions are more stable across time.  

HIS: Historical volatility constructed based on past variance/standard deviation. VIX: Chicago Board of Option
Exchange’s volatility index derived from S&P 100 options. RS: Regime Switching, 

BS: Black-Scholes, BK: Black model for pricing futures option.  BAW: Barone-Adesi and Whaley American option
pricing formula,  HW: Hull and White option pricing model with stochastic volatility, FW: Fleming and Whaley
(1994) modified binomial method that takes into account wildcard option, GK: Garman and Kohlhagan model for
pricing European currency option. HJM: Heath, Jarrow and Morton (1992) forward rate model for interest rates.
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