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Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and
covariance function vary with the season. In this study, we develop and implement forecasting procedures for
PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula
for the asymptotic error variance is provided, so that Gaussian prediction intervals can be computed. Finally, an
application to monthly river flow forecasting is given, to illustrate the method.
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1. INTRODUCTION

Mathematical modelling and simulation of seasonal time series are critical issues in many areas of application, including surface water
hydrology. Most river flow time series are periodically stationary, that is, their mean and covariance functions are periodic with
respect to time. To account for the periodic correlation structure, a periodic autoregressive moving average (PARMA) model can be
useful. PARMA models are also appropriate for a wide variety of time series applications in geophysics and climatology. In a PARMA
model, the parameters in a classical ARMA model are allowed to vary with the season. Since PARMA models explicitly describe
seasonal fluctuations in mean, standard deviation and autocorrelation, they can generate more faithful models and simulations of
natural river flows.

A stochastic process f~Xtgt2Z is periodically stationary if its mean E~Xt and covariance Covð~Xt; ~XtþhÞ for h 2 Z are periodic functions
of time t with the same period S. A periodically stationary process f~Xtg is called a PARMAS(p, q) process if the mean-centred process
Xt ¼ ~Xt � lt is of the form

Xt �
Xp

k¼1

/tðkÞXt�k ¼ et þ
Xq

j¼1

htðjÞet�j ð1Þ

where fetg is a sequence of random variables with mean zero and standard deviation rt > 0 such that fdt ¼ r�1
t etg is i.i.d. The

autoregressive parameters /t(j), the moving average parameters ht(j) and the residual standard deviations rt are all periodic with the
same period S � 1. Periodic ARMA modelling has a long history, starting with the work of Gladyshev (1961) and Jones and Brelsford
(1967). The book of Franses and Paap (2004) gives a nice overview of the subject. Applications to river flows are developed in the
book of Hipel and McLeod (1994). Since river flows typically exhibit seasonal variations in mean, standard deviation and
autocorrelation structure, PARMA models are appropriate, see for example Thompstone et al. (1985), Salas and Obeysekera (1992),
McLeod (1994), Anderson and Meerschaert (1998), Anderson et al. (2007) and Bowers et al. (2012).

In this study, a recursive forecasting algorithm for PARMA time series is developed, based on minimizing mean squared error. We
detail the computation of h-step ahead forecasts, based on the innovations algorithm, and an idea of Ansley (Ansley 1979; Lund and
Basawa 2000). R codes to implement these forecasts and compute the asymptotic variance of the forecast errors are available upon
request from the authors. The article is laid out as follows. Section 2 details the algorithms for computing h-step-ahead forecasts for
any h � 1, based on work of Lund and Basawa (2000). Their paper developed maximum likelihood estimates for the PARMA model
parameters, using projection arguments based on the innovations algorithm, but their results can easily be adapted to our purposes.
Section computes the associated forecast error variances. Theorem 1 is the main theoretical result of this study. Section 4 illustrates
the methods of this study by forecasting two years of average monthly flows for the Fraser River.
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2. FORECASTING

This section develops the PARMA prediction equations based on orthogonal projection, to minimize the mean squared prediction
error among all linear predictors. If the PARMA process has Gaussian innovations, then this will also minimize the mean squared
prediction error among all predictors. Throughout this study, we assume that the model (1) admits a causal representation

Xt ¼
X1
j¼0

wtðjÞet�j ð2Þ

where wt(0) ¼ 1 and
P1

j¼0 jwtðjÞj < 1 for all t, and satisfies an invertibility condition

et ¼
X1
j¼0

ptðjÞXt�j ð3Þ

where pt(0) ¼ 1 and
P1

j¼0 jptðjÞj < 1 for all t. Then wtðjÞ ¼ wtþkSðjÞ and ptðjÞ ¼ ptþkSðjÞ for all integers t, j, k. The seasonal mean
li ¼ E½~XkSþi�, autocovariance cið‘Þ ¼ E½XkSþiXkSþiþ‘� and autocorrelation qið‘Þ ¼ cið‘Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cið0Þciþ‘ð0Þ

p
are also periodic functions of i

with the same period S. Note that cið‘Þ ¼ ciþ‘ð�‘Þ.
Fix a probability space on which the PARMAS(p, q) model (1) is defined, and let ~Hn ¼ spf1; ~X0; . . . ; ~Xn�1g ¼ spf1; X0; . . . ; Xn�1g

denote the set of all linear combinations of these random variables in the Hilbert space of finite variance random variables on that
probability space, with the inner product hX, Yi ¼ E(X Y). A simple projection argument shows that P ~Hn

~Xn ¼ ln þ PHnXn where
Hn ¼ spfX0; . . . ; Xn�1g, hence it suffices to develop forecasts for the mean-centered process Xt, and then add back the seasonal
mean. An efficient forecasting algorithm uses the transformed process (Ansley 1979; Lund and Basawa, 2000)

Wt ¼
Xt; t ¼ 0; . . . ;m� 1
Xt �

Pp
k¼1 /tðkÞXt�k; t � m

�
ð4Þ

where m ¼ max(p,q). Computing the autocovariance Cðj; ‘Þ ¼ EðWjW‘Þ of the transformed process (4) shows that C(j, ‘) ¼ 0
whenever ‘ > m and ‘ > j + q (see Lund and Basawa 2000 eqn 3.16). Define X̂0 ¼ Ŵ0 ¼ 0 and let

X̂n ¼ PHn
ðXnÞ and Ŵn ¼ PHn

ðWnÞ ð5Þ

denote the one-step projections of Xn and Wn onto Hn, respectively, for n � 1. Write

Ŵn ¼
Xn

j¼1

hn;j Wn�j � Ŵn�j

� �
; ð6Þ

where hn;1; . . . ; hn;n are the unique projection coefficients that minimize the mean squared error vn ¼ E½ðWn � ŴnÞ2�. Uniqueness of
hn,j follows from invertibility of the covariance matrix of X0; X1; . . . ; Xt , for all t � 1, which holds under the causal model assumption
with rt > 0 for all seasons (see Lund and Basawa, 2000, Proposition 4.1]. Apply the innovations algorithm (Brockwell and Davis, 1991,
Proposition 5.2.2) to the transformed process (4) to get

v0 ¼ Cð0; 0Þ

hn;n�k ¼ v�1
k Cðn; kÞ �

Xk�1

j¼0

hk;k�jhn;n�jvj

" #

vn ¼ Cðn; nÞ �
Xn�1

j¼0

hn;n�j

� �2
vj

ð7Þ

solved in the order v0, h1,1, v1, h2,2, h2,1, v2, h3,3, h3,2, h3,1, v3, . . . and so forth. Since C(j, ‘) ¼ 0 whenever ‘ > m and ‘ > j + q, it is not
hard to check that hn,j ¼ 0 whenever j > q and n � m.

Then it follows from Lund and Basawa (2000, eqn 3.4) that the one-step predictors (5) for a PARMAS(p, q) process (1) can be
computed recursively using

X̂n ¼
Pn

j¼1 hn;j Xn�j � X̂n�j

� �
1 � n < m;Pp

j¼1 /nðjÞXn�j þ
Pq

j¼1 hn;j Xn�j � X̂n�j

� �
n � m:

(
ð8Þ

To simplify notation, denote the first season to be forecast as season 0, and suppose that the season of the oldest data point is
S � 1. If the total number of available data is not a multiple of S, we discard a few (< S) of the oldest observations, to obtain the data
set of ~X0; ~X1; . . . ; ~Xn�1, where n ¼ NS is fixed. Then it follows from Lund and Basawa (2000, eqn 3.36 that the h-step ahead predictors
are given by

PHn
Xnþh ¼

Xnþh

j¼hþ1

hnþh;j Xnþh�j � X̂nþh�j

� �
ð9Þ

when n < m and 0 � h � m � n � 1, and
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PHn
Xnþh ¼

Xp

k¼1

/hðkÞPHn
Xnþh�k þ

Xq

j¼hþ1

hnþh;j Xnþh�j � X̂nþh�j

� �
ð10Þ

otherwise, where the coefficients hn ,j are computed via the innovations algorithm (7) applied to the transformed process (4). A large-
sample approximation for the h-step predictor is given by

PHn
Xnþh �

Xp

k¼1

/hðkÞPHn
Xnþh�k þ

Xq

j¼hþ1

hhðjÞ Xnþh�j � X̂nþh�j

� �
; ð11Þ

since hnþh;j ! hhðjÞ as n ! 1 (Anderson et al., 1999, Corollary 2.2.3).

3. FORECAST ERRORS

The next result explicitly computes the variance of the forecast errors, and a simpler asymptotic variance that is useful for
computations. We continue to assume that the mean-centred data X0; X1; . . . ; Xn�1 spans exactly N years, so that n ¼ NS.

THEOREM 1. Define vj(0) ¼ 1 for all j � 0, vj(j � ‘) ¼ 0 for all j � 0 and ‘ > j, and recursively

vjð‘Þ ¼
Xminðp; ‘Þ

k¼1

/jðkÞvj�kð‘� kÞ for all j � 0 and 0 � ‘ < j: ð12Þ

Then the mean-squared error r2
nðhÞ ¼ E Xnþh � PHn

Xnþhð Þ2
h i

of the h-step predictors PHn
Xnþh for the PARMAS(p, q) process (1) can be

computed recursively using

r2
nðhÞ ¼

Xh

j¼0

Xj

k¼0

vhðkÞhnþh�k;j�k

 !2

vnþh�j ð13Þ

when n � m: ¼ max(p, q), and the coefficients hn+h�k,j�k and vn+h�j are computed via the innovations algorithm (7) applied to the
transformed process (4). Furthermore, the asymptotic mean squared error is given by

r2
nðhÞ !

Xh

j¼0

w2
hðjÞr2

h�jas n ¼ NS!1; ð14Þ

where whðjÞ ¼
Pj

k¼0 vhðkÞhh�kðj � kÞ.

PROOF. Note that the mean squared prediction error r2
nðhÞ ¼ EðXnþh � PHn

XnþhÞ2 for the mean-centred PARMA process (1) is not
the same as the mean squared prediction error EðWnþh � PHn

WnþhÞ2 for the transformed process (4). When n � m ¼ max(p, q), eqn
(10) holds for any h � 0, and the second term in (10) vanishes when h + 1 > q. Write Xnþh ¼ X̂nþh þ ðXnþh � X̂nþhÞ, and note that
/nþhðjÞ ¼ /hðjÞ since n ¼ NS. Substitute (8) with n � m to get

Xnþh ¼ /hð1ÞXnþh�1 þ . . .þ /hðpÞXnþh�pXq

j¼0

hnþh;j Xnþh�j � X̂nþh�j

� �
;

ð15Þ

with hn,0 ¼ 1 for all n. Subtract (10) from (15) and rearrange terms to get

Xnþh � PHn
Xnþh �

Xp

k¼1

/hðkÞ Xnþh�k � PHn
Xnþh�kð Þ

¼
Xh

j¼0

hnþh;j Xnþh�j � X̂nþh�j

� �
:

ð16Þ

Define the random vectors

Mn ¼
Xn � X̂n

..

.

Xnþh � X̂nþh

0
B@

1
CA and Fn ¼

Xn � PHn
Xn

..

.

Xnþh � PHn
Xnþh:

0
B@

1
CA ð17Þ
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Write Uh ¼ ½�/jðj � ‘Þ�hj;‘¼0 where we define /j(0) ¼ �1 for all j, and /j(k) ¼ 0 for k > p or k < 0. Note that /j(k) is periodic in S, so
that /jðkÞ ¼ /hjiðkÞ, where hji ¼ j mod S is the season corresponding to index j. Write Hn ¼ hnþj;j�‘

� �h

j;‘¼0
where we define hn,0 ¼ 1,

and hn,k: ¼ 0 for k > q or k < 0. Then we can use (16) to write

UhFn ¼ HnMn; ð18Þ

where Uh and Qn are lower triangular matrices. The entries of the innovations vector Mn are uncorrelated, with covariance matrix
Vn ¼ diagðvn; vnþ1; . . . ; vnþhÞ. Then the covariance matrix of the vector Fn ¼ U�1

h HnMn of prediction errors is

Cn :¼ E½FnF0n� ¼ WnVnW
0
n where Wn ¼ U�1

h Hn ð19Þ

and
0

denotes the matrix transpose.
Compute the inverse matrix U�1

h ¼ ½vjðj � ‘Þ�hj;‘¼0 by multiplying out

X1
k¼0

vjþkðkÞzk

 !
1�

Xp

k¼1

/jðkÞzk

 !
¼ 1

and equating coefficients. This leads to vj(0) ¼ 1 and (12). Define Wn ¼ U�1
h Hn ¼ ½wnþj;j�‘�

h
j;‘¼0 and note that

wnþj;j�‘ ¼
Xj�‘
k¼0

vjðkÞhnþj�k;j�‘�k: ð20Þ

Since jvr � r2
r j ! 0 as r ! 1 (Anderson et al., 1999, Corollary 2.2.1 and jhs;‘ � hsð‘Þj ! 0 as s ! 1 for all ‘ > 0 (Anderson et al.

1993, Corollary 2.2.3), it follows using (13) that (14) holds.

REMARK 1. It is a simple consequence of periodic stationarity that the forecast errors converge monotonically in (14), that is,
r2

nðhÞ � r2
nþSðhÞ for all n and h. Hence the asymptotic limit provides a lower bound on the exact forecast error.

COROLLARY 1. If fXtg is a 0-mean Gaussian process, then the probability that Xn+h lies between the bounds
PHn

Xnþh � za=2ð
Ph

j¼0 w2
hðjÞr2

h�jÞ
1
2 approaches (1 � a) as n ! 1, where za is the (1 � a)-quantile of the standard normal distribution.

PROOF. Since ðX0; X1; . . . ; XnþhÞ0 has a multivariate normal distribution, Problem 2.20 in Brockwell and Davis (1991) implies that
PHn

Xnþh ¼ EspfX0 ;...;Xn�1g
Xnþh ¼ EðXnþhjX0; . . . ; Xn�1Þ. Then the result follows using (14).

REMARK 2. Formula (19) for the covariance matrix of the forecast errors was established by Lund and Basawa (2000, eqn 3.41) in a
different notation. However, that study not develop an explicit formula for the forecast error variance.

4. APPLICATION

In this section, we apply formula (10) to forecast future values for a time series of monthly river flows. Then we apply Theorem 1
and Corollary 1 to get Gaussian 95% confidence bounds for these forecasts. All computations were carried out using the R
programming language (R Development Core Team, 2008). Codes are available from the authors upon request. We consider
monthly average flow for the Fraser River at Hope, British Columbia between October 1912 and September 1984, see Tesfaye et al.
(2006) for more details. A partial series, consisting of the first 15 years of observations (Figure 1), clearly indicates the seasonal
variations in monthly average flow. The entire series contains n ¼ NS observations, covering N ¼ 72 years. The seasonal sample
mean

l̂i ¼ N�1
XN�1

k¼0

~XkSþi; ð21Þ

sample standard deviation
ffiffiffiffiffiffiffiffiffiffi
ĉið0Þ

p
computed using the sample autocovariance

ĉið‘Þ ¼ N�1
XN�1�hi

j¼0

~XjSþi � l̂i

� �
~XjSþiþ‘ � l̂iþ‘
� �

ð22Þ

with ‘ � 0, hi ¼ b(i + ‘)/Sc, and sample autocorrelation

q̂ið‘Þ ¼
ĉið‘Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĉið0Þĉiþ‘ð0Þ
p ð23Þ

P. L. ANDERSON, M. A. MEERSCHAERT AND K. ZHANG

wileyonlinelibrary.com/journal/jtsa � 2012 Wiley Publishing Ltd. J. Time Ser. Anal. 2013, 34 187–193

1
9

0



Month/Year

F
lo

w
 (

cm
s)

10/1912 10/1915 10/1918 10/1921 10/1924 9/1927

0
50

,0
00

15
0,

00
0

25
0,

00
0

35
0,

00
0

Figure 1. Part of average monthly flows in cubic metres per second (cms) for the Fraser River at Hope, BC indicate a seasonal pattern
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Figure 2. Statistics for the Fraser river time series: (a) seasonal mean; (b) standard deviation; (c,d) autocorrelations at lags 1 and 2.
Dotted lines are 95% confidence intervals. Season ¼ 0 corresponds to October and Season ¼ 11 corresponds to September
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are plotted in Figure 2, with 95% confidence intervals obtained using the asymptotic theory in Anderson and Meerschaert (1997).
Since the mean, standard deviation and correlation functions vary significantly with the season, subtracting the sample mean will not
yield a stationary series, so a PARMAS(p, q) model with S ¼ 12 seasons is appropriate.

To validate our forecast methods, we computed a 24-month forecast using the first 70 years of data, and then comparedit with the
remaining data. A PARMA12(1,1) model Xt � /t Xt�1 ¼ et þ htet�1 was found adequate to capture the seasonal covariance structure
in the mean-centred series Xt ¼ ~Xt � lt . Using the first 70 years of data, we ran 20 iterations of the innovations algorithm for
periodically stationary processes (Anderson et al., 1999, Proposition 2.2.1) on the sample covariance (22) to obtain estimates of the
infinite order moving average coefficients ŵiðjÞ, then used the model equations

/̂tð1Þ ¼ ŵtð2Þ=ŵt�1ð1Þ and ĥtð1Þ ¼ ŵtð1Þ � /̂tð1Þ ð24Þ

to get estimates of the PARMA12(1,1) model parameters. Table 1 lists the resulting model parameters. Model adequacy was validated
by visual inspection of the sample autocorrelation and partial autocorrelation plots, similar to Tesfaye et al. (2006), where the full
time series (72 years of data) was modeled. Then we computed the transformed process (4) using these model parameters,
computed the sample autocovariance of that process, and applied the innovations algorithm (7) again to get the projection
coefficients hn, j. Next we used (8) to compute the one-step-ahead predictors X̂n for n ¼ 1,2, . . . ,864 ¼ 72 · 12. Finally we applied
(10) to get the forecasts, and used the asymptotic formula (14) to compute 95% prediction bounds, based on the assumption of
Gaussian innovations. The resulting prediction, along with the 95% prediction bands, are shown in Figure . The actual data (solid line)
is also shown for comparison. Note that the forecast (solid line with dots) is in reasonable agreement with the actual data (which
were not used in the forecast), and that the actual data lies well within the 95% prediction bands. Since the seasonal standard
deviation varies significantly, the width of the prediction intervals also varies with the season (Figure 4).

Table 1. Parameter estimates for the PARMA12(1,1) model of average monthly flow for the Fraser River near Hope BC from October 1912 to
September 1982 (first 70 years of data)

Season Month /̂ ĥ r̂

0 OCT 0.187 0.704 11761.042
1 NOV 0.592 0.050 11468.539
2 DEC 0.575 �0.038 7104.342
3 JAN 0.519 �0.041 5879.327
4 FEB 0.337 0.469 4170.111
5 MAR 0.931 �0.388 4469.202
6 APR 1.286 �0.088 15414.905
7 MAY 1.059 �0.592 30017.508
8 JUN �2.245 2.661 32955.491
9 JUL �1.105 0.730 30069.997
10 AUG 0.679 �0.236 15511.989
11 SEP 0.353 0.326 12111.919

Month/Year

F
lo

w
 (

cm
s)

 

10/1982 2/1983 6/1983 10/1983 2/1984 6/1984

0
50

,0
00

15
0,

00
0

25
0,

00
0

35
0,

00
0

Figure 3. Twentyfour-month forecast (solid line with dots) based on 70 years of Fraser river data, with 95% prediction bounds
(dotted lines). For comparison, the actual data (solid line) is also shown. The data were not used in the forecast
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REMARK 3. It can be advantageous to consider reduced PARMA models, in which statistically insignificant parameter values are
zeroed out to obtain a more parsimonious model (McLeod, 1993; Lund et al. 2005). One can also employ discrete Fourier transforms
of the periodically varying parameters (Anderson et sl. 2007; Tesfaye et al. 2011), and then zero out the statistically insignificant
frequencies. It would be interesting to extend the results of this study to such models.

5. CONCLUSION

Periodic ARMA models are indicated for time series whose mean, variance and correlation structure vary significantly with the season.
This study has developed and implemented a practical methodology for forecasting periodic ARMA models, with Gaussian prediction
intervals to provide error bounds. The procedure was demonstrated using R codes that are freely available from the authors.

Acknowledgements

This research was partially supported by NSF grants DMS-1025486, DMS-0803360, EAR-0823965 and NIH grant R01-EB012079-01.

REFERENCES

Anderson, P. L. and Meerschaert, M. M. (1997) Periodic moving averages of random variables with regularly varying tails. Annals of Statistics 25, 771–85.
Anderson, P. L. and Meerschaert, M. M. (1998) Modelling river flows with heavy tails. Water Resources Research 34(9), 2271–80.
Anderson, P. L., Meerschaert, M. M. and Vecchia, A. V. (1999) Innovations algorithm for periodically stationary time series. Stochastic Processes and their

Applications 83, 149–69.
Anderson, P. L., Meerschaert, M. M. and Tesfaye, Y. G. (2007) Fourier-PARMA models and their application to modelling of river flows. Journal of

Hydrologic Engineering 12(5), 462–72.
Ansley, C.F. (1979), An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66(1), 59–65.
Bowers, M. C. Tung, W. W. and Gao, J. B. (2012) On the distributions of seasonal river flows: lognormal or power law?. Water Resources Research 48,

W05536.
Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, 2nd edn. New York: Springer-Verlag.
Franses, P. H. and Paap, R. (2004) Periodic Time Series Models. Oxford: Oxford University Press.
Gladyshev, E. G. (1961) Periodically correlated random sequences. Soviet Mathematics 2, 385–88.
Jones, R. H. and Brelsford, W. M. (1967) Times series with periodic structure. Biometrika 54, 403–8.
Hipel, K. W. and McLeod, A. I. (1994) Time Series Modelling of Water Resources and Environmental Systems. Amsterdam: Elsevier.
Lund, R. B. and Basawa, I. V. (2000) Recursive prediction and likelihood evaluation for periodic ARMA models. Journal of Time Series Analysis 20(1),

75–93.
Lund, R. B., Shao, Q. and Basawa, I. V. (2005) Parsimonious periodic time series modelling. Australian & New Zealand Journal of Statistics 48, 33–47.
McLeod, A. I. (1993) Parsimony, model adequacy, and periodic autocorrelation in time series forecasting. International Statistical Review 61, 387–93.
McLeod, A. I. (1994) Diagnostic checking periodic autoregression models with applications. Journal of Time Series Analysis 15, 221–33.
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

ISBN 3-900051-07-0, http://www.R-project.org.
Salas, J. D. and B Obeysekera, J. T. (1992) Conceptual basis of seasonal streamflow time series models. Journal of Hydraulic Engineering 118(8), 1186–94.
Tesfaye, Y. G., Meerschaert, M. M. and Anderson, P. L. (2006) Identification of PARMA models and their application to the modeling of river flows. Water

Resources Research 42(1), W01419.
Tesfaye, Y. G., Anderson, P. L. and Meerschaert, M. M. (2011) Asymptotic results for Fourier-PARMA time series. Journal of Time Series Analysis 32(2),

157–74.
Thompstone, R. M., Hipel, K. W. and McLeod, A. I. (1985) Forecasting quarter-monthly riverflow. Water Resources Bulletin 25(5), 731–741.

Figure 4. Width of 95% prediction bounds for the Fraser river

FORECASTING WITH PREDICTION INTERVALS FOR PARMA MODELS

J. Time Ser. Anal. 2013, 34 187–193 � 2012 Wiley Publishing Ltd. wileyonlinelibrary.com/journal/jtsa

1
9

3


