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Abstract

Background

Over 400,000 people across the Americas are thought to have been infected with Zika virus

as a consequence of the 2015–2016 Latin American outbreak. Official government-led case

count data in Latin America are typically delayed by several weeks, making it difficult to

track the disease in a timely manner. Thus, timely disease tracking systems are needed to

design and assess interventions to mitigate disease transmission.

Methodology/Principal Findings

We combined information from Zika-related Google searches, Twitter microblogs, and the

HealthMap digital surveillance system with historical Zika suspected case counts to track

and predict estimates of suspected weekly Zika cases during the 2015–2016 Latin American

outbreak, up to three weeks ahead of the publication of official case data. We evaluated the

predictive power of these data and used a dynamic multivariable approach to retrospectively

produce predictions of weekly suspected cases for five countries: Colombia, El Salvador,

Honduras, Venezuela, and Martinique. Models that combined Google (and Twitter data

where available) with autoregressive information showed the best out-of-sample predictive

accuracy for 1-week ahead predictions, whereas models that used only Google and Twitter

typically performed best for 2- and 3-week ahead predictions.

Significance

Given the significant delay in the release of official government-reported Zika case counts,

we show that these Internet-based data streams can be used as timely and complementary

ways to assess the dynamics of the outbreak.
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Author Summary

In the absence of access to real-time government-reported Zika case counts, we demon-

strate the ability of Internet-based data sources to track the outbreak. Our model predic-

tions fill a critical time-gap in existing Zika surveillance, given that early interventions and

real-time surveillance are necessary to curb mosquito transmission. Official Zika case

reports will likely continue to be delayed in their release; thus, it is important that health

and government officials have access to real-time and future estimates of Zika activity in

order to allocate resources according to potential changes in outbreak dynamics. The

methodologies presented here may be expanded to any country–and perhaps finer spatial

resolutions–to identify changes in Zika transmission for public health decision-makers.

Introduction

The rapid spread of Zika virus has led to more than 400,000 suspected cases across the Ameri-

cas since its introduction to Brazil in 2014, and has triggered alerts around the globe[1]. This

event has led to diverse interventions and travel warnings to affected areas, underscoring the

importance of proactive disease surveillance. While cases of sexual transmission of Zika virus

have been documented[2], the virus is primarily transmitted through the bite of the Aedes

aegyptimosquito and causes nonspecific flu-like symptoms and skin rashes[3,4]. Of particular

concern is the possible link between Zika virus and neurological disorders such as microceph-

aly, a birth defect in which babies of infected pregnant women are born with abnormally small

heads[5–8]. Over 1800 cases of Zika-related microcephaly and central nervous system disor-

ders in newborns have been reported since the beginning of the epidemic, and the virus has

spread to 70 countries globally[9]. In February 2016, the World Health Organization declared

Zika a global public health emergency[10]. With no existing vaccinations or treatment for Zika

infections, control of the Aedes aegyptimosquito is critical to curb the spread of the virus, as

has been observed in dengue fever studies[11,12]. This requires continuous and up-to-date

surveillance of cases to drive vector control interventions accordingly[13].

In countries with now autochthonous transmission, the surveillance of Zika infections is

predominantly passive; cases are identified on the basis of hospitalizations and clinical symp-

tom reports. The Pan American Health Organization (PAHO) currently streamlines reports

from ministries of health, and reports weekly confirmed and suspected cases of Zika by coun-

try[14]. The release of these reports and those produced by the ministries, however, is typically

delayed by three or more weeks due to systematic processing and data collection. As a conse-

quence, the changing dynamics of Zika are frequently hard to be assessed in a timely manner,

and thus, the availability of current data on Zika to the public and public health officials is

limited.

In the past decade, the near real-time availability of novel and disparate internet-based data

sources has motivated the development of complementary methodologies to track the inci-

dence and spread of diseases. These approaches exploit near real-time information from inter-

net search engines[15–18], news reports[19–21], clinician’s search engines[22], crowd-sourced

participatory disease surveillance systems[23–25], Twitter microblogs[26–29], Electronic

Health Records[30], and satellite images[31] to estimate the presence of a disease in a given

location.

Some of the biases and errors observed when using these alternative data sources as individ-

ual indicators of disease incidence have been recently mitigated by using ensemble approaches
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that combine information from multiple data sources to produce a more robust disease esti-

mate[32]. In parallel, multiple improvements have been proposed to disease tracking method-

ologies based on Google searches[33–38]. Finally, it has been shown that in the absence of

information from traditional government-lead disease reporting, the combined use of news

reports and Google’s search activity of the word “zika” in Colombia led to reasonable estimates

of cumulative cases of Zika[20]. To the best of our knowledge, however, no attempts have been

made to date to harness these and other digital data sources for near-real time weekly forecast-

ing of Zika infections.

Here we assess the feasibility of using Zika-related Google search queries, Zika-related

Twitter microblogs, and information from news reports collected by the web-based surveil-

lance system HealthMap[16], in the prospective monitoring of Zika in five countries: Colom-

bia, El Salvador, Honduras, Venezuela, and Martinique. In addition, we evaluate the ability of

a collection of multivariable models that use information from these three data sources as

input, to dynamically track and forecast the incidence of Zika virus up to 3 weeks ahead of the

release of reports from PAHO, using multiple evaluation metrics.

Methods

Epidemiological data

We obtained weekly reports from the Pan American Health Organization (PAHO) that docu-

ment the number of laboratory-confirmed and suspected cases of Zika in the Americas from

the website (http://ais.paho.org/phip/viz/ed_zika_epicurve.asp) and from weekly epidemiolog-

ical updates[39]. In the absence of this information, we obtained suspected and lab-confirmed

Zika cases from epidemiological bulletins produced by the national Ministries of Health

(MOH) of Colombia and Martinique[40,41]. Throughout the manuscript, we refer to these

data as “official case count”. Due to the lack of robust diagnostic capabilities across the Ameri-

cas and the estimated large number of asymptomatic cases[4,42], the present study focuses on

predicting suspected Zika cases, which can be used as a proxy for potential hospital visits in

each locality. This information could be useful for public health decision-makers when design-

ing resource allocation plans. Under PAHO criteria, cases were classified as suspected if the

patient presented a rash and two or more of the following symptoms: fever, conjunctivitis,

arthralgia, myalgia, and peri-articular edema[43]. The time series of suspected cases spans the

entire epidemic period of each country, beginning with the earliest reported cases through the

last available epidemiologic week in the data (last accessed August 3, 2016). Data profiles for

each country can be seen in Table 1.

Google search queries

The selection process of potentially useful search terms to track Zika avoided forward-looking

bias and was performed via the Google Correlate and Google Trends tools (https://www.

google.com/trends/correlate/;https://www.google.com/trends/). We identified the most highly

correlated terms with the time evolution of Zika incidence in Colombia and Venezuela on

Google Correlate within the time period of May 2015 to Jan 2016, and used Google Trends to

identify search terms related to the term “Zika” for all five countries. The time window for the

selection of these terms did not exceed the training period of each model. Because the output

of Google Trends and Google Correlate consists of country-specific search terms, these are dif-

ferent for each country. All highly correlated terms to the query “Zika” were selected as model

inputs without discrimination, including some potential misspellings of the disease such as

“sika” and “sica”. We obtained weekly fractions of all identified Google search terms using the
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Google Trends website. The selected search terms were used as independent variables in the

models and are shown in S1 Table.

Twitter microblogs

We leveraged a custom script to access the free Twitter Public API to collect the maximum

allowed number of tweets (up to 1% total Twitter volume) with any geographical coordinates.

We then searched these tweets by country, using Twitter’s assigned country code and restrict-

ing to tweets in which this parameter was present, for the weekly volume of Twitter micro-

blogs containing any of the words “Zika”, “microcephaly”, and “microcefalia”, but only

Colombia and Venezuela had relevant Zika-related tweets, within the weeks of the epidemic

outbreak, to merit the inclusion of Twitter data in our models. The fraction of tweets contain-

ing the Zika-related words when compared to the total number of tweets for each country was

computed for every week and used as an independent variable in the models.

HealthMap digital Zika surveillance

We obtained cumulative reported case counts of Zika virus disease in all countries via the

HealthMap digital disease surveillance system (www.healthmap.org), which reports non-

governmental media alerts of infections[16]. From these alerts, we calculated the weekly inci-

dence of Zika infection for use as an independent variable in the models.

Relationship between cases and Internet-based data

In order to assess whether the selected Google search terms, Twitter microblogs, and Health-

Map-reported cases could be useful for weekly prediction of Zika incidence, we computed the

Pearson’s correlation between each predictor and the official Zika case count, first for the

training period of each country and later for the entire time series. In addition, we evaluated

the autocorrelation of the signal itself (as lag-1, lag-2, and lag-3 terms). To determine the opti-

mal linear relationship between the predictors and cases, we applied a series of simple transfor-

mations to these data and selected the transformation which produced the highest Pearson’s

correlation. The results of this preliminary analysis was used for variable selection and to

inform the dynamic transformation of variables process within the model, detailed below.

Models

A collection of multivariable models, inspired by those introduced in the Flu prediction litera-

ture[30,37], were considered to estimate and forecast weekly suspected cases of Zika in the

aforementioned five countries. These models used as input the weekly Google search frequen-

cies of Zika-related terms, the fraction of Zika-related Twitter microblogs, cumulative Zika

case counts as recorded by the HealthMap disease surveillance system, and the available

Table 1. Data profile for countries.

Colombia Venezuela Martinique Honduras El Salvador

Cumulative cases 92891 51043 33925 22705 11779

Number of search terms 26 15 8 11 12

Weeks of data 46 38 30 26 37

Week of first cases 8/9/15 10/11/15 12/27/15 12/13/15 9/20/15

Week of last accessible cases 7/10/16 6/26/16 7/17/16 5/29/16 5/29/15

Number of training weeks (G+T, AR / AGO+T / ARGO+TH) 20, 17 15, 12 12, 9 12, 9 17, 14

doi:10.1371/journal.pntd.0005295.t001
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historical official case count data at a given point in time. For consistency and comparability,

all models (i) automatically select the most relevant search terms for prediction, (ii) incorpo-

rate new information on Zika cases as reports are released every week, and (iii) identify the

best functional relationship between each input variable and the outcome variable, every week.

The selection of the most predictive input variables was performed using a penalized

LASSO regression approach as described in[44]. While avoiding the use forward-looking

information, we incorporated the most recently available information on Zika cases every

week by dynamically expanding the time window of the training set of the models. Finally, at

each week, we analyzed whether transforming each input variable would increase its correla-

tion with the output variable. If this were the case, then the transformed value of the input vari-

able producing the highest correlation with case data would be used as input for the model. As

more epidemiological information becomes available, this dynamic transformation process

allows the model to recursively recalibrate and incorporate changes in the relationships

between the input variables and the case count information observed so far. The transforma-

tions we considered were not exhaustive and included the log(x), x2, and sqrt(x).

In addition to the models that used the aforementioned data streams as input, we built a

collection of baseline models for comparison and context. We considered models that only

used historical observation of Zika cases to predict cases on the subsequent weeks and models

that incorporated information from these various data streams. Given the success of Google

search terms in tracking other diseases as observed in [27,28], our models utilized Google

search as a central predictor, and we explored the additions of Twitter and HealthMap data for

the improvement of model predictions. Specifically, we considered (i) AR: a baseline lag-3

autoregressive model that used only Zika surveillance information from the prior 3 weeks to

predict suspected cases, (ii) G+T: a model which used only Google search and Twitter (if avail-

able) data for prediction as introduced in[33] (iii) ARGO+T: a model which used autoregres-

sive information and Google and Twitter (if available) data, adapted from[37], and (iv) ARGO

+TH: a model which combined all data streams (Twitter if available, Google, HealthMap) with

lag-3 autoregressive terms. For the two countries (Colombia and Venezuela) which had avail-

able Twitter data, we also constructed identical models (ii—iv) without this data source; that

is, using Google and HealthMap data only. Our models are described by the following equa-

tion

ŷ t ¼ at þ

XN

i¼1

giyðt�iÞ þ

XK

j¼1

bjXj;t þ tTt þ ZHt þ εt εt~Nð0; s2Þ

where we expand an autoregressive model of lag N with the inclusion of the fraction of Google

search frequency X for each term j, the fraction of Twitter volume T, and HealthMap-reported

cases H. As described in[37], autoregressive terms generally help maintain predictions within

a reasonable range, while Google and Twitter information help the models to respond more

rapidly to sudden changes in the dynamics. Due to the novelty of the Zika outbreak, stationar-

ity was not used as a way to assess the appropriateness of using autoregressive models as a

baseline; instead, we relied on the observed high autocorrelation of the signal with recent time

lags of case counts and evidence of similar mosquito-borne outbreaks modeling approaches

[45,46].

At each week, we used our models to generate predictions for 1, 2, and 3 weeks ahead of

current time. To avoid future-looking bias in our predictions, forecasts were made using only

the information available to each model at each week t; and for each time horizon our case

count estimate was obtained using a different model. For instance, all models with autoregres-

sive terms are restricted, in further week-ahead predictions, from accessing weeks of case data
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that have not yet occurred relative to week t. Thus, 3-week ahead (t+3) forecasts for model (i)

were generated using only the lag-3 term (AR3) of official cases from 3 weeks prior to t+3: that

is, using the observed cases available exactly at week t. 1-week ahead (t+1) forecasts for model

(i), meanwhile, utilized all three AR1, AR2, and AR3 terms, which contain information on

reported cases from the strictly observable weeks t, t-1, and t-2. In other words, data that

would be unavailable in real-time for predictions—in our case, data on future infections—are

excluded from each model. This same rule applies to models (iii) and (iv), which also include

autoregressive information. Reflecting the delay in the release of case reporting, the models do

access future weeks (relative to week t of case reporting) of Google searches, Twitter micro-

blogs, and HealthMap-reported cases, since these digital streams are available closer to real-

time than are official case data.

All models were trained through the same week in the time series and evaluated over the

same time window, although the number of training weeks differed based on the information

required in each model. Models containing autoregressive information began training 4 weeks

into each epidemic, as opposed to training from the first week of reported cases, in order to

necessarily inform the one-, two-, and three-week lag terms. A summary of dates and data

used by country is shown in Table 1.

Models were fit as multiple generalized linear models with the glmnet package[47] in R

v3.2.4[48], validated using k-fold cross validation, and evaluated for their out-of-sample pre-

dictive performance. For each model, we report three evaluation metrics: root mean square

error (RMSE), the relative RMSE (rRMSE), and the Pearson correlation of predictions with

observed cases, as detailed in[32]. Equations for each metric can be found in S1 Equations.

Results

In order to evaluate the feasibility of using Zika-related Google searches, Twitter microblogs,

HealthMap news reports, and historical official case counts to track Zika, we calculated the

Pearson correlation between (a) the observed suspected case counts and each input variable,

and (b) the observed suspected case counts and three transformations: log(x), x2, and sqrt(x),

for each input variable. These transformations were observed to sometimes lead to better cor-

relation values than the original raw variables for different time periods. S1 Fig displays in

each country the best transformation of each input variable and suspected Zika case counts.

From the multiple panels for each country, it can be seen that at least a subset of these (trans-

formed) variables showed potential to be useful to track Zika. Indeed, correlations ranged

from 0.93 to 0.56 in Colombia; 0.90 to 0.18 in Honduras; 0.39 to 0.29 in Venezuela; 0.69 to

0.13 in Martinique; and 0.92 to 0.41 in El Salvador. The lowest-correlation predictors tended

to be the lag-3 autoregressive term, HealthMap-reported cases, and non-specific Google search

terms like “Virus.”

For each country, we produced out-of-sample predictions for the one, two, and three-week

ahead time-horizons with the four models introduced in the previous section. We evaluated

models according to the maximum number of data sources available, and thus assessed all

models with Twitter data, where available (Colombia and Venezuela). In addition, we evalu-

ated models with and without the inclusion of Twitter data. Plots comparing model predic-

tions with the official Zika case count, by time horizon and country, are shown in Figs 1–3.

Table 2 summarizes the out-of-sample predictive performance of the four models for each of

the three week-ahead time horizons and for all countries, as captured by the three evaluation

metrics. Note that while some model predictions showed high correlation values with official

case counts, their predictions showed large discrepancies with the data. As a consequence, we

relied on the relative RMSE (rRMSE) to establish the quality of model prediction given the

Zika Forecasting Using Digital Data Sources
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short time span of the outbreaks. The rRMSE provides an estimate of the prediction error rela-

tive to the number of true cases observed in each week over the evaluation period, and, from

our perspective, allows for better comparisons across models and time horizons. We hence-

forth judge model performance using this metric.

As seen in the evaluation metric values, no single model performed best across metrics,

time horizons, and countries. Based on the rRMSE, models that combined Google (and Twit-

ter data where available) with autoregressive information showed better predictive accuracy

for 1-week ahead predictions. Meanwhile, models that only used Google (and Twitter where

available) typically performed best for two and three-week ahead predictions.

The ARGO+T or ARGO+THmodels outperformed all other models in 1-week forecasts

for all countries with the exception of Venezuela and Martinique. In Venezuela and Marti-

nique, the ARGO+Tmodel (rRMSE = 38.8 and 43.0, respectively) slightly underperformed rel-

ative to the G+T model (rRMSE = 35.3 and 40.1, respectively), with a difference in rRMSE of

about 3 percent points. In Colombia and El Salvador, the difference in rRMSE was less than

2% between the ARGO+TH and the ARGO+T models, with both models improving the

rRMSE substantially compared to the G+T model.

Fig 1. Prediction results for (a) Colombia and (b) Honduras. In each country, the weekly estimations of AR (dotted blue), G+T (green), ARGO+T
(orange), and ARGO+TH (red) models are compared to the official case counts (black). Models include Twitter data where available (Colombia). The best
model performance (lowest relative RMSE) in each time series by country is shown as a bolded line.

doi:10.1371/journal.pntd.0005295.g001
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In further week-ahead predictions, the Google and Twitter only (G+T) model outper-

formed models that also incorporated autoregressive information, exhibiting the lowest

rRMSE in 3 of 5 countries for 2-week forecasts, and in 4 of 5 countries for 3-week forecasts.

Across models, prediction accuracy decreased as predictions were made further into the

future, resulting in increases in rRMSE (and RMSE) and declines in model correlations across

time horizons. Of all countries studied, Colombia had the best model performance in each

week-ahead horizon for every model, with the exception of 3-week G+T forecasts; of all time

horizons, the 1-week ahead predictions performed best in each country and model. In most

cases, the autoregressive model over-predicted Zika incidence and underperformed all other

models.

S2 Table shows the performance of additional versions of these models (i.e., the ARGO+T

model with and without Twitter data). It can be seen that the inclusion of Twitter microblog

data into our models improved or was comparable to (within 0.2 rRMSE) the performance of

all models lacking Twitter data in Colombia (range of rRMSE reduction: -0.13, 1.6), and of the

ARGO+T and ARGO+THmodels in Venezuela (range of rRMSE reduction: 8.14, 125.1), for

all time horizons. Conversely, incorporating HealthMap digital cases improved the rRMSE by

no more than 3.8 points, or 7% (range: 0.06%, 6.8%) across models, time horizons, and

Fig 2. Prediction results for (a) Venezuela and (b) Martinique. In each country, the weekly estimations of AR (dotted blue), G+T (green), ARGO+T
(orange), and ARGO+TH (red) models are compared to the official case counts (black). Models include Twitter data where available (Venezuela). The
best model performance (lowest relative RMSE) in each time series by country is shown as a bolded line.

doi:10.1371/journal.pntd.0005295.g002
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countries, but worsened the rRMSE by up to 25.1 points, or 60% (range: 1.4%, 59.8%). The rel-

ative predictive power of each variable, as given by their standardized model coefficients, at

each week in the out-of-sample predictions, is displayed in a collection of heatmaps in S2 Fig.

Discussion

We have shown that Internet-based data sources can be used to track and forecast estimates of

suspected weekly Zika cases, weeks ahead of the publication of official case counts. Models that

rely exclusively on Google searches have among the lowest error (rRMSE) of all models, indi-

cating that Google search terms alone have the potential to track Zika cases. The heatmaps

shown in S2 Fig confirm that Google search terms have significant predictive power in most

countries and time horizons.

In Colombia and Venezuela, where robust Twitter data were available, we found that Twit-

ter improved predictions compared to models that lacked the data source. Meanwhile, though

HealthMap news reports have been found to be good estimators of Zika cumulative incidence

[20], the effect of incorporating HealthMap news reports into our models was marginal across

countries and generally did not reduce prediction error in any of the weeks-ahead forecasts;

where it did reduce prediction error, in El Salvador, it did by less than 2% compared to the

next-best model lacking HealthMap data. We noted early evidence of HealthMap’s weak pre-

dictive power in its low correlation with official case counts, as shown in S1 Fig. Likewise, the

heatmaps of S2 Fig reveal that news reports data generally had low influence in models after

the first several weeks of out-of-sample predictions. We noted, however, in a post-hoc analysis,

that news of Zika infections were 2–3 weeks delayed with respect to the time when cases had

occurred. This fact suggests that in the absence of official case count reports, one may use (a

potentially lagged version) of news reports to track Zika activity as found previously by[20]. In

the future, we would expect to improve model predictions by incorporating HealthMap data

lagged back in time by 2–3 weeks.

As seen in flu forecasting studies[32], the quality of predictions decreased as the time hori-

zon of prediction increased. Specifically, for one-week predictions, we found that the model

that uses Google (and Twitter where available) combined with autoregressive terms (the

ARGO+T model) performs best in most countries, and its performance is better than or

Fig 3. Prediction results for El Salvador. The weekly estimations of AR (dotted blue), G+T (green), ARGO+T (orange), and ARGO+TH (red) models are
compared to the official case counts (black). The best model performance (lowest relative RMSE) in each time series is shown as a bolded line.

doi:10.1371/journal.pntd.0005295.g003
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comparable to the equivalent model that lacks autoregressive information. Thus, the use of his-

torical case information (autoregressive terms) improves predictions in the near future, a find-

ing that has been documented in prior studies[26,30,37]. However, for 2–3 week-ahead

predictions, models that use exclusively data from Google and Twitter (G+T), without autore-

gressive terms, perform best. This is likely because the 2–3 week old official case information is

no longer crucial to refine the accuracy of predictions, and changes in Google search and Twit-

ter activity better respond to fluctuations in Zika dynamics. Consequently, relying on historical

case data becomes less useful in making predictions further into the future. This is also

observed in the low relevance of lag terms in the 2- and 3-week heatmaps of all models (S2

Fig). Additionally, as automatically identified by our term selection methodology (LASSO),

the predictive power of Google search terms is stronger in 1 week-ahead predictions than in 2

Table 2. RMSE, rRMSE, and Pearson’s correlation coefficient (ρ) for 1-, 2-, and 3-week ahead out-of-sample predictions. Models include Twitter data
where available (Colombia and Venezuela). The best fit metric for each week-ahead prediction is show in bold.

Colombia

Model 1 week 2 week 3 week

RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ
AR 801.313 40.462 0.821 1484.018 66.829 0.539 2057.483 83.900 0.284

G+T 823.149 34.450 0.764 857.490 37.300 0.752 995.311 41.903 0.634

ARGO+T 621.673 30.076 0.870 775.786 39.583 0.780 914.643 44.233 0.679

ARGO+TH 617.795 29.888 0.871 848.968 40.153 0.731 903.155 42.440 0.698

Venezuela

1 week 2 week 3 week

RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ
AR 1665.733 68.542 0.822 4196.484 117.444 0.834 10349.050 259.699 0.665

G+T 972.937 35.336 0.626 1277.588 39.813 0.283 1226.614 39.953 0.475

ARGO+T 892.063 38.780 0.831 927.343 41.946 0.701 1372.884 48.249 0.486

ARGO+TH 1036.760 46.497 0.771 1148.229 67.028 0.626 1459.830 75.513 0.528

Martinique

1 week 2 week 3 week

RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ
AR 397.204 59.298 0.678 460.931 73.935 0.617 477.638 78.409 0.744

G+T 302.038 40.123 0.721 376.475 47.758 0.586 450.635 53.835 0.384

ARGO+T 336.375 42.998 0.800 425.005 61.420 0.701 510.691 73.822 0.492

ARGO+TH 342.577 44.923 0.799 424.417 61.382 0.710 506.310 73.423 0.482

Honduras

1 week 2 week 3 week

RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ
AR 262.701 167.009 0.546 538.930 330.114 -0.068 886.701 555.937 -0.903

G+T 213.788 53.909 0.675 222.045 51.993 0.740 292.718 64.733 0.355

ARGO+T 144.327 30.436 0.784 222.278 55.670 0.736 323.089 158.377 0.243

ARGO+TH 132.675 41.605 0.853 203.616 51.874 0.584 335.778 163.436 0.085

El Salvador

1 week 2 week 3 week

RMSE rRMSE ρ RMSE rRMSE ρ RMSE rRMSE ρ
AR 159.185 126.486 0.961 261.119 234.615 0.929 379.797 350.656 0.888

G+T 120.979 166.901 0.881 124.338 152.882 0.911 180.282 187.945 0.855

ARGO+T 122.995 112.516 0.960 151.654 103.649 0.976 170.130 115.720 0.923

ARGO+TH 100.318 110.603 0.957 149.407 103.143 0.975 166.552 113.459 0.920

doi:10.1371/journal.pntd.0005295.t002
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and 3 week-ahead predictions. This can be observed in the heatmaps shown in S2 Fig. This

finding confirms the appropriateness of using a real-time hidden Markov process as a model-

ing framework, as discussed in [37]. From this perspective, people affected by Zika will search

for Zika-related terms when affected by the virus or when they may suspect risk of exposure to

it. This population search behavior suggests that monitoring search activity may help track dis-

ease incidence. The decreased relevance of search activity in 2 and 3 week-ahead predictions

may suggest that autoregressive case count information may have a stronger role in future

occurrences.

Our models improve upon prior methodologies[32,33,38] that use internet-based data

sources to track flu by adding an internal dynamic variable transformation process to reassess

the relationship of all input variables with the official Zika case count each week. Indeed, the

heatmaps of variable coefficients show that model forecasts depended on an ensemble of terms

whose predictive power changed magnitude and direction week by week. Given that Google

queries were selected on the basis of their relationship to case data or to the term “Zika” exclu-

sively in the training period, it is likely that these relationships change and perhaps even

weaken in later weeks. We thus emphasize the importance the need for dynamic transforma-

tion of the input variables to recursively reassess these relationships and readjust predictors to

their best linear fit with the data.

Some of the limitations of our approach include, for example, the inherent population

biases of Internet search engines and Twitter microblog users. Internet searches patterns may

also reflect media coverage and situational awareness that may not coincide with the dynamics

of the disease being tracked. Also, different countries and locations frequently have distinct

news reporting practices. Local media in regions with endemic mosquito-borne diseases may

react differently to outbreaks than regions where these diseases are less frequent. Media atten-

tion thus has the potential to dramatically influence our weekly predictions. The dynamic reas-

sessment of the predictive power of each input variable, via LASSO and the dynamic

transformation approach discussed earlier, is built in our model to mitigate these events.

Terms that may peak during a week of high media attention can be thrown out of the influence

of the model for the subsequent week of prediction if their relationship with case count infor-

mation has weakened. Only the terms with high predictive power are selected by the LASSO.

In this way, our models are self-correcting. Nonetheless, we note that since our predictions

rely largely on user search and media activity, our work is meaningful only in time periods

when the population is aware of the disease; to this point, it has been demonstrated that Zika

virus was introduced to Brazil and the Americas at least one year before the epidemic was rec-

ognized by health ministries and the public at large[49].

Another important consideration is the time lag between peaks in Zika virus incidence and

microcephaly, of up to 5 months[50,51]. Our models capture search activity surrounding the

Zika epidemic, and thus end up using search terms like “microcephaly” as input. These terms

may be related to broader awareness of Zika activity. Given the estimated lag, however, evalu-

ating microcephaly-related queries synchronously with cases has the potential to introduce a

bias in the model. Further work must explore the effect of lagging these terms compared to our

synchronous use of them.

As mentioned in the Methods section, Twitter data was not sufficient for use in the models

for all countries. To improve upon this, future work could explore keyword queries that incor-

porate symptoms of Zika infection. In addition, to increase the total volume of tweets we plan

to collect historical data based on these new query strings and explore ways to geocode the

data ourselves, instead of relying on the current Twitter-generated subset of tweets with coor-

dinate information.
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Another challenge lies in the prediction of very low case numbers. In several weeks of the

countries studied, official case counts of Zika fell below 50 suspected cases per week; this is

very low relative to the thousands of cases experienced per week at the height of the epidemics.

We observe that the quality of predictions decreases during time periods with low case num-

bers, and the model tends to under-predict cases. Our prediction approaches worked best in

locations with highest Zika incidence, independently of Internet penetration. This tendency

was also observed in the assessment of the Google Dengue Trends system in[38][45].

Limitations on the use of official suspected case counts from PAHO as our prediction goal

include under-reporting. Indeed, Zika has been observed to be asymptomatic in at least 80% of

infected persons[42]. As a consequence, our models likely underestimate the true number of

Zika infections that exist, while reasonably estimating the actual number of suspected cases

that seek medical attention. Unfortunately, no surveillance system has yet reported estimates

of asymptomatic Zika infections, and it is unclear whether asymptomatic infections can result

in the same consequences of birth and neurological defects as do symptomatic infections.

The predictions of our model should be compared to those of SIR-type models and epide-

miologic models that evaluate Zika incidence in the context of important, known drivers of

Zika, such as climate and ecological factors. In this paper, we explore whether digital data

streams are viable estimators of Zika cases. In future inquiry, we believe that these methods

could be incorporated into, and enhance, traditional epidemiologic methods to track the virus.

Given the need of early interventions to curb mosquito-borne disease transmission, our

model predictions fill a critical time-gap in existing Zika surveillance since official case count

reports will, most likely, continue being published multiple weeks after the occurrence of Zika

cases. Moreover, access to real-time and likely future estimates of Zika activity provide an

opportunity for health and government officials to allocate resources differently when poten-

tial changes in Zika dynamics are likely to occur, even ahead of official case documentation.

The models presented here show promise to be expanded to any country at any time to track

Zika cases and signal changes in transmission for public health decision-makers. Our models

currently predict Zika activity at the country level, which we feel is useful for national deci-

sion-makers and surveillance purposes; however, our methodology can be extended to finer

spatial units, such as the regional or municipal level. Performing predictions with higher spa-

tial resolution will allow more targeted interventions and allocation of resources to the areas

with the greatest projected burden of disease.

To produce these predictions in a publicly available and timely manner, we will work to cre-

ate a website that displays Zika estimates for multiple countries continuously updated in real-

time, similar to content published on www.healthmap.org/flutrends and www.healthmap.org/

denguetrends.
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each plot. Data points from weeks within the training period are distinguished in red.
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Salvador, and (e) Martinique.
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