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We investigate the prospect of using black hole spectroscopy to constrain the parameters of Horndeski
gravity through observations of gravitational waves from perturbed black holes. We study the gravitational
waves emitted during ringdown from black holes without hair in Horndeski gravity, demonstrating the
qualitative differences between such emission in general relativity and Horndeski theory. In particular,
quasinormal mode frequencies associated with the scalar field spectrum can appear in the emitted
gravitational radiation. Analytic expressions for error estimates for both the black hole and Horndeski
parameters are calculated using a Fisher matrix approach, with constraints on the “effective mass” of the
Horndeski scalar field of order ∼10−17 eV c−2 or tighter being shown to be achievable in some scenarios.
Estimates for the minimum signal-to-noise ratio required to observe such a signal are also presented.
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I. INTRODUCTION

The advent of gravitational wave (GW) astronomy, with
numerous observations of mergers of compact objects now
made by advanced LIGO and VIRGO [1], has opened new
avenues for testing Einstein’s theory of general relativity
(GR) [2,3]. With these tests have come constraints on the
landscape of modified gravity theories, most significantly
those constraints garnered from the propagation of gravi-
tational waves over cosmological distances [4–9]. In the
future, next-generation ground- and space-based GW
detectors bring the promise of black hole spectroscopy:
observing the frequency spectrum of gravitational waves
emitted by perturbed black holes—specifically the quasi-
normal mode (QNM) spectrum—and using them as a
fingerprint to both infer the properties of the emitting
black holes as well as to test the predictions of GR against
competing theories of gravity [10–17].
When considering testing the predictions of GW emis-

sion between various theories of gravity, one can look for
discrepancies induced either by (a) a background black
hole solution in a modified theory of gravity that differs
from the standard GR description of black holes (i.e., the
Kerr metric for realistic astrophysical sources) and/or by
(b) a different dynamical evolution of gravitational waves
with respect to GR from the perturbed system, regardless
of the properties of the background black hole. Most focus
in current research is on (a), looking for shifts in the GR
QNM spectrum; this has lead to a flurry of work on the
generalized scalar-Gauss-Bonnet theory [18–28], among
others [29–35]. The emphasis in this work will be very

different and on (b): we will focus on the case, where the
background black hole solution is given by the same
solution as in GR, but the emitted GW signal is governed
by modified equations of motion leading to extra QNMs.
The motivation for pursuing this line of research comes

from [36], where we argued that scalar-tensor theories in
which the scalar field had cosmological relevance would, in
general, have black holes with no hair. But, more generally,
case (b) can be considered a more generic prediction of
extensions to GR: while black holes might or might not
have hair, the field equations will, for sure, be modified,
leading to extra QNMs [37–40].
In this paper we will consider the Horndeski family of

scalar-tensor theories of gravity [41], following on from
work in [39,42]. We will first demonstrate the qualitative
differences in GWemission in GR and Horndeski gravity—
the presence of extra QNMs—before quantifying what one
could learn about the parameters of a GW emitting system
given an observation of sufficient “loudness.”Wewill show
that, in certain circumstances, the observation of (at least)
two distinct frequencies of the damped gravitational waves
emitted during “ringdown” from a black hole in Horndeski
gravity can provide strong constraints on fundamental
parameters of the theory.
Summary.—In Sec. II we will introduce the action for

Horndeski gravity and look at black hole perturbations in
this family of theories. We will then move on to parameter
estimation in Sec. III; we introduce a simple analytical
model for the gravitational waves emitted from a perturbed
black hole in Horndeski gravity and, building on [11], we
employ a Fisher matrix analysis to predict quantitatively
what one could learn about the fundamental theory from
a GW observation. This will include both analytic and
numerical results, as well as considerations on the
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properties of the observed GW signal required to perform
such an analysis. In Sec. IV we will discuss the results and
limitations of our analysis before making some concluding
remarks.
Throughout we will use natural units with G ¼ c ¼ 1,

except where otherwise stated.

II. HORNDESKI GRAVITY

Extensions to general relativity normally involve addi-
tional fields (other than the metric and standard matter
fields) that interact nontrivially with gravity. In this paper
we will focus on the family of Horndeski theories which
introduces an additional scalar field.

A. Action

A general action for scalar-tensor gravity with 2nd order-
derivative equations of motion is given by the Horndeski
action [41,43]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X5
n¼2

Ln; ð1Þ

where the Horndeski Lagrangians are given by

L2 ¼ G2ðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞðð□ϕÞ2 − ϕαβϕαβÞ;

L5 ¼ G5ðϕ; XÞGαβϕ
αβ −

1

6
G5Xðϕ; XÞðð□ϕÞ3

− 3ϕαβϕαβ□ϕþ 2ϕαβϕ
ασϕβ

σÞ; ð2Þ

where ϕ is the scalar field with kinetic term X ¼ −ϕαϕ
α=2,

ϕα ¼ ∇αϕ, ϕαβ ¼ ∇α∇βϕ, and Gαβ ¼ Rαβ − 1
2
Rgαβ is the

Einstein tensor. The Gi denote arbitrary functions of ϕ and
X, with derivatives GiX with respect to X. GR is given by
the choice G4 ¼ M2

P=2 with all other Gi vanishing andMP
being the reduced Planck mass. Note that Eq. (1) is not the
most general action for scalar-tensor theories, and it has
been shown that it can be extended to an arbitrary number
of terms [44–47].

B. Background solutions and perturbations

Let us assume that Horndeski gravity admits a back-
ground solution such that the spacetime is Ricci flat, Rαβ ¼
0 ¼ R (e.g., Minkowski or Schwarzschild), and the scalar
field ϕ has a trivial constant profile, ϕ ¼ ϕ0. Several no-
hair theorems for various manifestations of Horndeski
gravity, leading to such solutions, exist in the literature
[48–50].
Now consider perturbations to this background solution

such that

gαβ ¼ ḡαβ þ hαβ; ð3Þ

ϕ ¼ ϕ0 þ δϕ; ð4Þ

where δϕ and hαβ are considered to be small and of the
same perturbative order and the metric ḡαβ describes the
background Ricci-flat spacetime. Varying the action given
by Eq. (1) with respect to gαβ and ϕ, we find the following
system of equations for the perturbed fields:

Gð1Þ
αβ ¼ G4ϕ

G4

ð∇α∇βδϕ − gαβ□δϕÞ; ð5aÞ

□δϕ ¼ μ2δϕ; ð5bÞ

whereGð1Þ
αβ is the Einstein tensor perturbed to linear order in

hμν, □ ¼ ḡμν∇μ∇ν and μ2 is given by

μ2 ¼ −G2ϕϕ

G2X − 2G3ϕ þ 3G2
4ϕ=G4

: ð6Þ

All of the Horndeski Gi functions are evaluated at the
background; i.e., they are functions of the constant ϕ0 only.
Thus μ2 is a constant and acts like an effective mass term
squared for the scalar field. Equation (6) clearly shows that
for some combination of the Horndeski parameters, μ2 could
be negative. We will assume that μ2 > 0 for the rest of this
work, but considering a negative effective mass squared
could be an interesting area of future research. Furthermore,
wewill assume thatG2X − 2G3ϕ þ 3G2

4ϕ=G4 ≠ 0. The right-
hand side of Eq. (5a) shows the new gravitational scalar field
sourcing the gravitational perturbations.

C. Black holes and ringdown

The sourcing of gravitational perturbations by the
Horndeski scalar field, as shown by Eqs. (5a) and (5b),
was discovered and investigated in [39,42], in the particular
case that the background solution was a Schwarzschild
black hole. However here we can see that any Ricci-flat
black hole solution with a constant scalar field profile (i.e.,
no nontrivial scalar hair) will exhibit the same behavior as,
for example, a Kerr black hole. Also note further that in
[42] a second parameter Γ was erroneously included in
the equation of motion for ϕ; Eq. (5b) is in the correct
form with μ2 entirely describing the effect of the various
Horndeski functions in the scalar equation of motion.
For the rest of this paper we will be concerned with the

effect of Horndeski gravity on the GW signal emitted from
a black hole as it “rings down” following a merger event or
some other process which leaves the black hole perturbed.
To do so, we can consider the background spacetime to be
Schwarzschild and decompose the metric and scalar per-
turbations into tensor spherical harmonics, as is standard
when studying the response of spherically symmetric black
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holes to perturbations [51–56]. We will further assume a
harmonic time dependence of e−iωt for the metric and scalar
perturbations, leading to the following system of equations:

d2Q
dr2�

þ ½ω2 − fðrÞVRWðrÞ�Q ¼0 ð7aÞ

d2Ψ
dr2�

þ ½ω2 − fðrÞVZðrÞ�Ψ ¼G4ϕ

G4

Sφðφ;φ0Þ ð7bÞ

d2φ
dr2�

þ ½ω2 − fðrÞVSðr; μ2Þ�φ ¼0; ð7cÞ

where φðrÞ is the radial wave function of δϕ, and QðrÞ
and ΨðrÞ represent the odd and even parity degrees of
freedom in the metric perturbations (and r is the usual
Schwarzschild radial coordinate). The tortoise coordinate
r� is defined by dr� ¼ fðrÞ−1dr, with fðrÞ ¼ 1 − 2M=r
and M being the black hole mass.
The various potentials appearing in the above equations

are given by

VRWðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
; ð8aÞ

VZðrÞ¼ 2

�
1−

2M
r

�
λ2r2½ðλþ1Þrþ3M�þ9M2ðλrþMÞ

r3ðλrþ3MÞ2 ;

ð8bÞ

VSðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3
þ μ2

�
ð8cÞ

with 2λ ¼ ðlþ 2Þðl − 1Þ, whilst the ‘source term’
Sφðφ;φ0Þ is given by:

Sφðφ;φ0Þ ¼ −ð1 − 2M=rÞUφðφ;φ0Þ
2r2ðλrþ 3MÞ2

Uφðφ;φ0Þ ¼ ð4Mð3M þ ð2lðlþ 1Þ − 1ÞrÞ
þ 2r3ð3M þ λrÞμ2Þφþ 12Mrðr − 2MÞφ0:

ð9Þ

Note that we have suppressed spherical harmonic indices,
but each equation is assumed to hold for a given l.
These equations can be solved to find the complex

solutions of the ω, the QNM frequencies, subject to
boundary conditions such that the emitted waves are purely
ingoing at the black hole horizon and purely outgoing at
spatial infinity [51–54]. The fact that the ω are complex
means that the gravitational waves emitted from this system
not only are oscillatory in nature, but also decay in time: the
gravitational waves emitted are essentially exponentially
damped sinusoids. The ω describe the oscillation frequency

f and damping time τ of the gravitational (and, in this case,
scalar) waves via

ωlm ¼ 2πflm þ i=τlm; ð10Þ

where we have reinserted spherical harmonic indices l and
m to emphasize that these relations are general for any ωlm.
The system of equations given by Eqs. (7a)–(7c) shows

that the odd parity gravitational degree of freedom Q is
decoupled from φ and evolves exactly as in GR according
to the Regge-Wheeler equation [57]. On the other hand,
while the even parity gravitational field Ψ obeys the well-
known Zerilli equation as in GR [58] on the “left-hand
side” of Eq. (7b), Ψ is now also sourced by the freely
evolving scalar wave function φ.
We can interpret Eqs. (7b) and (7c) as leading to the

gravitational field oscillating with both the “transient” GR
solution and the “driving” scalar field solution. An analo-
gous mode-mixing situation arises in a certain parameter
limit of Chern-Simons gravity [38], where it is the odd
parity gravitational degree of freedom that is driven by a
free massless scalar field. In this case a two-mode fit of
each of the fundamental l ¼ 2 modes from the gravita-
tional and scalar spectra fits the numerical evolution of
the QNM equations well. In [40] the “reverse” effect was
observed numerically in scalar Gauss-Bonnet gravity. In
this case, again due to a system of coupled QNM equations,
the emitted scalar waves appear to be “contaminated” with
modes arising from the gravitational spectrum.
A similar perturbation analysis can be done for a slowly

rotating Kerr black hole [leading to more complex, but
qualitatively similar equations of motion to Eqs. (7a)–(7c)].
For perturbations of Kerr black holes of arbitrary spin,
however, one requires the Teukolsky equation [59].
Equation (5a) shows that any modified gravity effects on
the “right-hand side” of the equation can be packaged as the
“source” of the Teukolsky equation. This opens up the
possibility of analytically studying perturbations to black
holes of arbitrary spin in modified gravity, provided the
background scalar field has a trivial constant profile. We
will leave such an analysis to future work.
It is worth noting that for massive scalar fields there

exists a second family of solutions other than the QNMs,
the “quasibound states,” that represent long-lived field
configurations around the black hole [60–67]. We will
not consider the bound states in this work and instead focus
on the QNM family of solutions driving the emitted
gravitational waves. A full analysis of the black hole–
scalar system for arbitrary spin black holes would, of
course, warrant consideration of such bound states. It is an
intriguing question as to how the quasibound states around
black holes might drive gravitational radiation during
ringdown.
Figure 1 shows the qualitative effect of the scalar pertur-

bations driving the gravitational waves. The gravitational
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waves are modulated from their usual GR frequencies by the
frequency of the scalar mode. The scalar amplitude in the
center and right-hand panels of Fig. 1 is exaggerated to make
the effect noticeable to the eye, but the qualitative picture
of the mode-mixing effect is valid.
As has been discussed before, but bears repeating, the

system described by Eqs. (7a)–(7c) exhibits clear non-GR
behavior due to the presence of the scalar field perturbation,
despite the background solution being identical to GR
(i.e., a Schwarzschild black hole with no scalar hair). Thus
the detection of modified gravity effects in the ringdown
part of a GW signal is not necessarily indicative of
violations of the no-hair theorem. Stated another way, even
black holes in theories that obey no-hair theorems could
exhibit non-GR behavior in their perturbations [37].

III. PARAMETER ESTIMATION

Throughout this section we will follow the formalism
laid out by Berti, Cardoso, and Will in [11] (henceforth
referred to as BCW). Readers should refer to BCW for a
full review; we will recap the main elements here.

A. Fisher matrix formalism

We wish to study the response of a gravitational wave
detector to the exponentially damped sinusoidal gravita-
tional waves emitted by a perturbed black hole in
Horndeski gravity, as described in Sec. II. Firstly, we
assume that each of the gravitational waveforms received at
our detector is such that the strain h is given by

h ¼ hþFþ þ h×F×; ð11Þ

where hþ and h× are the two polarizations of the GW given
by (in the frequency domain)

h̃þ ¼ Aþ½Slmeiϕþ
bþ þ Slme−iϕ

þ
b−�; ð12Þ

h̃× ¼ −iN×Aþ½Slmeiϕ×
bþ − Slme−iϕ

×
b−�; ð13Þ

with

b� ¼ 1=τlm
ð1=τlmÞ2 þ 4π2ðf � flmÞ2

ð14Þ

and ϕ× ¼ ϕþ þ ϕ0.
The Fþ;× pattern functions represent detector orientation

and source direction dependence [see Eq. (3.3) in BCWand
Appendix A], while the Slm are spin-2 spheroidal functions
that are in principle complex. As explained in BCW,
however, we will assume that Slm ≈RðSlmÞ due to
RðSlmÞ ≫ IðSlmÞ for slowly damped modes. This will
allow us in the following to make use of the angle averages
hS2lmi ¼ 1=4π, hF2þi ¼ hF2

×i ¼ 1=5, and hFþF×i ¼ 0.
Finally, we assume that the gravitational waves emitted

from a system governed by Eqs. (7b) and (7c) are given as a
superposition of two modes, the most dominant mode of
each of the gravitational and scalar spectra, such that the
total strain is given by

h ¼ hg þ hs; ð15Þ

where hg and hs have the same functional form as outlined
above, however with different amplitudes, phases, and
appropriate frequencies and damping times.
We can define an inner product in frequency space

between two generic waveforms h1 and h2 using the noise
spectral density of the detector ShðfÞ:

ðh1jh2Þ≡ 2

Z
∞

0

h̃�1h̃2 þ h̃�2h̃1
ShðfÞ

df: ð16Þ

The signal-to-noise ratio (SNR) ρ of the signal given by
Eq. (15) is thus

ρ2 ¼ ðhjhÞ ¼ 4

Z
∞

0

h̃�ðfÞh̃ðfÞ
ShðfÞ

df; ð17Þ

and the components of the Fisher matrix Γab associated
with the signal are given by

Γab ≡
� ∂h
∂θa

���� ∂h∂θb
�
; ð18Þ
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FIG. 1. Waveform “cartoon” of a superposition of l ¼ 2 gravitational and massless scalar modes for a unit mass Schwarzschild
black hole. The amplitude of the gravitational waveform is fixed to Ag ¼ 1 with As varying from 0.1 to 1.

OLIVER J. TATTERSALL and PEDRO G. FERREIRA PHYS. REV. D 99, 104082 (2019)

104082-4



where the θa are the parameters upon which the waveform
depends. Note that in each of the above integrals in the
frequency domain, we are also implicitly angle averaging
over the sky.
Clearly from Eq. (18) we will need to evaluate deriv-

atives of the waveform with respect to the various param-
eters θa. For example, in BCW, analytic fits to numerical
results for Kerr gravitational QNM frequencies are pre-
sented as functions of black hole mass M and dimension-
less angular momentum j so that derivatives can be
performed analytically. In the case of Horndeski gravity,
as studied here, of particular interest is the dependence of
the waveform on the effective scalar mass (squared) μ2.

For simplicity’s sake, when evaluating our analytical
results numerically in Sec. III B, we will restrict our-
selves to considering (at most) slowly rotating Kerr
black holes. Clearly we would ideally like to consider
black holes with dimensionless spin ∼0.7 to best
replicate the events observed by aLIGO/VIRGO so
far, but we use the case of a slowly rotating black hole
as a starting point. Thus, when evaluating parameter
derivatives for the rest of this paper, we will use the
analytic expressions for massive scalar and gravitational
QNM frequencies of slowly rotating black holes given in
[68,69]. For example, for j ¼ 0, l ¼ 2, we can make use
of the following:

ωl¼2
g ¼ 2πfl¼2

g þ i=τl¼2
g ≈

1

M
ð0.374 − 0.0887iÞ;

ωl¼2
s ¼ 2πfl¼2

s þ i=τl¼2
s ≈

1

M
ð0.484þ 0.316ðμMÞ2 þ 0.0372ðμMÞ4 þ 0.0232ðμMÞ6

− ½0.0968 − 0.108ðμMÞ2 − 0.0272ðμMÞ4 − 0.0246ðμMÞ6�iÞ: ð19Þ

We do, however, emphasize that the analytic expressions
presented in Sec. III B are applicable to any black hole
emitting a mixed-mode waveform—it is only in the
numerical evaluations of these expressions that we have
chosen to limit ourselves to at most slowly rotating Kerr
black holes.
We are now in a position to analytically calculate the

SNR and Fisher matrix components for our mixed-mode
GW signal, from which we can calculate error estimates
from the covariance matrix Σab ¼ ðΓabÞ−1. To do so wewill
use the “δ-function approximation” introduced in BCW to
evaluate frequency integrals, replacing products of the
b�ðfÞ with appropriately normalized δ functions. In doing
so we assume that Shðfg;lmÞ ≈ Shðfs;lmÞ ¼ S, which is
appropriate given that fg;lm and fs;lm will be very close to
each other in practice.
From now on we will suppress the ðl; mÞ index on, for

example, f and τ, with each expression assumed to hold for
a specific choice of harmonic indices. We will retain g and s
subscripts to differentiate between those parameters
belonging to the gravitational mode and those belonging
to the scalar mode in the mixed-mode waveform.

B. Results

To find error estimates for each of the parameters of the
mixed-modewaveform we invert the Fisher matrix and take
the diagonal components of Σab ¼ ðΓabÞ−1. In practice, the
components of Γab were first calculated in the parameter
basis of ðAg;ϕþ

g ; fg; Qg; As;ϕþ
s ; fs; QsÞ, where the quality

factor Q of a mode is given by Qlm ¼ πflmτlm. We then
changed basis from ðfg;Qg; fs; QsÞ to ðM; j; μ2Þ before
inverting and extracting the error estimates.

In the ðf;QÞ parameter basis, those components of the
Fisher matrix Γab that do not involve mixing of gravitational
and scalar parameters are given in Sec. IVA of BCW.
For those components that do mix gravitational and scalar
parameters, analytic expressions are provided in a
Mathematica notebook [70], as is an expression for the
total SNR ρ2. We do not reproduce the expressions here as in
most cases they are exceedingly lengthy and unenlightening.
From now on we will thus work in a simplified regime

where we assume that N×, ϕþ, and ϕ0 are known for both
gravitational and scalar modes. In particular, we follow the
conventions of BCW for a mixed-mode waveform, assum-
ing that for each mode N× ¼ 1 with the phases given by
ϕþ
g ¼ −π=2, ϕ0

g ¼ ϕ0
s ¼ π=2, and ϕþ

s ¼ −π=2þ ϕ. With
this choice of parameters for the waveform we will be able
to work with more digestible analytic expressions.
We will further split our analysis in two separate cases:

firstly, fixing j ¼ 0 leaving us with four unknown param-
eters ðAg;M; As; μ2Þ to find error estimates for and,
secondly, allowing j to be free (but still constrained to
be small, j ≪ 1).

1. j = 0

In the case of a Schwarzschild black hole, for a mixed-
mode waveform with the above choice of parameters for
N× and phases, we find the following for the total SNR of
the signal ρ2:

ρ2 ¼ ρ2g þ ρ2s þ
AgAs

5π2S

�
16fgfsQ3

gQ3
sðfgQs þ fsQgÞ cosϕ
ΛþΛ−

�
ð20Þ
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with the individual SNRs for each mode being

ρ2g ¼
A2
gQ3

g

5π2fgð1þ 4Q2
gÞS

; ð21Þ

ρ2s ¼
A2
sQsðsin2ϕþ 2Q2

sÞ
10π2fsð1þ 4Q2

sÞS
ð22Þ

and where Λ� are given by

Λ� ¼ f2sQ2
g þ 2fgfsQgQs þQ2

s ½f2g þ 4ðfg � fsÞ2Q2
g�:
ð23Þ

This is the same result found in BCW for the total SNR
of a two-mode waveform. BCWalso showed that the phase
ϕ only weakly affected their results, so for simplicity we
chose to fix ϕ ¼ π=2 in the following so that the total SNR
is simply given by the sum in quadrature of the individ-
ual SNRs.
We now present analytic expressions for the error

estimates for Ag, M, As and μ2 (where σ2a ¼ Σaa) to the
leading-order term in the relative scalar amplitude As=Ag,
as we assume that the amplitude of the scalar mode
will be subdominant compared to the gravitational mode
amplitude:

ρ
σAg

Ag
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

Q2
g

1þ 3Q2
g

3þ 8Q2
g

s

×

�
1þ

�
As

Ag

�
2 η2

2

�
1 −

Λ2

Λ1

1þ 4Q2
g

1þ 2Q2
g

��
; ð24aÞ

ρ
σM
M

¼ 1

Qg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q2

g

3þ 8Q2
g

s

×

�
1þ

�
As

Ag

�
2 η2

2

�
1 − 4

Λ2

Λ1

ð1þ 4Q2
gÞ
��

; ð24bÞ

ρ
σAs

As
¼

�
As

Ag

�
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4Q2

sÞΛ3

η2Λ1

s
; ð24cÞ

ρσμ2 ¼ fsQs

�
As

Ag

�
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 4Q2

sÞ3ð1þ 2Q2
sÞ

η2Λ1

s
: ð24dÞ

We have introduced η2 and Λi to replace a number
unwieldy expressions; the definitions of these terms can be
found in Appendix B. Note that the ratio of single wave-
form SNRs is given by

ρs
ρg

¼ η
As

Ag
: ð25Þ

As expected, the error estimates of the nonscalar param-
eters become independent of any of the scalar waveform

parameters as As → 0, with the leading-order corrections
entering at quadratic order in the scalar amplitude. For the
scalar parameters, we see that the leading term for σ2μ
scales as ðAs=AgÞ−1, thus diverging as the scalar amplitude
As → 0 (as is reasonable).
Having calculated the error estimates analytically, we

can consider the effect that introducing the scalar waveform
has on σAg

and σM. For l ¼ 2, μ2 ¼ 0, the leading-order
corrections to the error estimates of Ag and M are given by

ρΔσAg

Ag
≈ 0.52

�
As

Ag

�
2

;
ρΔσM
M

≈ 0.13

�
As

Ag

�
2

; ð26Þ

where again we are assuming that As ≪ Ag. Clearly, with
small As, the error estimates on Ag and M are only weakly
degraded by the introduction of the scalar mode. We have
also checked that the value of ðμMÞ2 only weakly affects
σM and σA. For σAs

and σμ2 , on the other hand, to leading
order in both As=Ag and ðμMÞ2 (again with l ¼ 2),

ρσμ2 ¼
1

M2

�
As

Ag

�
−1
ð0.42–0.76ðμMÞ2Þ; ð27Þ

ρσAs

As
¼

�
As

Ag

�
−1
ð1.00–0.40ðμMÞ2Þ: ð28Þ

If we return to assuming that the effective scalar mass
μ2 ¼ 0, we can calculate σμ2 to estimate a “detectability”
limit on the scalar “particle” effective mass ms. Reinserting
G and c to restore units, we find that

ρσμ2 ∼ 2 × 10−7
�
As

Ag

�
−1
�
M⊙

M

�
2

m−2; ð29Þ

where we now interpret μ2 as the square of the inverse
Compton wavelength λc of the scalar (thus the combination
μM is really a ratio of the black hole to scalar length scales).
Converting to a mass using ms ¼ h=λcc, we find

ffiffiffi
ρ

p
ms ∼ 5 × 10−10

�
As

Ag

�
−1=2

�
M⊙

M

�
eVc−2: ð30Þ

Figure 2 shows a contour plot of
ffiffiffi
ρ

p
ms as a function of

relative scalar amplitude As=Ag and black hole massM for a
mass range of likely events observed by aLIGO/VIRGO,
while Fig. 3 shows a similar contour plot but for
more massive black holes of the type LISA might
observe. In Fig. 2 a mass range of 0 < log10ðM=M⊙Þ <
3 is covered, while for Fig. 3 we consider a range of
5 < log10ðM=M⊙Þ < 9, over which LISA is expected to be
sensitive to black hole ringdowns out to large redshifts [17].
Note that in Figs. 2 and 3 we have used the full expressions
for the covariance matrix as calculated using the Fisher
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matrix formalism, rather than the As ≪ Ag approximation
used to arrive at Eq. (30).
In Figs. 2 and 3 we see that with increasing black hole

mass the constraint on ms tightens considerably, even
for small As=Ag. For example, constraints on

ffiffiffi
ρ

p
ms ∼

10−17 eVc−2 are possible with As=A ∼ 0.01 for a 109 M⊙
black hole.

2. j ≠ 0

We now consider the case of a slowly rotating black hole
with j ≪ 1. In this case the total SNR is still given by
Eq. (20), and again we choose ϕ ¼ π=2. The introduction
of j into the Fisher matrix analysis makes the analytic

expressions for the error estimates extremely unwieldy, so
we will not present the leading-order corrections due to As
to σAg

, σj or σM. Instead we direct the reader to Sec. VI B of
BCW, which demonstrates the effect of increasing black
hole spin on the error estimates of j and M in a two-mode
waveform; we will focus on the effect of j on σAs

and σ2μ.
In fact, we find that to leading order in ðAs=AgÞ, the error

estimates of As and μ2 are given once again by Eqs. (24c)
and (24d). We can now evaluate these numerically for
nonzero (small) j. For l ¼ 2, μ2 ¼ 0, we find the following
error estimates to linear order in j and to leading order in
As=Ag:

ρ
σAs

As
¼ ð1.00þ 0.03jmÞ

�
As

Ag

�
−1
; ð31Þ

ρσμ2 ¼
0.42
M2

�
1þ jm

3

��
As

Ag

�
−1
; ð32Þ

where m is the azimuthal spherical harmonic index ranging
from ð−l;…;lÞ. This corresponds to a scalar mass
detectability limit of

ffiffiffi
ρ

p
ms ∼ 5 × 10−10

�
1þ jm

3

��
As

Ag

�
−1=2

�
M⊙

M

�
eVc−2;

ð33Þ

again valid for j ≪ 1, As ≪ Ag. We see that, in this slow
rotation regime, the introduction of spin weakly increases
(decreases) the error estimates for the scalar parameters for
positive (negative) m.
It would of course be interesting to repeat this analysis

for larger values of j; however, we are currently unaware of
any fitting formulas for massive scalar QNMs as a function
of both scalar mass and black hole spin.
The phenomenon of black hole superradiance [71]

provides a method of constraining ultralight boson masses
through observations of rotating black holes [72–76]. In
[75] masses of minimally coupled axionlike particles are
excluded in the range [6 × 10−13 eV; 10−11 eV], and it is
argued that current and future observations can probe a
mass range of such particles from 10−19 to 10−11 eV. In
fact, if we posit that a modified gravity theory admits Kerr
black hole solutions (and that these are indeed the astro-
physical black holes we observe), then the same bounds
calculated from superradiant instabilities in [75] apply
equally to such modified gravity theories.
While it would take a very large black hole mass M or

SNR ρ to compete with the lowest end of the mass range
probed by black hole superradiance, the constraints that
could be garnered from ringdown observations can be
complementary to those obtained from other methods.
Furthermore, in this case we are considering a phenomenon

FIG. 3. Contour plot for ms as a function of relative scalar
amplitude As=Ag and black hole mass M (in solar units) for
values representative of LISA events. The ½−13;…;−17� ×
log10 ð ffiffiffi

ρ
p

ms=eVc−2Þ contours are shown.

FIG. 2. Contour plot for ms as a function of relative scalar
amplitude As=Ag and black hole mass M (in solar units) for
values representative of LIGO events. The ½−8;…;−12� ×
log10ð ffiffiffi

ρ
p

ms=eVc−2Þ contours are shown.
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arising specifically from the nonminimal coupling between
gravity and the scalar field.

C. Resolvability

To use a mixed-mode GW signal to test GR one must, of
course, first be able to discriminate between the two
frequencies buried in the noisy signal. As explored in
BCW as well as in [38,77], such considerations lead to
postulating a minimum SNR required to resolve the
individual frequencies and damping times of the gravita-
tional and scalar modes. It is commonly given that a natural
criterion for resolving frequencies and damping times is
given by

jfg−fsj>maxðσfg ;σfsÞ; jτg−τsj>maxðστg ;στsÞ: ð34Þ

As explained in BCW, the above criteria states that the
frequencies are barely resolvable if “the maximum of the
diffraction pattern of object 1 is located at the minimum of
the diffraction pattern of object 2.” Using the above, critical
SNRs required to resolve the individual frequencies and
damping times can be introduced:

ρ > ρfcrit ¼
max ðρσfg ; ρσfsÞ

jfg − fsj
; ð35Þ

ρ > ρτcrit ¼
max ðρστg ; ρστsÞ

jτg − τsj
: ð36Þ

We can use the Fisher matrix formalism to calculate
these error estimates analytically, now in the ðf; τÞ param-
eter basis. Again to leading order in As=Ag, we find the
following expressions for the errors in f and τ for each
waveform:

ρσfg ¼
fg
8Q3

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 32Q4

g

q �
1þ

�
As

Ag

�
2 η2

2

�
; ð37aÞ

ρστg ¼
1

πfg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4Q2

g

q �
1þ

�
As

Ag

�
2 η2

2

�
; ð37bÞ

ρσfs ¼
fs

2
ffiffiffi
2

p
Q2

sη

�
As

Ag

�
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q4

sð7þ 16Q2
sð2þQ2

sÞÞ
1þ 2Q4

sð5þ 8Q2
sð2þQ2

sÞÞ

s
;

ð37cÞ

ρστs ¼
ffiffiffi
2

p
Qs

πfsη

�
As

Ag

�
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3þ 4Q2

s − 24Q4
s

1þ 2Q4
sð5þ 8Q2

sð2þQ2
sÞÞ

s

ð37dÞ

with η2 given in Appendix B.
Figure 4 shows the two critical SNRs ρfcrit and ρτcrit

required to resolve individual frequencies and damping

times, respectively, as a function of the relative scalar mode
amplitude. We have again chosen a superposition of l ¼ 2
modes for a Schwarzschild black hole and a massless scalar
field. As with Figs. 2 and 3, here we have used the full
analytic expressions for the critical SNRs in Fig. 4, rather
than the As ≪ Ag approximation used in Eqs. (37a)–(37d).
We see that the SNR required to resolve damping times

is consistently about an order of magnitude greater than
that required to resolve frequency times. Thus ρτcrit sets the
lower bound on SNR to resolve both frequencies and
damping times. The minimum of ρτcrit is found numerically,
in this case, to be at As=Ag ≈ 0.81, giving a critical SNR
of 33.5.
Assuming that we wish to resolve both frequencies and

damping times, and noting that for small As the critical
SNR is given by ρστs, we can use Eqs. (36) and (37d) to
find a minimum requirement on As=Ag for a given SNR.
For a superposition of l ¼ 2 modes with μ2 ¼ 0, we find

As

Ag
>

21

ρ
: ð38Þ

If we only wish to distinguish frequencies and not damping
times, the requirement on As drops to

As

Ag
>

1.2
ρ

: ð39Þ

For example, with an SNR of ρ ∼ 102 (achievable in
single detections through LISA, third-generation ground-
based detectors, or stacking several signals together
[15,78–82]), we would require As ≈ 0.2 to ensure
ρ > ρτcrit. If, on the other hand, we considered single, loud,
aLIGO/VIRGO detections such as GW150914, an SNR of
ρ ∼ 5–10 is more realistic [83], in which case As ≈ 0.2
would be required just to discern distinct oscillation
frequencies in the signal, while an observation of distinct

0.0 0.2 0.4 0.6 0.8 1.0

1

10

100

1000

104

FIG. 4. Critical SNRs ρfcrit and ρτcrit required to resolve frequen-
cies and damping times as a function of relative scalar amplitude
As=A for l ¼ 2, μ2 ¼ j ¼ 0.
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damping times would be impossible given that the mini-
mum of ρτcrit is 33.5 as discussed above (and as shown
in Fig. 4).

IV. DISCUSSION AND LIMITATIONS

In this work we have revisited the mixing of gravitational
and scalar modes in the GW emission during ringdown of
static and slowly rotating black holes in Horndeski gravity
as first described in [39,42]. The qualitative nature of the
mode-mixing effect on the GWemission is shown in Fig. 1,
with a related phenomenon in scalar Gauss-Bonnet gravity
has been observed numerically in [40]. Additionally, we
demonstrated its occurrence in any Ricci-flat black hole
background [see Eq. (5a)]. Indeed, a natural progression of
this work is to study in detail the perturbations of Kerr
black holes of arbitrary spin in Horndeski gravity, through
both analytical and numerical methods.
We then proceeded to apply the Fisher matrix formalism

for black hole ringdown as developed in BCW [11] to a
mixed-mode waveform containing both gravitational and
scalar frequencies, and in Sec. III B derived analytic
expressions for the estimated errors on the parameters of
such a waveform assuming a static or slowly rotating black
hole background. Of particular interest is the estimated
error in the determination of the effective mass of the
Horndeski scalar field [see Eq. (24d) and Figs. 2 and 3]. For
certain parameter ranges of the black hole mass and relative
scalar mode amplitude, we have shown that constraints on
the effective mass of the Horndeski scalar field can be very
tight, for example ms ∼ ρ−1=210−17 eV c−2 for a 109 M⊙
black hole observed with LISA, competitive with the kind
of constraints on ultralight axion masses obtained via black
hole superradiance.
We further found that, assuming an SNR of ρ ∼ 102

(achievable through next-generation space- and ground-
based detectors or through the stacking of multiple signals
[15,78–82]) a scalar perturbation with an amplitude of
roughly 20% that of the dominant gravitational mode
would be required so that the presence of multiple, distinct
oscillations frequencies and damping times in the signal
could be detected. With the SNRs typical of single LIGO
events [83], on the other hand, detecting the presence of
distinct oscillation frequencies in the ringdown signal is the
best one can hope for, with a scalar mode amplitude again
of the order 10%–20% that of the gravitational mode
amplitude required.
A key assumption in this work is that the scalar

perturbations will be present in the ringdown: specifically,
if mode mixing is to occur in the ringdown, the scalar field
perturbation needs to be excited, which is by no means
guaranteed given that φ ¼ 0 is a solution to Eqs. (7a)–(7c)
(leading to perturbations identical to those in GR).
Furthermore, in the case of two black holes without hair
merging, it is difficult to envisage generating any scalar
field perturbations (though perhaps nonlinear interactions

during the merger could source excitations). However, if ϕ
interacts nontrivially with matter, then events involving one
or more compact stars may provide an initial nontrivial
scalar field profile from which perturbations can be sourced
[84–88]. In addition, one could imagine merger events
whereby surrounding matter contaminates the “clean”
merger of two compact objects without hair, thus sourcing
scalar perturbations in situations where one might not
initially expect them. An important avenue of research is
then to study the possibility of how hair can be dynamically
generated in no-hair theories.
An obvious limitation of this work is the inclusion of

only two modes in the mixed-mode waveform—one from
each of the gravitational and scalar spectra. In [89] it is
shown that including higher overtones as well as funda-
mental modes is highly important for accurately extracting
parameters from a GW signal. In addition, the study of
mode amplitudes in black hole ringdown [90–93] shows
that in some cases the second most dominant gravitational
mode may have a significant relative amplitude of Oð1Þ, in
which case modeling our signal as a two-mode waveform
with A2 ≪ A1 may be a simplification too far (of course if a
scenario heavily excited the scalar mode, then the two-
mode approach would be more valid). Including additional
gravitational modes in addition to the scalar mode(s) would
be a more accurate approach and an intriguing area of
future research.
Finally, the numerical results shown in this paper are

limited to Schwarzschild and slowly rotating Kerr black
holes, but of course it is our aim to apply such an analysis to
Kerr black holes of arbitrary spin (especially given the so
far observed spins of black holes by aLIGO/VIRGO).
Analytic fits of massive scalar QNM frequencies on a Kerr
background, or a more in depth numerical analysis, will be
required to make such a step to higher spins; these are
interesting areas of future work.
With the maturation of GW astronomy, and the prospect

of black hole spectroscopy with next-generation detectors
in the near future, the exploration of what we can learn
about the nature of gravity from ringdown observations is
an exciting and timely endeavor.
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APPENDIX A: SOURCE PATTERN FUNCTIONS

The source pattern functions Fþ and F× referred to in
Eq. (11) are given by [11]
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Fþ¼1

2
ð1þcos2θSÞcos2ϕScos2ψS−cosϕS sin2ϕS sin2ψS;

ðA1aÞ

F×¼
1

2
ð1þcos2θSÞcos2ϕS sin2ψSþcosϕS sin2ϕS cos2ψS:

ðA1bÞ

The angles θS and ϕS give the angular position of the
GW source in usual spherical coordinates, while ψS
describes the rotation of the GW polarization axes relative
to the detector arm axes [94].

APPENDIX B: ERROR ESTIMATE EXPRESSIONS

The terms η2 and Λi were introduced in Sec. III B for
brevity’s sake. Their explicit expressions are given by

η2 ¼ 1

2

fgQs

fsQg

1þ 4Q2
g

Q2
g

1þ 2Q2
s

1þ 4Q2
s
; ðB1aÞ

Λ1 ¼ f2sð4ð16ðQ2
s þ 2ÞQ2

s þ 7ÞQ4
s þ 1ÞQ2

s;μ2

− 2fsQsfs;μ2Qs;μ2ð64Q8
s þ 64Q6

s þ 28Q4
s þ 8Q2

s þ 1Þ
þ f2s;μ2Q

2
sð32Q6

s þ 28Q4
s þ 8Q2

s þ 1Þð1þ 4Q2
sÞ2;
ðB1bÞ

Λ2 ¼
2M2Q4

sð16Q6
s þ 32Q4

s þ 10Q2
s þ 1Þ

Q2ð8Q2 þ 3Þ
× ðfs;μ2Qs;M − fs;MQs;μ2Þ2; ðB1cÞ

Λ3 ¼ f2sð32Q6
s þ 24Q4

s þ 1ÞQ2
s;μ2

− 2fsfs;μ2ð32Q7
s þ 16Q5

s þ 6Q3
s þQsÞQs;μ2

þ f2s;μ2Q
2
sð8Q4

s þ 4Q2
s þ 1Þð1þ 4Q2

sÞ2; ðB1dÞ

where we are using the notation F;θ ¼ ∂F
∂θ .
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