
REVUE FRANÇAISE D’AUTOMATIQUE, D’INFORMATIQUE ET DE

RECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

STEVEN C. WHEELWRIGHT

SPYROS MAKRIDAKIS

Foregasting with adaptive filtering

Revue française d’automatique, d’informatique et de recherche
opérationnelle. Recherche opérationnelle, tome 7, no V1 (1973),
p. 31-52.

<http://www.numdam.org/item?id=RO_1973__7_1_31_0>

© AFCET, 1973, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, d’infor-
matique et de recherche opérationnelle. Recherche opérationnelle » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/

legal.php). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme

Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1973__7_1_31_0
http://www.numdam.org/legal.php
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


R.A.I.R.O.
(7° année, V-l, 1973, p. 31-52)

FOREGASTING WITH ABAPTIVE FILTERING

by Steven C. WHEELWRIGHT (*) and Spyros MAKRIDAKIS (2)

Abstract. — During the past decade Régression Analysis has gained wide acceptance as a
method for preparing medium and long range forecasts for time series. However/for a short-
term forecasting situation or when the number of observations is small, régression analysis is
costly and of ten impractical. Exponential smoothing is the forecasting method most of ten used
in these latter situations, but it has some major shortcomings ioo. Rather than trying to
distinguish some underlying pattern from the noise (randomness) includedin observed data,
exponential smoothing simpfy « smooths » the extreme values in preparing a forecast, which
in many cases is not completely suitable. Thus there are a number of medium range forecasting
situations and cases for which not much data is available where neither régression analysis nor
exponential smoothing methods are appropriate.

This paper briefly examines the gênerai class of forecasting methods that are based on a
weighting of past observations and then présents the theoretical and practical aspects of
adaptive filtering, a method for determining an appropriate set ofweights. Adaptive Filtering*
a technique prevlously developed in télécommunications engineering, is attractive in many
forecasting situations involving time series because it does discriminate between noise and an
underlying pattern, it is conceptually appealing and easy to apply, it can be used with a rela-
tively small amount of data, and the accuracy and reliability of its forecasts compare very
favorably with other techniques.

Some Existing Techniques for Forecasting

There are numerous situations which arise in the opération of a business
that require the development of a forecast for a time series. One of the most
common of these involves the area of production scheduling and inventory
control. In order to control out-of-stock costs and keep inventory costs
within reason, firms must forecast demand for individual products and groups
of products and then use those forecasts in making production décisions.
Similarly, in the areas of finance, budgeting and marketing, forecasts must be
prepared for working capital, cash flow, prices and other time series. While
most of these situations involve short or medium term forecasts, firms also
are faced with requirements for longer term projections in areas such as capacity
utilization, capital requirements, and market growth.

(1) Harvard Business School, Boston, Massachusetts.
(2) INSEAD, Fontainebleau, France.
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32 S. WHEELWRIGHT ET S. MAKRIDAKIS

In order to meet these forecasting requirements, a number of methods have
been developed for managers. These have been adopted to varying degrees,
based largely on the manager's évaluation of their accuracy, their cost, and his
ability to understand what they actually do (*). The majority of these methods
are based on the idea that past observations contain information about some
underlying pattern of the time series. The purpose of the forecasting method
is then to distinguish that pattern from any noise (randomness) that also may be
contained in past observations and then to use that pattern to predict future
values in the series. A gênerai class of widely used forecasting methods that
attempts to deal with both causes of fluctuations in a time series is that
of smoothing. Spécifie techniques of this type assume that the extreme values
in a series represent the randomness and thus by « smoothing » these extrêmes,
the basic pattern can be identified. The two methods of this type that are used
most often are moving averages and exponential smoothing.

The technique of moving averages consists of taking the n most recent
observations of a time series, finding the average of those values, and using
that average as a forecast for the next value in the series. That is (2),

Jf+l = - [ * * + **-l + . . - +*,-(„-!)]

where

st +1 = the moving average forecast for period t + 1 based on the previous
n observations

n = the number of observations included in the average
x% = the observed value in period i (i = 1, 2,... t).

This approach to short term forecasting is referred to as moving averages
because n is held constant and for each new forecast, t is incremented by 1 and
the average is recomputed by dropping the oldest observation and picking up
a new observation. The value of n détermines how much ofthe fluctuations in
observed values is carried into the smoothed value, st+i : a larger value of
n giving a more smoothed forecast than a smaller value of n.

A major drawback of moving averages is that it assigns equal weight to each
of the past n observations and no weight to observations before that. It can
often be argued that the most recent observations in a series contain more
information than the older values. Following this line of reasoning, many
managers have adopted the technique of exponential smoothing which gives
decreasing importance (smaller weights) to older observations.

(1) As has become evident during the past few years, the ease with which a manager can
understand a forecasting method is a major factor in determining its use in practice.

(2) The notation used throughout this paper is that lower case letters represent scalar
quantities and upper case letters represent vectors. The only exception to this is that q> is
used to represent a single cross corrélation, $(x, d) is used to represent a vector, and [o(x, x)]
is used to represent a matrix of these coefficients. Finally, where the range of values for a
summation index is not given, it is from t — n + 1 to t.

Revue Française d'Automatique* Informatique et Recherche Opérationnelle



FORECASTING WITH ADAFITVE FILTERING 33

Exponential smoothing can be described mathematieally as

st+t = oexf + (l —'a)st

where

st+ x = the exponentially smoothed value to be used as a forecast for
period t + 1

a =s the smoothing constant (0 ^ a ^ 1)
Xi = the observed value in period i (i — 1,2,... f).

This gênerai équation can be expanded by replacing st with its computed
value. Carrying out this expansion gives

st+t = axt + a(l — <x)xt-x + a(l — a)2x*__2 +
 a(* — «)3**-3 + ...

From this expanded form it can be seen that since a is between ö and 1,
decreasing weights are being given to older observations and the size of oc
détermines the relative value of these weights. A larger a (close to 1) gives most
of the weight to very recent observations whereas a small a (close to 0) does not
give much weight to any single observation, thus giving a much more smoothed
value for st+1.

Exponential smoothing has been widely used by managers because it is
easy to understand, inexpensive to apply and intuitively appealing because the
manager has some control over the weights through assignment of a value for ou
Ho wever» a major drawback of this method is that there is no easy way to
détermine the most appropriate value of a. Some work on this problem has
been done under the title of adaptive smoothing, aimed at examining alternative
rules that might be used to détermine when and by how much the value of a
should be varied [1]. Another author, Brown, has also looked at this problem
and has developed rules that can be used to trade off the cost of variance in the
forecast with the cost of response time to changes in the underlying pattern [2).

To further improve on this smoothing technique, higher forms of exponen-
tial smoothing have been developed. These higher forms can handle time series
models other than the constant model assumed in simple exponential smoothing.
(For example, double exponential smoothing assumes a trend model.) However,
even with these additions, exponential smoothing is still not completelya dequate
in many forecasting situations because it does smooth the observed values rather
than explicitly looking for the underlying pattern.

An approach to forecasting that is based on a weigthing of past observations
but avoids some of the weaknesses of exponential smoothing is polynomial
fitting. (Although this method has only been widely used in the area of satellite
tracking, it will be discussed briefly here because it illustrâtes the relationship
between smoothing techniques and adaptive filtering.) The method of polyno-
mial fitting consists of taking the n + 1 most recent observations and fitting

n» mars 1973» V-I,



34 S. WHEELWMÔHT ET S. MÂKRIDÀKIS

an nth degree polynomial to these values. A few examples will give a better idea
of the advantages and disadvantages of this technique.

The simplest form is for n = 1, in which case the forecast is based on a
single observation,

In the case of n = 2, a straight line is fitted to the two most recent observa-
tions to give

•st + 1 = xt -f- \Xt — Xj_ i)

To fit a polynomial to three points (n = 3), the method of first différences
can be used to obtain a parabola

One can continue in a similar manner for lafger values of ». As can be seen
from these few examples, this method gives an exact fit to the n most recent
observations, taking no account of older observations that may be available or
of the randomness (noise) that may be present in the observed values. Thus
while smoothing techniques are often unacceptable because they smooth
extreme values rather than trying to identify a unique underlying pattern,
polynomial fitting in its standard form may be unacceptable because it does rio
smoothing of randomness but treats the observed values as being exact in their
représentation of the underlying pattern.

Each of the three methods for forecasting time series described above is
based on a weighted sum of past observations which in genera! can be written as,

t
where

st + 1 = the forecast for period t + 1
wt = the weight assigned to observation i
xt = the observed value in period i
n = the number of observations (and weights) used in preparing the

forecast.

It can readily be seen that each method corisists simply of a tule or set of
rules for determining the weights, wf. During recent years a number of addi-
tional methods, many of which have been both technically complex and statis-
ticaly rigórous, have been déveloped for Computing the most appröpriate set öf
weights [2, 3, 4, 5]. These varions methods not only differ in their ability to
predict a range of underlying patterns, the assumptions that must be made in
âpplying each of them, and the ease with which théy can be used in practice>

Revue Française d'Automatique, Informatique et Recherché OpérationnelU



FORECASTING WITH ADAPTIVE FILTERING 3 5

but also in the degree to which they can be easily understood by management.
This last point is particularly important since it is the most common reason
why many technically sophisticated and rigorous methods have failed to gain
widespread management acceptance. Smart managers simply do not base
décisions on techniques they don't comprehend.

An Adaptive Frocess for Weighting Fast Observations

Adaptive filtering is a procedure that can be used to détermine the value of
a set of weights for use in time series forecasting. As will be shown, this method
is not only technically sound, but in addition it can be applied in a wide range
of situations and can be explained in a manner that is intuitively appealing to
management. The remainder of this paper will focus on the theoretical develop-
ments of adaptive filtering and its practical application.

The original work on filter design was done by Norbert Wiener [6] in the
forties. Wiener focused on the design of linear filters for noise élimination and
for predicting and smoothing statistically stationary signais. Using the proce-
dures he developed gives results that are optimal in terms of least squares when
the series is in fact statistically stationary.

Following Wiener's work, various authors including Kalman and Bucy
have developed procedures that give optimal time-variable linéar filters for
non-stationary time series [7]. When such à series exists, the Kalman-Bucy
approach can give substantially bétter results (in terms of least squares) than
the simpler Wiener approach.

The drawback of both the Wiener and Kalman-Bucy procedures is that the
filters must be designed on the basis of a priori information or assumptions
about the statistics of the time series involved. In practice, these two filtering
approaches only give optimal results when the statistical characteristics of the
series in fact match the a priori information on the basis of which the filters
were designed. When the a priori statistical characteristics are not known
perfectly, these approaches do not give optimal results.

The adaptive filtering approach to be described here bases its design of the
filter on estimated statistical characteristics of the time series. The statistics are
not measured explicitly and then used to design the filter, but rather the process
of estimation and design go on in a single cycle, using an algorithm that conti-
nuously updates the estimâtes as the design process is carried out.

It can be argued that the form of adaptive filtering to be described here is
almost as simple to apply as the Wiener filter, and should perform almost as
well as the Kalman-Bucy filter given perfect a priori information. When the
statistical characteristics are not known perfectly a priori, it is quite possible
that the adaptive filter will outperform both thé Wiener filter and the Kalman-
Bucy filter. When little or no a priori information is avàilable, the use of an
adaptive filter may be the only reasonable possibility.

n° mars 1973 V-l.



36 S. WHEELWRIGHT ET S. MAKRIDAKIS

While it may be instructive to undertake an extensive comparison of these
and other forecasting techniques using empirical data, that is not the intent
of this paper. Rather, the purpose is to present the theoretical development of
an adaptive filtering approach to forecasting and to demonstrate the application
of that technique in practice. As a starting point for doing this, one can consider
the approach illustrated in figure 1 and suggested by Widrow [8] and Pertuz [9],

Sampled
Inputs
(Obser-
vations)

Input
Signal

•
Computation üsing

Weights, w± ( lol . . . n )

Adjustment of
Weights

Forecast
Output

* /^-NCompute
* Vf-J Error

>

Complex Dynamic
System

\

Output
Signal

Figure l

A Model for Determining the Weights in a Time-Series Forecast

In terms of figure 1, we would like to develop a method for adjusting the
weights that will distinguish between an underlying pattern and noise by
eliminating as much noise as possible from the observed series of values. The
criterion we will use for comparing alternative sets of weights is the expected
value of the error squared (the mean square error).

In applying the technique of adaptive filtering in determining the most
appropriate set of weights for forecasting, a basic assumption is that there
exists some underlying pattern (signal) that can be represented as a weighted
sum of past observations. Thus a wide range of functional fonns, such as a
constant, a linear trend, a seasonal pattern, or any polynomial form, can be
identified and predicted using this technique.

The process of determining the weights is an itérative one with a cycle
consisting of taking a set of n observations, Computing a forecast for the next
observation based on a set of n weights, then comparing that forecast with the
observed value (using the mean square error) and finally revising the weights in
such a way that the mean square error will be reduced. Obviously the key to the
effectiveness of adaptive filtering is in the rule used to adapt the weights at the
end of each cycle. This rule can be developed by first examining the criterion of
mean square error.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



FORECASTING WITH ADAPTIVE FILTERING 3 7

By définition, the error is the différence between the actual value and the
forecast value. ^

(2)
where

e, + 1 — the error in the forecast for period t + 1
Xf + ! = the actual value (observed) for period t + 1
,yr+1 = the forecast for period t + 1

Wj = the weight for the fth observed value (/ ~ t — n + l,t — n + 2,... i)
xt = the observed value for period i (/ == f — « + 1, t — n + 2, ..., f)
n = the number of weights (and observations) used in the forecast.

To obtain the expected value of the error squared, we first square (2) giving

- ( '
ZJ WiXi
t-n+l ]

= x?+1 — 2 2? wpiXt+i + Yi Z WiWjXiXj. (3 a)

Since we always will be dealing with the error at period t + 1 and since all
summations will be taken from t — n + 1 to t, we can simplify the above
notation by writing,

j (3 b)
i J

where d ™ xt+u the value being forecast.
We can now take the expected value of (3 b) to obtain the mean square error,

e2 = d2 — 2 £ w&(xh d)
i

where
e2 = mean square error for period t + 1

rf2 = expected value of the squared observation for period t + 1
Wj = the weight assigned to the fth observation

<p(jcis d) ~ the corrélation, xtd

<?(xh Xj) ~ the corrélation, 1

(1) In order for these expectations to be identically equal to the corrélations, it is necessary
that the data be normalized. This simply involves transforming the original data to X*

using Xi* = . See William Feller, Introduction to Probability and its Applications,

Volume I, NewVork : John Wiley & Sons, 1963, pp. 215-222.
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38 S, WHEELWRIGHT ET S. MAKRIDAKIS

An examination of (4) shows that if we have a stationary séries (one where
the underlying pattern is stable and thus the corrélations do not change) then
the mean square error is a second order function of the weights, >v£. Thus the
mean square error performance function can be visualized as a bowl shaped
surface, a parabolic function of the weight variables. The aim of adaptive
filtering is to seek the minimum mean square error (the bottom of the perfor-
mance surface) by revising the weights through the itérative process mentioned
earlier.

We can now examine the process for determining the weights. However,
before doing so, it is important to realize that an underlying assumption in this
development is that we have a stable (static) pattern in our data. After we have
dealt with this stable case, we can then consider how the process might be
adjusted for the non-stable situation. (A continuous shifting in the basic pattern
in the data — a spécifie non stable case — can be visualized as a bowl-shaped
error surface, where the bottom of the bowl is continuously moving.)

The search procedure that we will use to find the best set of weights is the
method of steepest descent. The details of this approach have been described
by Wilde [10]. Essentially, it consists of selecting a starting point on the per-
formance surface and then moving towards the bottom of the surface by
following an itérative procedure. In order to do this we must be able to
compute (or estimate) for any point on the performance surface the direction
in which the minimum point on the surface lies. We can then adjust our
weights in such a manner that our new weights represent a point on the error
surface that is closer to the optimum set of weights (the bottom of the bowl)
than were our old weights. The method of steepest descent does this by using
the following rule to adjust the weights :

W'=W— kvl2 (5)
where

W' ~ the revised vector of weights

W = the old weight vector

k = a constant factor ( > 0)

Ve2 = the gradient vector of e2.

This équation states that we détermine the adjusted weights by starting
with our old weight vector and correcting it by a constant factor (k) multiplied
by the négative of the gradient vector. Simply speaking, the négative of the
gradient vector tells us in which direction the minimum of the performance
surface lies and the constant factor, k, détermines how far we will move in that
direction. In order to use (5) in finding the best set of weights, we need to know
the value of the gradient for a giyen weight vector, W. In theory, this value

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



FORBCÀSTING WïTH À0APTIVE FILTERING 39

ean be found by differentiating the mean square error function in (4) with
respect to the weights. This gives for each weight* wi9

•A 2

J L = _ 2<?{xh rf) + 2 J ] Wj<p(xh Xj). (6 a)

The entire gradient vector can be written as

V ? = — 2$(x, d) + 2 W[0(x9 x)] (6 b)
where

Ve2 = the gradient vector
€>(x, J) = the vector of cross corrélations between the observed values» xiy

and the desired value, d
W — the vector of weights, wt

[<S>(x3 x)] = the matrix of cross corrélations between each pair of observed
values, (xi9 Xj).

To find the optimal set of weights that minimizes the mean square error,
we want Ve2 = 0. Thus using (6 b) gives

<I>(x)rf)=fFLMS[O(x)x)l (7o)
where

$(x, d) and [<!>(x, x)] are as before
WLMS = the vector of weights that gives the least mean square (LMS) errpr.

This can be written as

^LMS = ^*» *[«**, .x)]-1 (7 6)

To implement this approach for finding WhM$ requires a knowledge of the
cross corrélations represented by <D(x, d) and [<P(#? x)]. Unfortunately these are
often diffieult if not impossible to détermine. Thus to be of real use to the
practitioner in foreeasting, what is needed is an alternative means for finding,
or at least approximating, WLMS.

The method developed by Widrow for doing this utilizes measured gradient
estimâtes based on an approximation for Ve2 C). We can find such an
estimate by first rnïng e2 as an approximation for e2. Admittedly this is a very
crude estimate of e2 and one may wonder why an average of several values of e2

is npt used instead. The reason is that, as pointed out earlier, the real power of
adaptive filtering is when one has little or no a priori information on the statis^

(1) WIDROW» cy?. cit.

mars 1973» V-l.



4 0 S. WHEELWRIGHT ET S, MAKRIDAKIS

tical characteristics of a time series. If one were to use an estimate of e2 based
on several values of e2, it woüld limit the usefulness of this approach, and as
will be shown later, the use of e2 to approximate e2 is suffîciently accurate in
many cases to give very reliable resuits. Thus we can approximate the components
of the gradient vector by

¥
Using the définition of e given by (2), we have

3e _

and (8) can be rewritten as

Thus the approximation of the entire gradient vector is

Ve1 S — 2eX (10)

where X = the vector of observed values, xt.

Substituting (10) into équation (5) gives us a means of adjusting our weights
in an itérative fashion as we search for those which will minimize the mean
square error. That is,

FT = W+2keX (11)

In order to use this approach for adjusting the weights, we need to specify
both the number of weights, «, and the adjustment constant, k. We can then
« train » a set of weights by taking à series of observed values, computing the
error resulting from the use of the initial set of weights, and then updating our
weights using (11). As this process is repeated it will move towards the minimum
mean square error on the performance surface (the bottom of the bowl). The
rate at which one moves towards the best set of weights, WhMS, is determined
by the value of the adjustment constant, k. The larger the value of k, the greater
the adjustment in the weights at each itération. This rate of adjustment can be
thought of as the « learning speed » of the System. Thus k is often called a
learning constant.

One way to better understand the importance,and effect of the learning
speed is to define and compute p,, the fraction of the error that is corrected on
each itération. Using the following définition,

Ae t — lie (12)

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



FORECASTING WITH ADAPTIVE FILTERING 41

where

Ae = the change in error resulting from adjustment of the weights,
[L = a positive error réduction factor (the minus sign is necessary in order

for y. to be positive when the error is reduced)

we can solve for jx, obtaining

6

Now using the définition of àe and (2) we can write

Ae = —(W—W)X (14)

and since we know (W — W) from (11), we then have

Ae = — (2ekXT)X = — 2keXTX

which is a scalar since XTX is the dot production of two vectors. Substituting
into (13) gives

[x = —— = 2kXTX. (15)
e

The importance of being able to compute the error réduction for each
itération is that it can be used to détermine when the adaption process has
leveled off. That is, one would expect that after several itérations the error
réduction would become very small and thus going through additional itéra-
tions would not have much effect on the weights. (This is shown in a practical
application in the next section.)

An important aspect of the use of adaptive filtering in forecasting is speci-
fying a value of A: that will ensure that the adaption process will converge to the
set of weights that will minimize the mean square error, fFLMS. Widrow has
shown that a necessary and sufficient condition for stability of the steepest-
descent adaptation process is

T~
>k>°

where Xmax = the maximum eigenvalue of [O(JC, x)] (*).

An alternative method for ensuring convergence which is easier to use than
the above involves [x. It can be shown that if

2 > [x > 0 (16)

(1) WIDROW, op. cit., pp. 29-34.
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4 2 S. WHEELWRIGHT ET S. MAKRIDAKIS

then the use of (11) to adapt the weight vector will always converge to WLMS (*).
Substituting the value of [JL from (15) into (16), one finds that this condition
will always be met if

— ~ > k > 0 (17)

where the relevant X vector is the one with maximum size,

The vector of maximum size can generally be approximated after a visual
inspection of the observations and a value of k can then be specified to be used
in adjusting the weights. As a practical matter one can always select a small
value oîk to insure convergence, realizing that by doing so it will take additional
itérations to reach a set of weights that are arbitrarily close to J^LMS* since as k
is decreased, the positive error réduction, y., on each itération is decreased also.
The authors have found in forecasting a wide range of situations that if the
vector of observations is first normalized by dividing each value by the largest
Value in the series, a good rule of thumb is to then let k equal l/n where n is the
number of weights used. (This gives a k value which satisfies (17), and as will be
shown in the next section, generally k need only fall within a range of values
to give near optimal results.)

Using Adaptive Filtering in Practice

The previous section has outlined the theoretical development of a genera!
scheme for forecasting based on the concept of using a weighted sum of past
observations. There are several features of adaptive filtering, the method for
setting the weights, that make it attractive to the manager. First is the fact that
it utilizes the « information » contained in past observations to find the best set
of weights. Perhaps equally important is its simplicity. The adaptation of the
weights involves only a single équation (11). This équation is not only easy to
use, but it allows the manager to adjust the procedure to fit his own situation
and data by allowing him to alter the number of observations to be used in
setting the weights and to specify the rate at which the weights are adapted.

An illustration of how adaptive filtering can be used as a forecasting
technique in a spécifie situation should serve to highlight its usefulness. Consider
the case of a French wine company who as part of their planning process désire
to forecast champagne sales in France on a monthly basis. They have available
from industry sources actual monthly sales values from January 1962 through
September 1970 (105 months). These values are shown in table 1.

(1) See Widrow, pp. 28-29, 34.
(2) It should be noted that a k value satisfying (17) is a sufficient condition for conver-

gence, but not a necessary condition.
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FORECASTING WITH ADAPTIVE FILTERING 43

TABLE 1. — Monthly Champagne Saks (in 1000's of bottles)

Year Month Sales Year Month Sales Year Month Sales

1970

1969

1968

Sept
Aug
July
June
May
April
March
Feb
Jan

Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

I>ec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

5.
1.
4.
5,
4,
4,
4,
3.
4,

12,
9,
6
5,
1
4
4
5
4
4
3
3

13
9
6
5
1
4
3
2
3
3
2
2

,877
,431
,298
.312
.618
,788
.577
.564
.348

.670

.851

.981

.951

.659

.633

.874

.010

.676

.286

.162

.934

.076

.842

.424

.221

.738

.217

.986

.927

.740

.370

.899

.639

1967

1966

1965

Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

13.916
10.803
6.873
5.222
1.821
3.523
4.677
4.968
4.276
4.510
3.957
4.016

11.331
9.858
6.922
5.048
1.723
3.965
4.753
4.647
4.121
4.154
4.292

3.633

10.651
8.314
5.428
4.739
1.643
3.663
4.539
4.520
4.514

3.718
3.088
5.375

1964 Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

1963 Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

1962 Dec
Nov
Oct
Sept
Aug
July
June
May
April
March
Feb
Jan

9.254
7*614
5.211
3.528
1.573
3.260
3.986
3.937
3.523
4.047
3.006
3.113

8,357
6.838
4.474
3.595
1.759
3.028
3.230
3.776
3,266
3.031
2.475
2.541

7.102
5.764
4.301
2.922
2.212
2.282
3.036
2.946
2.721
2.755
2.672
2.851

As pointed out in the previous section, the use of adaptive filtering in
preparing a forecast involves two distinct phases. The first is the training
(or adapting) of a set of weights using historical data and the second is the use
of these weights to prépare a forecast. For purposes of this example, all 195 his-
torical observations of monthly champagne sales will be used in training the
set of weights.

In order to start the training phase, it is necessary to first specify the number
of weights, K, and the learning constant, k. Since a brief visual inspection of the
historical data in table 1 indicates that champagne sales follow a cy«lical
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pattern of length 12 months, the use of 12 weights would seem appropriate.
Essentially this says that while the weights will be trained using several years of
data, a forecast for a single month will only be based on the sales for the 12 pre-
ceding months. As a starting value for k, we might select a value of k = 08 (*).

With these parameters specified» the set of 12 weights can be trained using
équation (11) and an initial value foreach of the 12 weights. (We wiU arbitrarily
let each of the weîghts have an initial value of 0.085). The first training cycle
consists of taking the first 12 observations of the 105 available), Computing a
forecast for month 13 using

12

i=i

Computing the error of this forecast, e = (x13 — ̂ 13), and then revising the
weight vector using ;

W1 =*W+ 2keX
where

W' = the new vector of 12 weights
W = the old (initial) vector of 12 weights
k = .08

X = the vector of the first 12 observations.

The forecast for month 14 can then be computed by using the observed
values for months 2 to 13 (12 values), after which the process of updating the
weights can be repeated. When this process has been followed up through
the forecasting of month 105, one can then start over again with the first
12 observations. Each of these series of revisions of the weights which is made
by going through the entire string of observed data can be referred to as a
training itération. The number of itérations that need to be run dépends on the
nature of the series being studied, the adaption rate, k9 and the number of
observations available for training. Figure 2 shows the results of running 80
such itérations on the 105 months of champagne sales data. Even after this
number of itérations, it can be seen that the adjusted weights give a forecast
value that is quite close to the actual values as illustrated by the mean square
error for the 80th itération.

It is evident that the parameter k is of critical importance in adaptive
filtering. This constant détermines how rapidly the weights are adjusted and

(1) This value of k was chosen based largely on équation (16). Since the champagne data
was normaïized in this example before using adaptive filtering, the largest single value in
the series was 1.0. Thus as an upper bound on the maximum vector {XTX)9 one çan use a
vector whose length is 12 (this corresponds to the number of weights used) and whose
values are all 1.0. Using (16), this indicates that a value of k between 1/12 and 0 will gua-
rantee convergence of the algorithm. Since a larger value of x gives more rapid convergence
than a smaller value, the authors chose k — .08 for this example.
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4 6 S. WHEELWRIGHT ET S. MAKRIDAKIS

TABLE 2. — Adaptive Filtering Forecastsfor Actual Champagne Sales in France

Nmnber of Mean Square
Computer Nuraber of Final Weight Value of Training Error on Final

Run Weights Values k I térat ions Itération

a 12 .9754 ,04 80 .5971
.0991

-.0683
.0787

-.1089
.0885

-.0709
.0433

-.0982
.0630

-.0910
.1053

b 12 1.0185 .08 80 .5705
.0716

-.0741
.0728

-.0956
.0862

-.0939
.0344

-.0906
.0536

-.1018
.0705

c 12 1.0230 .09 80 .5696
.0680

-.0730
.0703

-.0926
.0841

-.0946
.0311

-.0896
.0506

-.1017
.0649

<3 1 2 1.0343 .12 80 ,5733
.0584

-.0688
.0630

-.0841
.0779

-.0944
.0211

-.0868
.0421

-.1006
.0496
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FORECASTING WITH ADAPTlVE FILTERING 47

thus the amount of error réduction achieved on each itération. Figure 2 indicates
that with k = .08, the mean square error is within 5 % of its final value aftér
30 itérations and within 1 % of that value after 50 itérations. The fact that this
value of k guarantees stability and convergence also means that the error
réduction will never increase with additional itérations arid thus once the mean
square error improvement levels off, there is little reason to run additional
itérations in a practical application.

In order to détermine the effects of k on the number of itérations required
and the error réduction on each itération, the results using values of k from
04 to .12 for the champagne series data are shown in table 2. From this it can be
seen that for 80 itérations, the optimal value of k is around .09. However, even
for k values as small as .04 and as large as .12, the mean square error is within
6 % of its value at .09. The relationship between k and the mean square error
for this series is shown in figure 3.

60

59

58

.57

.56

Mean square error

I t

.04 .12.08
k

Figure 3
Behavior of Mean Square Error-Chàmpagne Series (80 itérations)
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In all of the series the authors have examined so far, the effect of changes
in k have been similar, indicating that in gênerai it is not necessary to find the
optimal value of k to get good results, but one need simply be in the vicinity
of this optimum. In the case of the champagne series it was found that as k was
given values greater than .12, the adaptation process began to oscillate, indica-
ting that it was reacting to random fluctuations in the series. At afc value of .25,
the adaptation process failed to converge for this series.

In addition to wanting to know how adaptive filtering can be applied in a
spécifie situation, most managers also are concerned with how its performance
compares to that of other forecasting methods. To make such a comparison,
the authors applied both régression analysis (*) and seasonal time series
analysis (2) to the champagne data series. These two methods were chosen
because they are capable of handling a cyclical pattern and they are widely
used in practice. However, it should be mentioned that from a strictly technical
point of view, these two methods are not the best available for this kind of a
times series.

The results of preparing monthly forecasts of champagne sales usmg each
of these three forecasting methods are shown graphically in figure 4. The
performance of these three methods can further be compared in terms of the
mean square error of the forecasts developed using each one.

FORECASTING METHOD MEAN SQUARE ERROR

Adaptive Filtering 0.5696
Régression Analysis 0.7323
Seasonal Time Series 2.0110

These results indicate that both adaptive filtering and régression give
substantially better forecasts than seasonal time series. Alsos one can see from
figure 3 that a fairly wide range of k values give a smaller mean square error
than does régression. Although one might conclude from this example that
adaptive filtering and régression are comparable methods in terms of mean
square error, it should be remembered that in other situations and even for
champagne sales in the future, the results of such a comparison could be quite
different.

(1) The model used for régression analysis consistée of 12 independent variables — the
first being the period (1 through 105) and the other 11 being dummy variables to represent
the adjustment for each month of the year. Other régression models were also examined,
but this one gave the best results. A Standard computerized routine was used to carry out
the commutations. This routine was based on the development of régression analysis
presented in A. M. MOOD and F. A. GRAYBILL, Introduction to the Theory of Statistics,
New York : McGraw-Hill, 1963, pp. 328-355.

(2) Seasonal time series analysis as used in this comparison consisted of identifying the
time trend in the series using simple régression, Computing a monthly adjustment factor
and then basing the forecast on the product of the appropriate monthly adjustment factor
and the trend value. This forecasting method is presented in detail in W. A. SPURR and
C. P. BONINI, Statistical Analysis for Business Décisions, Homewood, 111. : Richard D.
Irwin, 1967, pp. 463-348.
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5 0 S. WHEE^WRIGHT ET S. MAKRIDAKIS

Clearly a complete analysis of adaptive filtering should compare its per-
formance with alternative methods on a number of different time series. These
more elaborate numerical studies should also consider forecasting methods
such as Box-Jenkins and other more sophisticated approaches that can give
better results than régression and seasonal time series analysis.

There is one other aspect of adaptive filtering that in many situations makes
it clearly préférable to other methods. This is the small amount of data that is
required to initially use adaptive filtering. The reason that much less data is
required with this method is that the séquence of weights is independent of the
spécifie time period (eg., the month) being forecast. The effect of this charac-
teristic can be illustrated with the champagne series by supposing that one had
only the first 20 observations in the series and wished to forecast the twenty-first
value. If the parameters (weights) were identified with spécifie months, the
technique could not really be used in this situation since for some months there
would only be one observation and for the others there would be only two
observations. However, in applying adaptive filtering to these 20 observations
and training 12 weights there were 7 different cycles that could be made in
adapting the weights. After several itérations through these cycles, the weights
were quite similar in value to those determined using 105 observations (1).

Smimmary

The purpose of this paper has been to present the theoretical basis of adap-
tive filtering, to show how it can be used in time series forecasting, and to
briefly compare its performance with other well known forecasting techniques.
The real power of adaptive filtering over other forecasting techniques cornes
from the fact that it requires no a priori information (or assumptions) concerning
the statistical characteristics of the time series involved and it is intuitively
appealing to the practicing manager and straightforward to apply. It also has
the additional advantage that it can be used when only a limited amount of
historical data is available.

The type of situation in which it can profitably be applied is one where the
manager is confronted with a time series which is relatively new to him (and
therefore largely unknown) and where the potential value of a forecast is
substantial. The use of adaptive filtering allows him to prépare forecasts that
are generally as good as, if not better than, those resulting from the use of
other techniques. To do this he need only specify three factors : the number of
weights, the learning constant and the number of itérations to be used in

(1) It should be noted that while adaptive filtering can be used with a relatively small set
of observations, as the sample gets smaller the weights will be more likely to represent
some of the randomness in the sample as well as the underlying pattern than would be the
case with a larger set of observations. Also, if the underlying pattern is changing over time,
it is important to révise the weights as new observations become available.
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training the weights (*). Although from a theoretical standpoint each weight
is a parameter in the adaptive filtering model that must be determined, the
manager applyïng this method is only required to specify three factors.

However, the fact that for a time series with a 12-month seasonal pattern,
12 weights must be trained is a drawback of adaptive filtering. Where the value
of the forecast is high, maintaining 12 weights in computer storage is insignifi-
cant. But when several thousand items must be forecast, this storàge requirement
may become an important criteria in selecting an alternative method.

One final advantage of adaptive filtering is that since the basic underlying
pattern of most time series is evolving over time, a forecasting technique must
take such changes into account if it is to continue to give accurate forecasts and
to maintain the confidence of the manager who uses these forecasts. By its very
nature, adaptive filtering is such a technique.

Clearly there is still much that should be done to investigate the application
of this technique. First there is a need for further research on situations where
the basic underlying pattern in the data is changing over time (dynamic). One
way of handling this problem is to use a relatively small value of k and to
update the weights (i.e., go through the adaptation process) periodically as
additional data become available. However, it should be possible to develop
more précise and more effective décision rules för these situations.

Another area for further study would be the comparison of this method of
forecasting to other approaches such as exponential smoothing, time séries
analysis and régression analysis for a range of practical situations. This paper
has done it for a single situation, but obviously there are many other types of
situations that deserve similar study.

Equally important as the comparison of alternative forecasting methods
would be research on what détermines the best number of weights, size of k9

number of itérations needed, and frequency of revisions in the weights. These
would be of great help to the practitioner, making adaptive filtering easier
to use for forecasting.

One final area that deserves further investigation is the use of adaptive
filtering with multiple series of data. For example, rather than basing a sales
forecast only on information contained in past sales data, one could also
consider the information contained in related series of data such as in an
industrial index, GNP figures or sales in a complementary industry. (This is
often done with multiple régression.) It is possible to use adaptive filtering on
several series of data by determining and using weights for those series as well as
for the basic series being forecast. Although the authors have been successful
in one such application of adaptive filtering, the limitations and possibilities
for doing it in genera! have not been examined.

(1) In place of specifying the number of itérations to be performed in training one can
specify the level of error réduction (on a single itération) that is to be achieved.
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