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Abstract

Existing image inpainting methods typically fill holes by

borrowing information from surrounding pixels. They of-

ten produce unsatisfactory results when the holes overlap

with or touch foreground objects due to lack of information

about the actual extent of foreground and background re-

gions within the holes. These scenarios, however, are very

important in practice, especially for applications such as

the removal of distracting objects. To address the prob-

lem, we propose a foreground-aware image inpainting sys-

tem that explicitly disentangles structure inference and con-

tent completion. Specifically, our model learns to predict

the foreground contour first, and then inpaints the miss-

ing region using the predicted contour as guidance. We

show that by such disentanglement, the contour completion

model predicts reasonable contours of objects, and further

substantially improves the performance of image inpaint-

ing. Experiments show that our method significantly out-

performs existing methods and achieves superior inpainting

results on challenging cases with complex compositions.

1. Introduction

Image inpainting is an important problem in computer

vision, and has many applications including image editing,

restoration and composition. We focus on hole filling tasks

encountered commonly when removing unwanted regions

or objects from photos. Filling holes in images with com-

plicated foreground and background composition is one of

the most significant and challenging scenarios.

Conventional inpainting methods [8, 6, 5, 26] typically

fill missing pixels by matching and pasting patches based on

low level features such as mean square difference of RGB

values or SIFT descriptors [19]. These methods can syn-

thesize plausible stationary textures but often produce crit-

ical failures in images with complex structures. To allevi-

ate the problem, different structures of images have been

∗Work was primarily done while Wei Xiong was an Intern at Adobe.

exploited [11, 12, 24]. For example, Huang et al. [11]

explicitly utilize planar structures as guidance to rectify

perspectively-distorted textures. However, these methods

still rely on existing patches and low-level features, and thus

are unable to handle challenging cases where holes overlap

with or are close to foreground objects. In such cases, a

higher understanding of image content is required.

Recently, deep learning based methods [13, 17, 28, 29, 7]

have emerged as a promising alternative avenue by treat-

ing the problem as learning an end-to-end mapping from

masked input to completed output. These learning-based

methods are able to hallucinate novel contents by training

on large scale datasets [15, 30]. To produce visually re-

alistic results, generative adversarial networks (GANs) [9]

are employed to train the inpainting networks. However,

by default all these methods assume that a generative net-

work can learn to predict or understand the structure in the

image implicitly, without explicit modeling of structures or

foreground/background layers in the learning process.

However, this has not been an easy task even for state-

of-the-art models, such as PartialConv [17] and Gated-

Conv [28]. For example, Fig. 1 shows two common failure

cases. On the top case, both GatedConv [28] and Partial-

Conv [17] fail to infer a reasonable contour in the missing

region, and incorrectly predict a gold medal with an obvi-

ous notch. In addition, on the bottom case, both generate

obvious artifacts around the neck of the dog. We conjecture

that these failures may come from several limitations of cur-

rent learning-based inpainting systems: (1) learning-based

inpainting models are usually trained to fill randomly gener-

ated masks which are often completely located in the back-

ground or inside a foreground object. This is inconsistent

with real-world cases where the holes might be close to or

only have a small overlap with the foreground (e.g., cases of

distracting region removal); (2) without explicitly modeling

background and foreground layer boundaries, current deep

neural network-based methods may not be able to predict

the structure accurately inside the holes by simply training

to fill random masks.

To this end, we propose a foreground-aware image in-
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Figure 1. Our results compared with PartialConv [17] and GatedConv [28]. From left to the right are: image with holes, saliency map,

incomplete contour and completed contour generated by our model, inpainting result of our model with completed contour (the green

curve) on it, result of PartialConv [17], result of GatedConv [28], respectively.

painting system that explicitly incorporates the foreground

object knowledge into the training process. Our system

disentangles structure inference and image completion, and

leverages accurate contour prediction to guide image com-

pletion. Specifically, our model first detects a foreground

contour of the corrupted image, and then completes the

missing contours of the foreground objects with a contour

completion module. The completed contour along with the

input image are then fed to the image completion module as

guidance to predict contents in holes.

The disentanglement of structure inference and image

completion is conceptually simple and highly effective.

Fig. 1 shows that our model benefits greatly from the in-

ferred contours. Our contour completion module is able to

infer a reasonable structure in the missing region. Further,

the image completion module takes predicted contours as

guidance and generates cleaner contents around the borders

of the objects.

To summarize, our contributions are as follows: (1) We

propose to explicitly disentangle structure inference and im-

age completion to address challenging scenarios in image

inpainting where holes overlap with or touch foreground

objects. To the best of our knowledge, our work is among

the first of a few studies that inpaint images with explicit

contour guidance. (2) To infer the structure of images, we

propose a contour completion module trained explicitly to

guide image completion. (3) To effectively integrate all the

modules, we propose to adopt curriculum training on both

the contour and image completion modules. (4) Our exper-

iments demonstrate that the system produces higher-quality

inpainting results compared to existing methods.

2. Related Work

Image inpainting approaches can be roughly divided into

two categories: traditional methods based on pixel prop-

agation or patch matching, and recent methods based on

deep neural network training. Traditional methods such

as [3, 4] fill in holes by propagating the neighborhood ap-

pearance based on techniques like isophote direction field.

These methods are quite effective for small or narrow holes,

but when the holes are large or the textures vary heavily,

they often generate significant visual artifacts. Patch-based

methods predict missing regions by searching for the most

similar and relevant patches from the uncorrupted regions of

the image. These methods work in an iterative way and can

generate smooth and photo-realistic results, but at the cost

of high computation cost and memory usage. To reduce

the runtime and improve memory efficiency, tree-structure

based search [21] and randomized methods [5] are pro-

posed. PatchMatch [5] is a typical patch based method that

greatly speeds up the conventional algorithms and achieves

high-quality inpainting results. A major drawback of Patch-

Match lies in the fact that it searches for relevant patches

from the whole image, without using any high-level infor-

mation to guide the search. These methods work reasonably

well for pure background inpainting tasks where holes are

only surrounded by background textures, but could easily

fail if holes overlap with an object or are close to an object.

Recently, learning based inpainting methods [17, 29, 7]

have significantly improved inpainting results by learning

semantics from large scale dataset. These methods typ-

ically train a convolutional neural network as a mapping

function from a corrupted image to a completed one end-

to-end. A significant advantage of these methods over the

non-learning ones is the ability to learn and understand se-

mantics of images for inpainting, which is especially im-

portant in cases of complex scenes, faces, objects and many

others. Among these methods, Context Encoders is one of

the first attempts [22] that use a deep convolutional neural

network to fill in the holes. It maps an image with a square
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hole to a complete image, and trains the model with L2 loss

in the pixel space and an adversarial loss to generate sharper

results. Similarly, Iizuka et al. [13] use two discriminators

to enforce that both the global appearance (whole image)

and the local appearance ( content in hole) of the generated

result are visually plausible. The method, however, still re-

lies heavily on the post-processing of the completed image

that blends both results from neural networks and traditional

patch-matching methods. Yu et al. [29] propose contextual

attention to model long-range dependencies in images and

a refinement network to eliminate post-processing, thus the

whole system can be trained and tested end-to-end. How-

ever, these deep learning based inpainting methods typically

infer the missing pixels conditioned on both valid pixels and

the substitute values in the masked holes, which may lead to

artifacts. Liu et al. [17] address this problem by masking

the convolution operation and updating the mask in each

layer, so that the prediction of the missing pixels is only

conditioned on the valid pixels in the original image. Yu

et al. [28] further propose to learn the mask automatically

with gated convolutions, and achieve better inpainting qual-

ities. Additionally, Song et al. [27] apply a pretrained image

segmentation network to obtain the foreground mask of the

corrupted image, then fill the segmentation mask and use it

to guide the completion of the image. However, these meth-

ods do not explicitly model the foreground and background

boundaries. Therefore, they could fail in images where the

masked region covers both foreground and background.

3. Approach

Given an incomplete image, our goal is to output a com-

plete image with a visually pleasing appearance. The over-

all framework of our inpainting system is shown in Fig. 2. It

is a cascade of three modules: incomplete contour detection

module, contour completion module and image completion

module. We automatically detect the contour of the incom-

plete image using the contour detection module. Then we

use the contour completion module to predict the missing

parts of the contour. Finally, we input both the incomplete

image and the completed contour to the image completion

module to predict the final inpainted image. To train our

foreground-aware model, we need to prepare specific train-

ing samples and holes. In the following sections, we first

introduce how we collect data and generate specific hole

masks tailored to our task. Then we introduce the detailed

implementation of our inpainting system.

3.1. Data Acquisition and Hole Generation

Image Acquisition and Processing. Existing datasets

for image inpainting such as Places2 [30], Paris [23], or

CelebFace [18] do not require any annotations, and training

data pairs (image with hole and the ground-truth image) are

typically constructed by generating random masks on the

original images and by setting the original pixel values un-

der the masks as the ground truth. Our proposed framework

for foreground-aware image inpainting requires us to train a

contour completion module and infer the contour automat-

ically, so we need a training dataset with labeled contours.

One possibility is to directly use contour detection datasets,

e.g. BSD500 [2]. However, such datasets are quite small in

size and thus are not adequate to train an image inpainting

model. Instead, we use salient object segmentation datasets

as an alternative. We collect over 15,762 natural images

that contain one or several salient objects, from a variety of

public datasets, including MSRA-10K [10], manually anno-

tated Flickr natural image dataset, and so on. Each image in

this saliency dataset is annotated with an accurate segmen-

tation mask. The dataset is quite diverse in content, con-

taining a large variety of objects, including animals, plants,

persons, faces, buildings, streets and so on. The relative

size of objects in each image has a large variance, making

the dataset quite challenging. We split all the samples into

12,609 training images and 3,153 testing images.

We then apply the Sobel edge operator on the segmen-

tation mask to obtain the contours of the salient objects.

Specifically, we first obtain the filtered mask Cf by apply-

ing the Sobel operator: Cf = |Gx| + |Gy|, where Gx and

Gy are the vertical and horizontal derivative approximations

of the image, respectively. Then we binarize the filtered

mask with a simple threshold and obtain the final binary

contour Cgt as the ground-truth contour of the original im-

age.

Hole Mask Sampling. In real-world inpainting applica-

tions, the distractors that users want to remove are usually

arbitrarily-shaped, and usually not square-shaped. In or-

der to simulate the real world inputs and learn a practical

model, we draw holes on each image with arbitrary shapes

randomly with a brush, based on the sampling method in

[28]. We generate two types of holes: 1). arbitrarily-shaped

holes that can appear in any region of the input image. Un-

der this setting, holes have a probability of overlapping with

the foreground objects. This scenario is designed to handle

the situations where unwanted objects are inside the fore-

ground objects or partially occlude the salient objects; 2).

arbitrarily-shaped holes that are restricted so that they have

no overlap with the foreground objects. This type of holes

are generated to simulate the situation where the unwanted

regions or distracting objects are behind the salient objects.

To deal with the second situation, we first randomly gen-

erate arbitrarily-shaped holes, then we remove the parts of

holes that have overlap with the saliency objects.

3.2. Contour Detection

During the inference stage, we do not have a contour

mask of the input image. We therefore use DeepCut [1]

to detect the saliency objects in the image automatically.
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Figure 2. The overall architecture of our inpainting model.

DeepCut uses a CNN-based architecture that extracts and

combines high-level and low-level features to predict a

salient object mask with accurate boundaries. Since the in-

put image is corrupted with holes, the resulting segmenta-

tion map contains noise. In some situations, holes can even

be treated as salient objects. To address this issue, we use

the binary hole mask to remove the regions in the segmen-

tation map that may be mistaken as salient objects. Then

we apply connected component analysis [25] to further re-

move some of the small clusters in the map to obtain the

foreground mask. Then we adopt the Sobel Operator to de-

tect the incomplete contour of the object from the segmenta-

tion map. The incomplete contour is then fed to the contour

completion module to predict the missing contours.

3.3. Contour Completion Module

The goal of our contour completion module is to com-

plete the missing contours of the input image that are inside

the hole regions. Given the incomplete image Iin, incom-

plete contour Cin and the hole mask H indicating the loca-

tions of the missing pixels, we aim to predict the complete

contour Cc for the corrupted foreground objects. Cc is a

binary map with the same shape as the input image, with 1

indicating the boundary of the foreground objects and 0 for

other pixels in the image.

3.3.1 Architecture

The contour completion module is composed of a gener-

ator and a discriminator. The generator is a cascade of a

coarse network and a refinement network. For training, in-

stead of using predicted contours, we extract a clean incom-

plete contour Cin of the foreground objects directly from

the ground-truth contour Cgt with the hole mask H , i.e.,

Cin = H ∗ Cgt. Then we input the incomplete image,

the incomplete contour image, and the hole mask into our

coarse network, which outputs a coarse complete contour

Ccos
c . The coarse network is an encoder-decoder network

with several convolutional and dilated convolutional layers.

The coarse contour map is a rough estimate of the missing

contours. The predicted contours around the holes can be

blurry and cannot be used as an effective guidance for the

image completion module.
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To infer a more accurate contour, we adopt the refine-

ment network which takes the coarse contour as input, and

output a cleaner and more precise contour Cref
c . The refine-

ment network has a similar architecture as the coarse net-

work, except that we use a contextual attention layer [29],

to explicitly attend on global feature patches while inferring

the missing values. Note that the pixel value of the predicted

contour Cref
c ranges from 0 to 1, indicating the probability

that the pixel to be on the actual contour.

The refined contour is then fed to the contour discrimi-

nator for adversarial training. The contour discriminator is

a fully convolutional PatchGAN discriminator [14] that out-

puts a score map instead of a single score, so as to tell the

realism of different local regions of the generated contour

mask. Unlike discriminators for images, we discover that

if we only input the contour mask (generated or ground-

truth) to the discriminator, the adversarial loss is hard to

optimize and the training tends to fail. This may be due

to the sparse nature of the contour data. Unlike the natural

images which have an understandable distribution on every

local region, the pixels in the contour mask is sparsely dis-

tributed and contain less information for the discriminator

to judge whether the generated distribution is close to the

ground-truth distribution or not.

To address this issue, we propose to adopt the ground-

truth image as an additional condition, and use the image

and contour pair as inputs to the contour discriminator. With

this setup, the generated contour is not only required to

be similar to the ground-truth contour, but also required to

align with the contour of the image. The discriminator then

obtains adequate knowledge to tell the difference between

the generated distribution and the real distribution, and the

training becomes stable.

3.3.2 Loss Functions

To train the contour completion module, we will minimize

the distance between the generated contour map Ccos
c , Cref

c

and the ground-truth contour map Cgt. A straightforward

way is to minimize the L1 or L2 distance between the masks

in raw pixel space. However, this is not very effective as the

contours in the mask are sparse, leading to the data imbal-

ance problem. Determining the proper weights of each pixel

is difficult. To address this issue, we propose to make use

of the inherent nature of the contour mask, i.e., each pixel

in the mask can be interpreted as the probability that the

pixel is a boundary pixel in the original image. Therefore

we can take the contour map as samples of a distribution,

and calculate the distance with the ground-truth contour by

calculating their binary cross-entropy between each pixel.

We then adopt a focal loss [16] to balance the importance

of each pixel. Since our primary goal is to complete the

missing contours, we pay more attention to the pixels in the

holes by assigning them a larger weight. We formulate this

loss as the content loss for contour completion LC
con. The

final loss function for the coarse contour is:

LC
con (Ccos

c , Cgt)

=
λ

N

∑

p

(

H[p](Ccos
c [p]− Cgt[p])

2Le(C
cos
c [p], Cgt[p])

)

+
1

N

∑

p

(

(1−H[p])(Ccos
c [p]− Cgt[p])

2Le(C
cos
c [p], Cgt[p])

)

.

(1)

where [p] denotes to the pixel spatial location of the con-

tour map, N is the number of pixels in the contour map,

Le(x, y) is the binary cross-entropy loss function, x and y

are predicted probability score and the ground-truth proba-

bility, respectively.

Similarly, we use a content loss for the refined contour

LC
con

(

Cref
c , Cgt

)

. The final content loss function for con-

tour completion is:

LC
con = LC

con(C
cos
c , Cgt) + LC

con(C
ref
c , Cgt) . (2)

The focal loss helps to generate a clean contour. How-

ever, we observe that although we are able to reconstruct

sharp edges in the uncorrupted regions, the contours in the

corrupted regions are still blurry. To encourage the genera-

tor to produce sharp and clean contours, we use the contour

discriminator DC to perform adversarial learning. Specifi-

cally, we use the recent technique called Spectral Normal-

ization [20] to stabilize the training of the GAN model. We

use the hinge loss function to determine whether the input

is real or fake. The adversarial loss for training the contour

discriminator and the generator are as follows, respectively,

where σ denotes the ReLU function.

LC
adv = E[σ(1−DC(Cgt))] + E[σ(1 +DC(Cref

c )] . (3)

LC
adv = −E[DC(Cref

c )] . (4)

3.3.3 Curriculum Training

Completing the contours is a challenging task. Although

we have adopted a focal loss to balance the sparse data, and

a spectral normalization GAN to obtain sharper results, we

observe that it is still difficult to train the whole contour

completion module. The training tends to fail if both the

content loss and the adversarial loss are applied simulta-

neously even though the weights between the two types of

losses are carefully adjusted. To avoid the issue, we use

curriculum learning to gradually train the model. In the first

stage, the contour completion module is required only to

output a rough contour, thus we only train the model with

the content loss. Then in the second stage, we fine-tune

the pre-trained network with our adversarial loss, but with a
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very small weight compared to the content loss, i.e., 0.01 :

1 to avoid training failure due to the instability of the GAN

loss for contour prediction. In the third stage, we fine-tune

the whole contour completion module with the weight of

adversarial loss and the weight of content loss to be 1:1.

3.4. Image Completion Module

3.4.1 Architecture

Guided by the completed contours, our model gains the ba-

sic knowledge of where the foreground and background pix-

els are. This knowledge provides strong clues for the com-

pletion of the image. The image completion module takes

the incomplete image Iin, the completed contour and the

hole mask H as inputs, and outputs the completed image

Ic. It shares a similar architecture as the contour completion

module. The generator of our image completion module

also contains a coarse network and a refinement network.

The coarse network outputs a coarsely completed image,

which can be blurry with missing details. Then the refine-

ment network takes the coarse image as input, and generates

a more accurate result.

By inputting both the incomplete image and completed

contour to the coarse network, however, we observe that

the final output of the generator tends to ignore the guid-

ance of the completed contour. The shape of the generated

image is not consistent with the input contour in the hole

regions. This problem may be caused by the depth of the

image completion networks. After layers of mapping, the

knowledge provided by the completed contour can be for-

gotten or weakened, due to error accumulation. To tackle

this problem, we input the completed contour to both the

coarse network and the refinement network to enhance the

effect of the condition. In this way, the effect of the contour

condition can be stronger in the second stage of the image

completion module.

The discriminator takes the generated image/ground-

truth image along with the hole mask indicating the location

of the missing pixels as inputs, and tells whether the input

pair is real or fake. Similar to the contour completion mod-

ule, we use a PatchGAN structure and a hinge adversarial

loss to train the model.

3.4.2 Loss Functions

The loss function for the image completion module also

consists of a content loss LI
con and an adversarial loss LI

adv .

The adversarial loss has a very similar form as the loss for

contour completion, except that we apply the loss to the im-

ages instead of the contours. Note that the adversarial loss

is only applied to the result of the refinement network. We

do not apply the loss to the result of the coarse network. For

the content loss, we use L1 loss to minimize the distance be-

tween the generated image and the ground-truth image. The

image content loss is:

LI
con =

1

N

∑

p

(

|Icosc [p]− Igt[p]|+ |Irefc [p]− Igt[p]|
)

.

(5)

where Icosc , Irefc and Igt are the output of the coarse net-

work, the refinement network, and the ground-truth, respec-

tively. [p] denotes the pixel spatial location of the image, N

is the number of pixels in the image.

3.4.3 Training

Our image completion module is first pre-trained on the

large-scale Places2 dataset without the extra channel for

the contour map, then fine-tuned on the saliency dataset

with the guidance from the output of the contour comple-

tion module. Since the network we will fine-tune on the

saliency dataset takes different inputs (takes additional con-

tour as input) compared to the network we pretrain on the

Places2 dataset, when fine-tuning our network, we keep the

parameters of all the layers in the pretrained network except

the first layer, and randomly initialize the first layers of our

image completion module. To stabilize the training, we use

a similar curriculum training strategy as the training of the

contour completion module.

There are two variations in our training process. The first

one is to fix the parameters of the contour completion mod-

ule, and only fine-tune the image completion module. The

second way is to jointly fine-tune both modules. In our ex-

periments, we observe that there are minor differences be-

tween these two so we fix our method as the second setting.

4. Experiments

4.1. Implementation Details

We obtain the incomplete contour of the foreground ob-

jects from our contour detection module and the pretrained

DeepCut model [1], without any finetuning. Then we train

our contour completion module only on the saliency dataset.

On the third stage, we first train the image completion mod-

ule on the Places2, then finetune it on our saliency dataset.

We also finetune both the contour completion module and

the image completion module end-to-end on our saliency

dataset. We use Adam as the optimizer, with a learning rate

of 0.0002 and batchsize of 64 for both the contour comple-

tion module and the image completion module. λ in Eq. 1

is set to 5 on training the contour completion module.

4.2. Comparison with stateofthearts methods

In this part, we compare our proposed model with the

state-of-the-art image inpainting methods on the validation

set of our saliency dataset. We compare our full method

(denoted as “Ours Guided”) with GatedConv [28], Partial-

Conv [17], ContextAttention [29], Global&Local [13], and
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Input PatchMatch Global&Local ContextAttention PartialConv GatedConv Ours Ground-Truth

Figure 3. Qualitative comparison between the state-of-the-art methods. Row 1-4 are samples with overlapped holes, while Row 5-8 are

samples with non-overlapped holes. Please zoom in to see the details.

PatchMatch [5]. For a fair comparison, we also compare

with GatedConv [28] fine-tuned on our saliency dataset,

which can be regarded as the baseline - our model with-

out contour prediction and guidance (denoted as “Ours No

Guide”).

4.2.1 Quantitative Evaluation

We randomly select 500 images from the testing saliency

dataset and generate both overlap and non-overlap holes for

each image. Then we run each method on the corrupted

images to obtain the final results. We use common evalua-

tion metrics, i.e., L1, L2, PSNR, and SSIM, calculated us-

ing the complete image and the ground-truth image in pixel

space, to quantify the performance of the models. Table

1 shows the evaluation results. Among the deep learning-

based methods, our models outperform all the other meth-

ods in all four metrics. The results can be explained by

that existing methods only consider making the textures of

the completed image realistic, but ignore the structures of

the image. Furthermore, our model with contour guidance

brings consistent improvements over the baseline without
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Table 1. Quantitative results on the saliency dataset.

Method L1 Loss L2 Loss PSNR SSIM

PatchMatch [5] 0.01386 0.004278 26.94 0.9249

Global&Local [13] 0.02450 0.004445 25.55 0.9005

ContextAttention [29] 0.02116 0.007417 24.01 0.9035

PartialConv [17] 0.01085 0.002437 29.24 0.9333

GatedConv [28] 0.009966 0.002531 29.26 0.9353

Ours No Guided 0.010002 0.002597 29.35 0.9356

Ours Guided 0.009327 0.002329 29.86 0.9383

guidance, demonstrating the validity of our proposed idea

of leveraging contour prediction.

4.2.2 Qualitative Evaluation

Fig. 3 shows visual comparisons of our method with exist-

ing methods. Seen from the figure, PatchMatch [5] gener-

ates quite smooth textures. However, since it lacks an un-

derstanding of the image semantics, the generated image

is not visually realistic when the holes are near the bound-

ary of the foreground objects. Although Global&Local [13]

and ContextAttention [29] show the potential of handling

holes with arbitrary shape (e.g., combining multiple small

square holes to form an arbitrary shaped hole), since they

are not specifically trained on arbitrary-shaped hole masks,

they can generate artifacts which make the images unrealis-

tic. PartialConv [17], GatedConv [28] and our model with-

out contour guidance (denoted as “Ours No Guide”) can

generate smooth and plausible images, but artifacts still ex-

ist around the borders of the objects. In addition, the shapes

of the generated objects are not as natural as the real-world

objects. Our full contour guided model not only generates

a completed image with less artifacts, but also well com-

pletes the missing parts of the objects so that they have a

very natural boundary.

4.2.3 User Study

To make a more thorough evaluation of our method in terms

of visual quality, we conduct a user study and show the re-

sult in Table 2. Specifically, we randomly select 50 images

from our testing dataset, corrupt them with random holes

and then obtain the inpainted results of each method. We

show the results of each image to 22 users and ask them

to select a single best result. Finally we collect 1,099 valid

votes from all users. We count the number of times that

each method is preferred by users. Table 2 shows the user

preferences of each method. Our full model is preferred the

most, outperforming all the other methods by a large mar-

gin. This demonstrates the superiority of our foreground-

aware model in terms of visual quality.

4.3. Ablation Study

We also analyze how our contour completion module

contributes to the final performance of image inpainting.

We compare our full model to the model without contour

Table 2. User preference for the results of each method.

Method Preference Counts

PatchMatch [5] 23

Global&Local [13] 5

ContextAttention [29] 4

PartialConv [17] 90

GatedConv [28] 100

Ours No Guide 146

Ours Guided 731

Figure 4. Comparison between our model with/without contour as

guidance. From left to right: input image with holes, our model

without contour guidance, our full model, the ground-truth.

as guidance, as is shown in Fig. 4. The top row shows the

results where holes have no overlap with the foreground ob-

ject, while the bottom shows the case where holes overlap

with the object. In both cases, our model without contour

guidance generates obvious artifacts around the border of

the foreground object, while our model with contour guid-

ance can infer object boundaries correctly and produce re-

alistic inpainting results. The comparison indicates that the

completed contours greatly improve the performance of the

image inpainting model and that contour guidance is a cru-

cial part to the success of our model.

5. Conclusion

In this paper, we propose the foreground-aware image in-

painting model for challenging scenarios involving predic-

tion of both foreground and background pixels. Our model

first detects and completes the contours of the foreground

objects in the image, then uses the completed contours as a

guidance to inpaint the image. It is trained on a specifically

collected saliency image dataset. Experiments show that

our model can generate natural contours of objects, which

are of great benefit for image completion. Our model sig-

nificantly outperforms various state-of-the-art models both

quantitatively and qualitatively. This shows that using struc-

tures to indicate the foregrounds and backgrounds of the in-

put image, then explicitly guide the completion of the image

is a promising direction for inpainting tasks.
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