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Abstract - Segmentation of a moving foreground from video 

sequences, in the presence of a rapidly changing background, 

is a difficult problem. In this paper, a novel technique for an 

effective segmentation of the moving foreground from video 

sequences with a dynamic background is developed. The 

segmentation problem is treated as a problem of classifying 

the foreground and background pixels of a video frame using 

the color components of the pixels as multiple features of the 

images. The gray levels of the pixels and the hue and 

saturation level components in the HSV representation of the 

pixels of a frame are used to form a scalar-valued feature 

image. This feature image incorporating multiple features of 

the pixels is then used to devise a simple classification scheme 

in the framework of a support vector machine classifier. 

Unlike some other data classification approaches for 

foreground segmentation in which a priori knowledge of the 

shape and size of the moving foreground is essential, in the 

proposed method, training samples are obtained in an 

automatic manner. In order to assess the effectiveness of the 

proposed method, the new scheme is applied to a number of 

video sequences with a dynamic background and the results 

are compared with those obtained by using other existing 

methods. The subjective and objective results show the 

superiority of the proposed scheme in providing a segmented 

foreground binary mask that fits more closely with the 

corresponding ground truth mask than those obtained by the 

other methods do.  
 
Keywords - Foreground segmentation; support vector 

machine (SVM); spatial-temporal feature; dynamic 

background 

I. INTRODUCTION 

Segmenting a moving foreground from a video 
sequence is a first step in object segmentation. There exist 
many segmentation algorithms in the literature. In [1], 
Stauffer and Grimson have proposed an algorithm based 
on the assumption that a background pixel has a Gaussian 
mixture model (GMM) distribution. This method can, to 
some extent, deal with slowly changing background. ViBe 
[2] is another background subtraction method. It uses a set 
of values taken in the past at the same location or in the 
neighborhood, then compares this set to the current pixel 
value in order to determine whether that pixel belongs to 
the background, and adapts the model by choosing 
randomly which values to substitute from the background 
model. 

In many scenes especially in outdoor ones, the 
background can be rapidly changing, e.g., scenes with 
waving water or swaying tree branches, making the 
foreground segmentation more challenging. In [3], a 
background subtraction method, in which the background 

is modeled using texture features, extracted by using a 
modified local binary pattern (LBP), has been proposed for 
segmenting the foreground. In [4], on the premise that the 
LBP method does not take into account the motion 
information of the moving objects in a video, an approach 
of texture pattern flow (TPF) is used to model each pixel to 
build the background model. In [5-7], two-stage schemes 
have been devised for foreground segmentation. The first 
stage is for a coarse segmentation and then the results are 
refined in the second stage. In [5], the authors have used an 
alarm trigger module in the second stage to detect the 
background pixels using the spatial and temporal features 
of the scene. The method requires a pre-specified threshold 
parameter for its alarm trigger module, which does not 
universally apply to all kinds of objects. In the methods of 
[6] and [7], the foreground segmentation for the second 
stage is considered as a data classification problem and the 
technique of a support vector machine (SVM) on the 
spatiotemporal features of the image scenes is applied. 
However, the methods of [6] and [7] require a manual 
selection of the training points and the former is 
specifically designed for the segmentation of rectangular 
vehicle objects. 

In this paper, a novel two-stage scheme for 
foreground segmentation is presented. It involves GMM 
and SVM. With regard to the second stage, the proposed 
method has two distinct novelties. First, unlike the 
methods of [6] and [7] that require some a priori 
knowledge of the scene object for the selection of training 
samples for SVM, the proposed scheme develops a 
mechanism for an automatic selection of training samples. 
Since the mechanism for the selection is based on some 
motion information of the foreground, it can adapt to 
objects not only of different kinds of shapes, but also to 
objects with their shapes changing frame to frame. Second, 
a spatiotemporal feature image that can more accurately 
distinguish different kinds of moving foreground and 
background is proposed to distinguish more effectively the 
foreground pixels from those of the background. 

II. PROPOSED METHOD 

In the proposed method, the segmentation of the 
foreground from a sequence is obtained in two stages: 
GMM is used in the first stage to remove most of the 
background pixels from the scene; in the second stage, an 
SVM-based segmentation scheme is applied to the 
foreground obtained from the first stage using the 
information from the outputs of the first stage as well as 
that from the original sequence in order to get a final 
foreground. A schematic of the proposed method is shown 
in Fig. 1.  

Foreground Segmentation  

in Video Sequences with a Dynamic Background 



 

Figure 1 Two stages of the proposed segmentation scheme 

A. GMM-Based Foreground Segmentation 

To perform a preliminary foreground segmentation in the 
first stage, the GMM method is adopted. In this method, a 
pixel in the current frame is examined, using the 
background model of the previous frame, to determine 
whether it belongs to the foreground or the background of 
the current frame, while at the same time, a background 
model for the current frame is also built pixel by pixel. 

Since the GMM method integrates in it the 
information on the pixel history, it can effectively deal 
with a slowly-changing background. On the other hand, 
for scenes with a rapidly-changing background, a 
significant amount of background pixels are detected as 
foreground ones. Fig. 2 is an example of the results of 
segmenting a foreground from a video sequence with a 
dynamic background by using the GMM method. Fig. 2(c) 
shows that there are a large number of pixels belonging to 
the dynamic background that are falsely detected as 
foreground pixels, thus making a further segmentation of 
the foreground a necessity in order to remove these 
moving background pixels depicted by Fig. 2(c). 
 

 
Figure 2 An example of foreground segmentation using the 
GMM method [1]. (a) Original frame. (b) Gray level background 
image obtained by using the GMM method. (c) Binary 
foreground mask obtained by using the GMM method. 

B. Data Classification-Based Foreground Segmentation 

In the second stage, the objective is to remove the moving 
background pixels from the segmented foreground 
obtained from the first stage. The main idea used in the 
second stage is to treat the segmentation problem of this 
stage as a classification of the foreground pixels and those 
of the moving parts of the background. 

In the proposed method, a spatiotemporal feature 
image using multiple features of the image is constructed 
in order to make the difference between the foreground 
and background pixels more pronounced for classification. 
To this end, a small but equal number of image pixels 
called the training samples are selected from each of the 
two classes. The image pixels with their features specified 
by the feature image are then classified using classification 
knowledge of the training samples in a support vector 
machine (SVM) classifier. In the proposed scheme, a 
method is also developed for an automatic generation of 
the training samples. A more detailed schematic 
containing different modules to perform the various tasks 

of the proposed scheme for foreground segmentation is 
shown in Fig. 3.     

 

Figure 3 Detailed architecture of the proposed method. 
 

2.2.1 Selection of Training Sample 

In order to train a classifier, certain number of samples, 
each labeled with its class, is needed. In the proposed 
scheme, a selection of the training samples is carried out 
automatically by the Training Sample Selection module, 
without priori knowledge of the foreground/background. 
For the purpose of this selection, we use the segmented 
foreground masks obtained from the GMM module.  

As seen from Fig. 2(c), the size of the cluster of pixels 
representing the actual foreground is larger than those 
corresponding to the moving background pixels. This 
observation is used to obtain a mask that consists of pixels 
that predominantly belong to the foreground. Such a mask 
can be obtained as 

FFFF tttm ••=
−− 12   (1) 

where Ft-2, Ft-1 and Ft denote the foreground masks 
obtained from the GMM module corresponding to the 
current and previous two frames, and · represents 
pixel-wise AND operation.  

A morphological opening operation [8] is then be 
applied to the mask Fm in order to further remove the 
background pixels from it and to obtain the final mask Fom 
that consists overwhelmingly of the pixels representing the 
foreground. If KF is the number of foreground training 
samples to be chosen from Fom, and NF is the total number 
of foreground pixels in Fom, then KF training samples are 
selected by uniformly sampling the foreground region in 
Fom at a spatial sampling rate NF/KF, thus ensuring the 
foreground training samples to be evenly distributed. 

Next, a technique for selecting background training 
samples from Ft is also developed. In order to ensure that 
all the samples in this selection are only the moving 
background pixels, a sufficiently large region R of Ft that 
possibly contains all the foreground pixels needs to be 
excluded from Ft before this selection. To do so, the mask 
Fom is divided into blocks of an appropriate size, and the 
region R is obtained as a polygon consisting of a 
contiguous set of blocks such that: (i) none of the 
peripheral blocks in R has logic “1” pixel, and (ii) each of 
the blocks interior to the peripheral blocks have at least 
one logic “1” pixel. With an appropriate choice of block 
size, this method should ensure that the region R covers all 
the foreground pixels even if some of these pixels are not 
identified in Fom.  

Once the region R has been identified in Fom, all pixels 
of Ft within R are made to have a logic “0” value, giving a 
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mask Fb. From this mask Fb, KB pixels are selected as 
background training samples by uniformly sampling the 
pixels with logic “1” in Fb. 

2.2.2 Feature Extraction 

Data is usually classified based on the differences in a 
feature or features of the data belonging to the different 
classes. As mentioned earlier, for the present problem, 
there are only two classes: moving foreground pixels and 
those belonging to moving background. The objective of 
the feature extraction module of the proposed scheme is to 
construct a feature image based on multiple features such 
that with reference to such a feature image, the moving 
background pixels are significantly different from those 
belonging to the moving foreground. 

Let IG be a gray level frame and BG the gray level 
background image corresponding to IG. The value in 
|IG-BG| corresponding to a pixel position in the moving 
foreground will be, in general, larger than that 
corresponding to a pixel position in the background. Since 
it is not possible to have BG corresponding to an IG, we 
should consider the use of an approximate alternative of 
BG. Fig. 4(b) shows a gray level frame of the sequence that 
does not happen to have the object appearing in its scene. 
Fig. 4(c) is the absolute difference frame. It is seen from 
this figure, that intensity at many of the background pixel 
positions is not as low as one would like to have. This is 
because of the fact that background frame is not the one 
corresponding to IG. An alternative is to use the 
background frame corresponding to IG generated by the 
GMM module. The background frame, shown in Fig. 4(d), 
has a better correspondence with IG in terms of the moving 
background pixels, since it is created using the latter. Fig. 
4(e) shows the difference image IDG when the GMM 
generated background image is used. A comparison 
between Fig. 4(c) and (e) indicates that the use of the 
GMM-generated background image provides a better 
distinction between the moving foreground and 
background pixels. 

 
Figure 4 Generation of an alternative gray level background 
image. (a) Original gray level frame. (b) A gray level frame 
containing no object. (c) Difference between (a) and (b). (d) Gray 
level background image produced by GMM. (e) Difference 
between (a) and (d). 

Next, we consider the color components of frame to 
construct the respective difference images. In view of the 
fact that it would be computationally very expensive to 
construct a color background image corresponding to a 
frame under consideration, we obtain a color background 
image by computing the average of the first 10 frames of 
the sequence. 

In the proposed scheme, the color feature is 
considered based on the HSV system. Since the intensity 
has already been used in considering the gray level feature, 
we make use of the hue and saturation components of the 
color for constructing two other difference images. Fig. 5 
(a) and (b) show the hue components corresponding to the 
current color frame and the color background image, 
respectively. The absolute difference hue image IDH is 
shown in Fig. 5(c). Similarly, the saturation components of 
the foreground, background and absolute difference (IDS) 
images are given by the images shown in Fig. 6(a), (b) and 
(c), respectively. For the sake of uniformity, the pixels in 
the images of Fig. 5 and 6 are re-quantized in order to have 
the same number of levels as the number of gray levels of 
the images in Fig. 5, i.e., 256. 

 

Figure 5 Hue components. (a) Hue component of the current 
frame. (b) Hue component of the background. (c) Difference 
between (a) and (b). 

 

Figure 6 Saturation components.  (a) Saturation component 
of the current frame. (b) Saturation component of the 
background. (c) Difference between (a) and (b). 
 

As in the case of the gray level difference image IDG, 
in the hue and saturation difference images IDH and IDS, the 
pixel values corresponding to the background region are, 
in general, smaller than that corresponding to the 
foreground region. This difference in the pixel values of 
the two regions can be further pronounced by obtaining a 
weighted sum of the three difference images, given by 

IwIwIwI DSDHDGD •+•+•= 3210   (2) 

where w1, w2 and w3 are the weights of the individual 
difference images used to obtain the overall difference 
image ID0. The idea behind this weighted sum instead of 
having simply a sum of the three difference images, is to 
emphasize or de-emphasize the importance of a difference 
image in obtaining ID0 depending on its ability to distinct 
the two types of pixels. In order to ascertain the values of 
the three weights, we proceed as follows. Using the 
positions of the foreground and background samples as 
determined in the previous section, we determine the 
median pixel values for the foreground and background 
pixels corresponding to the position of the training 
samples in the three difference images and obtain the 
following three ratios:  
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where I GB
ˆ , I HB

ˆ  and I SB
ˆ  are the median gray, hue and 

saturation levels of the background samples, and I GF
ˆ , 

I HF
ˆ  and I SF

ˆ  are the respective median values of the 



foreground samples. We have performed an experiment 
involving different kinds of frames and have observed that 
the values of RG, RF and RS are approximately in the ratio 
1:0.6:0.4. Accordingly, we choose the values of weights as 
w1 = 0.5, w2 = 0.3 and w3 = 0.2.  

Often the values of ID0 at the boundary of the 
foreground are lower than that in its interior. Thus, the 
expression for ID0 as given by (2) needs to be modified in 
order to avoid such a possibility. In order to rectify this 
problem, the temporal difference between frames is used 
to enhance the values of the boundary pixels of the 
foreground. Let IFt and IFt-2 denote the two gray level 
foreground images produced by the GMM module 
corresponding to the current and previous to the previous 
frames. The difference image of these two frames is 

IDT = |IFt-2 - IFt| (4) 
Since in IDT, the values of the pixels at the boundary of 

the foreground region are, in general, larger than those of 
the non-boundary region, ID0 given by (2) is modified by 
adding to it the IDT with a small weight: 

    IwIwIwIwI DTDSDHDGD •+•+•+•= 4321  (5)                    

The value of the weight w4 is chosen to be smaller 
relative to the other weights so as not to increase the pixel 
values at the boundaries of the various regions 
representing the moving background pixels in ID0. In our 
experiments, w4 = 0.1. The values of the other weights are, 
therefore, modified as w1 = 0.45, w2 = 0.27, w3 = 0.18 in 
order to normalize the four weights. Fig. 7 shows the 
overall difference image. It is seen from this figure that the 
contrast between the foreground and background pixels is, 
in general, more than in any of its constituent difference 
images. Since the pixel values of ID will be used as the 
feature of a given frame to distinguish between its 
foreground and background pixels, ID is a feature image. 

 

Figure 7 Constructed feature image ID. 

Similar to other techniques, the proposed method 
makes use of multiple features. However, its main 
advantage lies in incorporating these multiple features into 
a single feature characterized by the pixel values of the 
feature image ID. Regardless of the nature of the 
foreground or moving background pixels and the number 
of features used, the proposed feature extraction method 
results in a feature image with scalar-valued pixels. This 
very characteristic of ID, as we will see in the next 
subsection, can be used to simplify the classification of 
foreground and moving background pixels. 

2.2.3 SVM-Based Classification 

In this section, the pixels corresponding to the foreground 
mask produced by the GMM module are classified using 
the classification technique of SVM [9]. The SVM 
technique for classification is known to provide good 
results in situations such as ours, where the number of 
training samples is limited [10]. In order to reduce the risk 

of misclassifications, in the SVM classifier, we use the 
histogram of the pixels in a window centered at the pixel in 
question, instead of using the pixel value alone.  Also, in 
order to better discriminate the foreground and 
background pixels in the histogram feature space, we 
apply a kernel function as described in [11].  

By using the feature image ID, the SVM module first 
constructs local histograms for all the pixels in the 
foreground mask produced by the GMM module. The 
pixel p is then classified as a foreground or moving 
background pixel using the trained SVM classifier with its 
extracted histogram feature.   

III. PERFORMANCE EVALUATION  

In order to assess the proposed method, in this section, we 
apply it to segment the foregrounds of a number of video 
sequences with a dynamic background. The visual and 
quantitative results are compared with those obtained by 
using and six other methods presented in [1] [2-6].  

For our experiments, we set the number of training 
samples from the moving foreground and that from the 
moving background as KF = KB = 400. In order to reduce 
the computational cost for the computation of histograms, 
we first obtain the integral histogram of ID, which has a 
linear complexity to the data length, and then compute the 
actual histograms quite simply, as in [12].  

We conduct the experiment on three video sequences, 
Water [13], WaterSurface [14] and Curtain [14]. Based on 
the resolutions of the three sequences, the coefficients for 
the opening operation, erode and dilate, are set as (8, 6), (5, 
3) and (5, 3), respectively. The window size for the 
histogram calculation in the classification module are set 
to 11x11, 9x9 and 9x9, respectively, for the three 
sequences.       

The results of applying the proposed segmentation 
method and the methods of [2-6] on the Water, 
WaterSurface and Curtain sequences are shown, 
respectively, in Fig. 8, 9 and 10. 

 

 
Figure 8 Segmented foreground masks obtained by applying 
various segmentation methods on the Water sequence. 
(a) Original 190th frame. (b) Ground truth of the foreground. (c) 
GMM [1]. (d) Method [2]. (e) Method [3]. (f) Method [4]. (g) 
Method [5]. (h) Method [6]. (i) Proposed method. 

 



 
Figure 9 Segmented foreground masks obtained by applying 
various segmentation methods on the Watersurface sequence. (a) 
Original 578th frame. (b) Ground truth of the foreground. (c) 
GMM [1]. (d) Method [2]. (e) Method [3]. (f) Method [4]. (g) 
Method [5]. (h) Method [6]. (i) Proposed method.   

 
Figure 10 Segmented foreground masks obtained by applying 
various segmentation methods on the Curtain sequence. (a) 
Original 882nd frame. (b) Ground truth of the foreground. (c) 
GMM [1]. (d) Method [2]. (e) Method [3]. (f) Method [4]. (g) 
Method [5]. (h) Method [6]. (i) Proposed method. 

 
Fig. 8(a), 9(a) and 10(a) show the original 190th, 

578th and 882nd frames of the three sequences, whereas 
Fig. 8(b), 9(b) and 10(b) show the respective ground truths 
of the foregrounds. The images (c-h) in the three figures 
show the results of the foreground segmentation obtained 
by applying, respectively, the GMM method, the methods 
of [2-6], and the proposed method. It is seen from the 
illustrations shown in (c) of these figures that the GMM 
method even though segments almost all the foreground 
pixels, it includes in its segmentation many of the dynamic 
background pixels, since the method is quite sensitive to 
pixel motions. It is seen from illustration (d) and (e) of the 
figures that even though the methods presented in [2] and 
[3], which use neighboring pixel values and texture 
feature, respectively, are less sensitive to pixel motions in 
comparison to the GMM method, there are still a number 
of background pixels that are misclassified. The method in 
[4] gives relatively better results, as seen from its 
segmentation results shown in the illustrations (f) of the 

figures; however, it still removes some of the foreground 
pixels or includes some of the pixels belonging to the 
dynamic background. It is seen from the illustrations (g) 
and (h) of Figs. 11-13 that the methods in [5] and [6], 
which are also two-stage schemes, produce a moving 
object that is more complete, compared to that produced 
by the methods of [3] and [4] (illustration (e) and (f)), but 
at the same time, a number of background pixels are also 
included. The proposed method, however, is seen to 
provide the best results in terms of the completeness of the 
segmented foreground and exclusion of most of the 
background pixels. 

For quantitative evaluation of the various 
segmentation methods, false positive (FP), false negative 
(FN), false alarm rate (FAR), and tracker detection rate 
(TRDR) [15] are used as performance metrics.  

For the objective evaluations of the methods, 25 
frames are randomly selected from the set of the frames 
containing the moving object in each sequence. Each 
segmented foreground mask obtained by using a given 
method is compared with the corresponding ground truth 
in order to obtain the values of the performance metrics 
and averaged over the 25 frames of each sequence. Tables 
1 and 2 give, respectively, the average numbers of false 
positives and false negatives per frame. It is seen from 
these tables that the proposed method provides the lowest 
values for the false positives, and the second lowest values, 
in the most cases, for the false negatives. The reason for 
the GMM method for providing the lowest FN values can 
be attributed to the fact that this method is very sensitive to 
pixel motions, thus classifying all the moving pixels as 
foreground, as indicated by the very large values of false 
positives produced by it. 

 
Table 1. Average number of false positives per frame 

 [1] [2] [3] [4] [5] [6] proposed 

Water 8024 6318 3934 424 2175 1857 191 

Water surf. 779 344 749 246 317 349 172 

Curtain 1980 316 529 369 413 449 289 

Table 2. Average number of false negatives per frame 

 [1] [2] [3] [4] [5] [6] proposed 

Water 214 233 1127 833 659 847 519 

Water surf 95 211 596 192 189 196 180 

Curtain 129 281 434 274 284 268 261 

Table 3. Average false alarm rate 

 [1] [2] [3] [4] [5] [6] Proposed 

Water 0.69 0.61 0.58 0.17 0.44 0.35 0.08 

Water surf. 0.32 0.14 0.42 0.16 0.26 0.21 0.11 

Curtain 0.41 0.14 0.24 0.15 0.23 0.19 0.09 

Table 4. Average tracker detection rate 

 [1] [2] [3] [4] [5] [6] Proposed 

Water 0.96 0.94 0.73 0.75 0.77 0.74 0.86 

Water surf. 0.97 0.88 0.68 0.86 0.83 0.85 0.90 

Curtain 0.98 0.84 0.82 0.84 0.82 0.86 0.89 

 
Tables 3 and 4 give, respectively, the average false 

alarm rate and tracker detection rate. From these tables, it 
is seen that the proposed method gives the lowest FAR, 
which means that the ratio of the falsely classified 
foreground pixel to the total number of pixels classified as 
foreground pixels is the lowest. In most of the cases, the 
proposed method also has the second highest TRDR. The 



highest TRDR provided by the GMM method is resulted 
from its sensitivity to motions of the pixels thus classifying 
a moving pixel as a foreground pixel irrespective of 
whether it belongs to the foreground or background. 

The computation times of the proposed method and 
those of [2-5] are obtained by applying these methods to 
the 160x128 resolution WaterSurface and Curtain 
sequences on a Windows-platform PC with a 2.83 GHz 
Intel Core Quad CPU and 8 GB RAM using MATLAB 
codes. The results are shown in Table 5, in which the 
computation time of method [6] is not included, since it 
needs a manual sample selection and an off-line training 
procedure for SVM. The results presented in this table 
show that the proposed method on an average takes 87%, 
44% and 37% more time than the methods of [2], [3]and 
[5], respectively, with a significant superior segmentation. 
In comparison to the method given in [4], the proposed 
method not only provides a superior performance but also 
a computation time that is 10% lower. 

Table 5. Average computation time per frame (Second) 

 [2] [3] [4] [5] Proposed 

Sequence WaterSurface 5.70 7.52 11.75 7.78 10.38 

Curtain 4.63 5.81 9.59 6.24 8.79 

Average 5.12 6.67 10.67 7.01 9.59 

IV. CONCLUSION 

An accurate segmentation of moving foreground from 
video sequences is a difficult problem in the presence of a 
rapidly changing background. In this paper, a novel 
technique for segmenting the foreground from video 
sequences with a dynamic background has been developed 
by treating the segmentation problem as a problem of 
classifying the foreground and background pixels of a 
video frame. For the purpose of this classification, a novel 
feature image has been constructed and used in the 
framework of a support vector machine. The feature image 
has been constructed by using the individual features 
representing the gray levels, hue and saturation levels of 
the image pixels. An attribute of the feature image leading 
to the computational simplicity of the proposed 
segmentation technique lies in its ability to represent 
multiple features of a pixel with a scalar value. Another 
distinguishing characteristic of the proposed method is 
that, unlike some other data classification based 
approaches for segmentation in which a priori knowledge 
of the object’s shape and size is required or a set of training 
samples needs to be manually selected, the training 
samples employed by the classifier are automatically 
selected. The proposed method has been applied to a 
number of video sequences with a dynamic background to 
segment the moving foreground, and the results have been 
compared with those obtained by using some of the other 
existing schemes in the literature. In terms of the 
subjective and objective results for the segmentation, the 
proposed method has been shown to outperform the 
existing ones with an increased computational cost. 
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