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Segmentation of novel or dynamic objects in a scene, of-

ten referred to as “background subtraction” or “foreground

segmentation”, is a critical early in step in most com-

puter vision applications in domains such as surveillance

and human-computer interaction. All previously described,

real-time methods fail to handle properly one or more

common phenomena, such as global illumination changes,

shadows, inter-reflections, similarity of foreground color to

background, and non-static backgrounds (e.g. active video

displays or trees waving in the wind). The recent advent of

hardware and software for real-time computation of depth

imagery makes better approaches possible. We propose a

method for modeling the background that uses per-pixel,

time-adaptive, Gaussian mixtures in the combined input

space of depth and luminance-invariant color. This com-

bination in itself is novel, but we further improve it by in-

troducing the ideas of 1) modulating the background model

learning rate based on scene activity, and 2) making color-

based segmentation criteria dependent on depth observa-

tions. Our experiments show that the method possesses

much greater robustness to problematic phenomena than

the prior state-of-the-art, without sacrificing real-time per-

formance, making it well-suited for a wide range of practi-

cal applications in video event detection and recognition.

1. Introduction

Most systems that attempt to detect and recognize events

in live video, and particularly such systems in the areas of

surveillance and vision-based human-computer interaction,

rely heavily on an early step, commonly called “background

subtraction”, that segments the scene into novel (“fore-

ground”) and non-novel (“background”) regions. While im-

provement of the succeeding analysis steps in these sys-

tems has been the focus of a great deal of recent work, the

systems’ overall reliability usually depends as much, if not

more, on the accuracy and robustness of their background

subtraction methods.

Despite its importance, background subtraction remains

a poorly solved problem. This is painfully apparent to the

increasing number of scientists and engineers who have at-

tempted to bring computer vision applications to the mar-

ketplace. While their methods for background subtraction

may have been adequate for controlled laboratory settings

and experimental demonstrations, they often fail catastroph-

ically when confronted with a variety of real-world phe-

nomena that commonly occur in settings such as homes,

offices, and retail stores. Among the most problematic are:

Illumination changes: The background appearance

changes with the lighting, and such changes can be

confused with the introduction of foreground objects.

Shadows and inter-reflections: Moving foreground ob-

jects can create local illumination changes on back-

ground parts of the scene.

Background object changes: When objects are added to

or removed from the scene (e.g. when someone picks

up or leaves a package), or when an object considered

background is changed (e.g. when a chair is moved),

we may want to modify the background model if the

change persists for a long enough time.

Camouflage: Similarity between the appearance of a fore-

ground object and the background makes it difficult to

distinguish between them.

Non-static background: Objects like changing television

displays, foliage in wind, or a fan rotating in front of a

wall, are not easily modeled by simple pixel statistics.

High-traffic areas: If the true background is frequently

obstructed by many different foreground objects, it can

be difficult to determine what the true background is

and to segment foreground from it.

Some of these problems can be handled by very com-

putationally expensive methods, but in many applications, a

short processing time is required. For instance, most vision-

based human-computer interfaces must react in a timely

manner to a person’s requests in order to be useful, and

most vision-based surveillance systems collect far too much

video to analyze off-line at some later time. Background

subtraction methods used in such systems, therefore, need

to keep pace with the flow of video data, so that the systems

maintain some degree of “real-time” responsiveness.

This paper describes an algorithm for foreground seg-

mentation that is the first to exhibit robustness to all of the



Algorithm Characteristics Example Robustness to Various Phenomena

Color Depth Time Luminance Multimodal Low Visual Depth Non-Empty Illumination BG Object Shadows & Color Depth Rotating Active High-Traffic

Input Input Adaptive Norm’ed Color BG Stats Texture Discontinuities Scene Init Changes Changes Inter-Reflect Camouflage Camouflage Fan Display Areas
√ √ √ √

√ √ √ √ √ √ √ √

√ √ √

Pfinder[9]
√ √ √ √ √ √ √

√ √ √

Stauffer et.al.[7]
√ √ √ √ √ √ √

√ √

Eveland et.al.[1]
√ √ √ √ √ √ √

√ √ √

Gordon et.al.[3]
√ √ √ √ √ √ √

√ √ √ √ √

this method
√ √ √ √ √ √ √ √ √ √ √

Table 1. Summary of robustness of several background subtraction methods to a variety of common problems. Methods
given a

√

for a particular problem do not all handle it equally well, but at least contain some feature designed to address it.

problems described above without sacrificing real-time per-

formance. We achieve this in large part by taking advantage

of the recent development of real-time depth computation

from stereo cameras [5, 6, 8]. To first-order, our method

can be summarized as an extension of the time-adaptive,

per-pixel, Gaussian mixture modeling of color video, as de-

scribed recently by Stauffer and Grimson [7], to the com-

bined input space of color and depth imagery, as explored

by Gordon, et. al. [3]. We seek to combine the best as-

pects of both methods, and we also introduce interesting

new concepts to further improve the method’s performance.

The resulting robustness is significantly greater than that of

prior algorithms, and yet, provided that real-time depth im-

agery is available1, our method can still run in real-time on

standard hardware.

2. Previous work

Many approaches to background subtraction have been

proposed over the last few decades. The simplest class of

methods, often found in experimental computer vision sys-

tems, use color or intensity as input, and employ a back-

ground model that represents the expected background fea-

ture values at each pixel as an independent (in image space),

static (in time), unimodal (i.e. single-peaked, in feature

space) distribution. For example, the background statistics

are often modeled at each pixel using a single Gaussian,

stored as a color mean and covariance matrix. The model

is built during a “learning” phase while the scene is known

to be empty of foreground objects, and is never modified

thereafter. Typically, foreground is detected on a per-pixel

basis wherever the current input image differs significantly

from the distribution of expected background values. While

such methods are well-suited for fast implementation and

run time, they fail when confronted with any of the com-

mon, real-world phenomena listed in section 1.

Many methods have attempted to address some, but not

all, of these problems, by improving one or more aspects

of the basic class of methods. For example, by allowing

the background model statistics to be updated over time, a

system can adapt to gradual illumination changes, does not

1Usage of hardware and software for real-time dense depth computa-

tion is growing quickly as costs decline rapidly. At least one vendor plans

to provide this functionality in the near future at prices around US$100.

require an “empty” scene for initialization, and can incorpo-

rate persistent additions, removals, or alterations of objects

into its background model. Furthermore, if color compar-

isons are made in a luminance-normalized space, some ro-

bustness to shadows and inter-reflections is obtained. Both

of these ideas are incorporated in [9], among other systems.

By changing the per-pixel models of expected background

features from unimodal probability densities, such as single

Gaussians, to more sophisticated representations, such as

Gaussian mixture models, as in [2, 7], one can begin to ad-

dress complex, non-static backgrounds. All of these meth-

ods still have great difficulty with color camouflage, active

video displays, and high-traffic areas, among other things.

Others have taken advantage of the recent development

of real-time depth computation from stereo cameras. Be-

cause the shapes of scene objects are not affected by illu-

mination, shadows, or inter-reflections, depth information

provides much robustness to such phenomena. Depth data

is unreliable, however, in scene locations with little visual

texture or that are not visible to all cameras, and tends to be

noisy even where it is available. Hence, background sub-

traction methods based on depth alone [1, 4] produce un-

reliable answers in substantial portions of the scene, and

often fail to find foreground objects in close proximity to

the background, such as hands placed on walls or feet on a

floor. A method using both depth and color has been pro-

posed recently [3], but it lacks time adaptivity and uses a

relatively simple statistical model of the background.

By combining the best of all of these ideas, our algorithm

is able to perform reasonably well under all of the condi-

tions listed in section 1. Table 1 summarizes the charac-

teristics and capabilities of the algorithms described above,

and compares them against our method. Note that the union

of the rows for methods [7] and [3] produces the row cor-

responding to our method. However, due to further innova-

tions that we introduce, such as activity-based modulation

of model adaptation, we believe that our method handles

several problem cases significantly better than [7], [3], and

all other classes of methods in Table 1.

3. Method

Our method uses an approximation to Gaussian mixture

modeling to describe the recent history of color and depth

scene observations at each pixel. The models are updated



as new observations are obtained, while older data becomes

less influential. Since these models may include observa-

tions of both foreground and background, we choose at each

time step a subset of the Gaussians in each mixture as the

current model of background appearance. The current ob-

servation is classified as background if it matches that part

of the model, and as foreground otherwise. We discuss this

basic method, and several enhancements, in detail below.

An overview of the method is shown in Figure 1.

3.1. Gaussian mixtures in color and depth

The input to the algorithm is a time series of spatially-

registered, time-synchronized pairs of color and depth im-

ages obtained by static cameras. Each pair of correspond-

ing pixels in the two images for a given time step pro-

vides one scene observation in the combined input space

of color and depth. We represent color in the YUV space,

which separates luminance and chroma. We use depth, de-

noted as D, instead of disparity, so that our algorithm is

applicable in systems that compute depth not only by im-

age area-matching techniques, but also by methods based

on active illumination, lidar, or other means. The ob-

servation at pixel i at time t can be written as �Xi,t =
[ Yi,t Ui,t Vi,t Di,t ].

The recent history of observations at a given pixel,

[ �Xi,1, . . . , �Xi,t−1], is regarded as a statistical process inde-

pendent of that for all other pixels, and is modeled by a

mixture of K Gaussian distributions. This is also the basis

of the methods of [2, 7], except that they use an observation

space of only non-luminance-invariant (RGB) color. The

probability of the current observation at pixel i, given the

model built from observations until the prior time step, can

then be estimated as

P ( �Xi,t| �Xi,1, . . . , �Xi,t−1) = (1)
∑K

k=1
wi,t−1,k ∗ η( �Xi,t, �µi,t−1,k, Σi,t−1,k)

where η is a Gaussian probability density function, where

wi,t−1,k is the weight associated with the kth Gaussian in

the mixture at time t − 1, , and where �µi,t−1,k and Σi,t−1,k

are the mean Y UV D vector and covariance matrix of this

kth Gaussian. We denote the kth Gaussian distribution of

a mixture as ηk. The weights wi,t−1,k indicate the relative

proportions of past observations modeled by each Gaussian.

Rather than use full covariance matrices, we assume that

all observation component measurements are independent,

and that the chroma components have the same variance:

Σ = diag[ σ2

Y σ2

C σ2

C σ2

D ] (2)

σ2

Y , σ2

C , and σ2

D are the luminance, chroma, and depth vari-

ances, respectively.

We choose K to be the same for all pixels, typically in

the range of 3 to 5. As more Gaussians are used, the model

is better able to represent more complex scenes, but at the

cost of slowing the algorithm.

3.2. Invalid depth and chroma

Our methods for constructing and updating these

Gaussian mixture models are complicated by the fact that

many color and depth observations are not reliable. There-

fore, before describing these methods, we discuss how we

detect and represent “invalid” measurements.

The chroma (U and V) components of our color repre-

sentation become unstable when the luminance is low. We

therefore define a chroma validity test, based on luminance,

as CVal(Y ) ≡ Y > Ymin. We also define this predicate

to operate on a model Gaussian ηk, by applying it to the

luminance mean of the distribution: CVal(ηk) ≡ µY,k >
Ymin. When CVal(Y ) or CVal(ηk) are false, we do not use

the chroma components of the current observation or the

Gaussian distribution.

Stereo depth computation relies on finding small area

correspondences between image pairs, and therefore does

not produce reliable results in regions of little visual tex-

ture and in regions, often near depth discontinuities in the

scene, that are visible in one image but not the other. Most

stereo depth implementations attempt to detect such cases

and label them with one or more special values, which we

denote collectively as invalid. We rely on the stereo depth

system to detect invalid depth, and we apply no extra tests.

We define the following simple depth validity predicate:

DVal(D) ≡ (D �= invalid ).

Imager noise and subtle lighting variability can cause the

depth measurement at a pixel to flicker in and out of valid-

ity, even if nothing is actually changing in the scene. Also,

shadows often provide the texture needed to extract valid

depth in regions where measurements are usually invalid.

For these reasons, our background subtraction algorithm al-

lows the same Gaussian ηk to represent a set of observations

that contain both valid and invalid depth measurements. If

many of these measurements are invalid, however, we re-

gard the depth mean and variance of ηk as unreliable, and

we do not use them in comparisons with the current obser-

vation. Specifically, we use the depth statistics of ηk only if,

among the observations represented by ηk, the fraction with

valid depth exceeds some threshold. We extend the predi-

cate DVal to operate on Gaussian distributions accordingly:

DVal(ηk) ≡
vk

wk

> ρ (3)

wk is representative of the total number of observations that

contributed to ηk, and vk indicates the number of these ob-

servations that had valid depth. Methods for maintaining

these variables over time are given in section 3.3. In our

current system, we set ρ to a relatively low value, such as

0.2, so that we are able to estimate the depth of a scene

location even when the depth measurement system cannot

extract a reliable value there most of the time.
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Figure 1. Overview of per-pixel model adaptation and foreground/background decision processes. This diagram shows what
occurs at a single pixel when a new input observation is processed.

3.3. On-line clustering of observations

The Gaussian mixtures used to model the history of

scene observations at each pixel must be updated as new

observations are obtained. Ideally, at each time step t, we

would re-estimate the parameters for a pixel’s mixture by

applying an exact Expectation-Maximization algorithm on

some time window of recent observations that includes the

latest one. Unfortunately, this is a very costly procedure, so

we instead use an on-line K-means approximation similar to

that of [7]. The basic idea is to attempt to match the current

observation �Xi,t at a given pixel with one of the Gaussians

ηk for that pixel, and, if a match is found, to adapt the pa-

rameters of ηk using the current observation. If no match is

found, we replace one of the existing ηk with a new one that

represents the current observation.

One way to carry out the matching process is to com-

pute a “matching score” between �Xi,t and each ηk in the

pixel’s mixture model, and then to choose as a match the ηk

that maximizes this score, provided it is above some thresh-

old. A good choice for a matching score is the weighted

Gaussian probability density evaluated at �Xi,t. The match-

ing distribution k would be selected as

k = arg max
k

(wi,t−1,k ∗ η( �Xi,t, �µi,t−1,k, Σi,t−1,k)) (4)

This matching score favors ηk with high weight and low

variance: if �Xi,t is similarly close to the means of two ηk,

the one with higher weight and lower variance will likely

have the higher score. Such ηk often model observations

corresponding primarily to the true scene background. This

is because the background consists usually of persistent,

and often static, objects and processes. Therefore, ηk that

largely model background are likely to account for more of

the weight of recent observations, and often have small vari-

ances that reflect the unchanging themes of the background.

The above matching procedure hence favors the formation

of inclusive, yet compact, models of the background.

Because this method is very computationally expensive,

we instead use an approximation that sacrifices little ac-

curacy, continues to promote compact background descrip-

tions, and has a runtime that is, in practice, no longer linear

in K . Rather than compute the matching score for all ηk,

we first sort the ηk in order of decreasing weight/variance,

and then select as the best match the first Gaussian whose

mean is sufficiently near to �Xi,t. The dependence of (4)

on the weight and variance of ηk are addressed by the sort-

ing, while the dependence on the mean of ηk is factored

into the mean comparison. We use only the luminance vari-

ance, rather than the norm of the full covariance matrix,

|Σi,t−1,k|, for the sorting, because of the possibility of unre-

liable depth or chroma data, and because of the higher noise

levels typical of depth measurements.

The matching criterion M we use is separated into a

depth-based portion MD and a color-based portion MC ,

both of which must be true for a match to occur. When the

color and depth of both �Xi,t and ηk are valid, we require

that all squared differences between corresponding compo-

nents of �Xi,t and the mean of ηk are less than some small

multiple β of ηk’s corresponding component variance. In

the absence of valid depth data in either �Xi,t or ηk, MD



assumes a match. Similarly, in the absence of valid chroma

data in either �Xi,t or ηk, MC uses only luminance to make

a decision. The full matching criterion, omitting the i, t,
and k subscripts, can be written as:

M ≡ MD ∧MC , where (5)

MD ≡ ¬DVal(D) ∨ ¬DVal(ηk) ∨ ((D − µD)2 < β
2
σ

2

D)

MC ≡ [CVal(Y ) ∧ CVal(ηk) ∧ ((Y − µY )2 < β
2
σ

2

Y ) ∧

((U − µU )2 + (V − µV )2 < β
2
σ

2

C)] ∨

[¬(CVal(Y ) ∧ CVal(ηk)) ∧ ((Y − µY )2 > β
2
σ

2

Y )]

The parameter β is typically chosen to be about 2.5 to 3, so

that the boundary of the matching zone in YUVD-space for

ηk encompasses over 90% of the data points that would be

drawn from the true Gaussian probability density.

If �Xi,t and ηk are found to match, we incrementally

adapt the parameters of ηk toward �Xi,t by applying the fol-

lowing equations:

�µi,t,k = (1 − α)�µi,t−1,k + α �Xi,t

σ2

Y,i,t,k = (1 − α)σ2

Y,i,t−1,k + α(Yi,t − µY,i,t−1,k)2

σ2

C,i,t,k = (1 − α)σ2

C,i,t−1,k + (6)

α( �XC,i,t − �µC,i,t−1,k)T ( �XC,i,t − �µC,i,t−1,k)

σ2

D,i,t,k = (1 − α)σ2

D,i,t−1,k + α(Di,t − µD,i,t−1,k)2

vi,t,k = (1 − α)vi,t−1,k + α(DVal(D))

�XC and �µC denote the chroma subvectors of the pixel ob-

servation and the mean of ηk, and vi,t,k is the counter of

valid depth observations discussed in section 3.2. The para-

meter α can be interpreted as a learning rate: as α is made

smaller, the parameters of ηk will be perturbed toward new

observations in smaller incremental steps. Also, 1/α effec-

tively determines the duration of the time window of “re-

cent” observations that the Gaussian mixture models repre-

sent, with values further in the past being weighted in an

exponentially decreasing manner.

All variances are not allowed to decrease below some

minimum value, so that matching does not become unsta-

ble in scene regions that are static for long time periods.

Also, the luminance variance floor was kept at a substan-

tial level, so that luminance changes caused by shadows and

inter-reflections would less often result in matching failures.

The weights for all Gaussians are updated according to

wi,t,k = (1 − α)wi,t−1,k + αMi,t,k (7)

Mi,t,k is 1 (true) for the ηk that matched the observation

and 0 (false) for all others, so (7) causes the weight of the

matched ηk to increase and all other weights to decay.

If no match is found, the Gaussian ranked last in

weight/variance is replaced by a new one with a mean equal

to �Xi,t, an initially high variance, a low initial weight (α),

and vi,t,k = αDVal(D).

3.4. Background model estimation

At each time step, one or more of the Gaussians in each

per-pixel mixture are selected as the background model,

while any others are taken to represent foreground. We des-

ignate the current observation at a pixel to be part of the

foreground if it was not matched to any of the ηk in the

pixel’s current background model.

We select background Gaussians at a given pixel ac-

cording to two main criteria: 1) select a first, “deepest”

Gaussian, if possible, and 2) select additional Gaussians,

if necessary, until their total weight is sufficiently high. The

first criterion is based on the fact that, in general, we do

not expect to be able to see through the background. The

second is based on the notion that the background model

should account for a reasonably high fraction of past obser-

vations. We discuss each criterion in more detail below.

For the first criterion, we choose the Gaussian ηk with

the largest depth mean, but we consider only those Gaus-

sians for which DVal(ηk) = true and whose weight is

above a threshold TD. These restrictions discourage the

selection of a deepest background ηk based on depth mea-

surement noise or transient observations. They also help us

handle image regions where the true background seldom,

if ever, produces reliable depth measurements, perhaps be-

cause of low visual texture. In such cases, the ηk represent-

ing the true background has invalid depth statistics, while

the Gaussian with the largest valid depth mean might be one

with low weight corresponding to a seldom-observed fore-

ground object. The weight threshold TD helps us avoid se-

lecting the latter Gaussian as background. We typically set

TD around 0.1-0.2, so that we can select an ηk representing

the true background even when it is usually not visible.

For the second criterion, we add Gaussians in order of

decreasing weight/variance to the background model un-

til the total weight of all background Gaussians exceeds a

threshold T . This favors Gaussians that model frequent,

consistent observations. The second criterion is useful

where the true background usually produces invalid depth

data, so that our first criterion fails to find any Gaussian

with valid depth and significant weight. It is also useful

where the background is truly multimodal, such as for a fan

rotating in front of a wall, or trees waving in the wind. We

need to use multiple ηk to model the background well in

such cases, and we want to select enough to account for a

significant fraction of recent observations.

3.5. Linking depth and color matching

In the method for matching an observation �Xi,t to a

Gaussian ηk described in section 3.3, color and depth are

analyzed independently, so that a failure to match in either

of these spaces causes the overall match to fail. Hence, if the

difference between �Xi,t and ηk in one space is just outside

the acceptable tolerance, the overall match will be rejected



even if evidence in the other space strongly supports it. It

would seem, intuitively, that we could make this process

less brittle, and improve our model’s integrity, by introduc-

ing some linkage between comparisons in color and depth.

We achieve this by allowing the depth match decision for

a particular �Xi,t and ηk to bias the companion color match

decision in the same direction. This is done for two cases of

depth matching, and in each case, the bias is implemented

by adjusting the parameter β before the color matching test

MC is applied. The first case occurs when both �Xi,t and

ηk have valid depth and are near each other, thereby sati-

fying the last predicate of MD. In such instances, where

depth measurements give a positive indication of a match,

we increase β, typically by a factor of 2, so that we are

more lenient in our color matching. This idea, discussed

in more detail in [3], helps mitigate the tradeoff in setting β
high enough to tolerate appearance changes due to shadows,

inter-reflections, and lighting changes, but low enough to

avoid foreground omissions due to color camouflage (sim-

ilar color of foreground and background). By increasing β
only where depth indicates a probable match, we are better

able to ignore strong shadows in such cases, while not com-

promising the restrictiveness of our color matching within

regions of uncertain depth. This is also very helpful in mod-

eling dynamic background objects, such as video displays

or distant trees waving in the wind, that have somewhat con-

stant depth characteristics but highly varying color. In these

instances, we rely more heavily on depth comparisons and

reduce our sensitivity to large fluctuations in color.

The second case in which we allow depth data to influ-

ence color matching occurs when the validity of the current

depth observation does not match that of ηk. This com-

monly happens when a foreground object with valid depth

passes in front of a background region with low visual tex-

ture that produces primarily invalid depth. It also happens

frequently in the reverse situation, when the background

depth is valid but that of the foreground is not, often due

to the depth discontinuity between foreground and back-

ground. Most methods that use depth do not allow matching

between valid and invalid depth, and will therefore handle

the above cases well. However, because changes in depth

validity at a scene location are frequently caused by shad-

ows, imager noise, and lighting variability, these methods

tend to produce a very noisy foreground segmentation. The

predicate MD we give in (5), on the other hand, always al-

lows matching when there is a mismatch in depth validity,

thereby relying on color alone to make foreground decisions

in such cases. Neither of these options is entirely satisfac-

tory, and we would like to find a middle ground.

We do this by regarding a mismatch in depth validity

between �Xi,t and ηk as a likely, but not definite, indicator

that the overall match should be rejected, and we therefore

tighten the color matching threshold. Specifically, when

DVal(D) �= DVal(ηk), we decrease β, typically by a fac-

tor of 2, before the color matching criterion MC is ap-

plied. This dramatically reduces foreground omissions due

to color camouflage in regions where either the foreground

or background depth is unreliable because of low visual tex-

ture or depth discontinuities.

3.6. Activity-based learning modulation

As the learning rate α is increased, static changes to the

background, such as the moving of a chair, are correctly

incorporated into the background model more quickly. Un-

fortunately, the model of the true background is also lost

more rapidly in regions of high foreground traffic, and true

foreground objects that remain relatively static, such as two

people who have stopped to have a conversation, fade more

quickly into the background. We mitigate this tradeoff by

exploiting the tendency for the scene “activity” level to be

higher in the latter two cases than in the first. Specifically,

we compute a scene activity measure A at each pixel, and

we reduce the learning rate α (used in the update equations

(6) and (7)) by some factor ξ at all pixels where A exceeds a

threshold H . A moved, but now static, chair will then con-

tinue to be incorporated into the background model quickly,

while foreground objects that are not completely motionless

will be incorporated less quickly.

The activity level A at each pixel is set to zero for the

first time step, and thereafter is computed recursively from

the previous activity level and the luminance difference be-

tween the current frame and the last:

Ai,t,k = (1 − λ)Ai,t−1,k + λ |Yi,t − Yi,t−1| (8)

The activity learning rate λ helps temporally smooth the

frame differences, and helps to keep the activity level high

within the interior of low-texture objects as they move

across the scene. The threshold H is set as low as possible

without causing imager noise to drive A above H at a sub-

stantial fraction of pixels. Depth is not used in computing

A in our system because of the higher depth noise level. We

typically set ξ in the range of 5 to 20; the higher the value

of ξ, the longer non-static foreground objects may obscure

the background before being incorporated into it. α is not

reduced to zero, so that our method is able to learn models

of dynamic backgrounds, albeit more slowly.

4. Experimental results

We have implemented our algorithm to run in real-time

on a standard PC platform. With little optimization, the

method runs at 8Hz on 320x240 images on a 500MHz Pen-

tium. Color and depth input were supplied by a stereo cam-

era head with special-purpose hardware for depth computa-

tion, based on [8]. To test our algorithm in a reproducible

manner, however, we used file sequences captured from the



stereo camera pair at 320x240 resolution and 15Hz. In this

section, we compare the performance of our method on a

challenging test sequence to several alternatives.

We denote our method as (A), and we compare it against

several methods in which a single key component of (A)

has been removed. Specifically, we tried (B) removing

depth information, (C) removing color information, (D) us-

ing an RGB color space instead of YUV, (E) decreasing

the per-pixel background model complexity from Gaussian

mixtures to single Gaussians, (F) removing activity-based

learning modulation, and (G) removing depth-based mod-

ulation of color matching. Methods (B), (C), and (E) are

related to [7], [1], and [3], respectively, but in each case,

the experimental method contains additional features, such

as activity-based learning rate modulation, that significantly

improves its performance beyond that of the related prior

work. For all methods, the learning rate α was set to pro-

duce an adaptation time window of several minutes.

The test sequence is 10 minutes long, with no image be-

ing devoid of “foreground” people. It contains several dy-

namic background objects, namely several video displays

(toward the upper left of the images) and a sign rotating

about a vertical axis at about 0.5Hz (upper middle of im-

ages, sitting on oval-shaped table). During the first half of

the sequence, two displays (“display1” and “display2”) are

active and one (“display3”) is off, while two people walk

around the room. Near the midpoint of the sequence, the

chair in the lower left of the image is moved to new floor po-

sition, “display2” is switched off, “display3” is switched on,

and several more people enter the scene. One of these peo-

ple stands near the middle of the back of the room, and re-

mains there for the rest of the sequence, occasionally shift-

ing his weight or moving his arms. The other new people

walk around continuously in the lower right portion of the

image, creating a “high-traffic” area.

For this sequence, the ideal foreground segmentation

would, in all frames, contain nothing but the people and

any objects they manipulate. The video displays and the

rotating sign would always be modeled as part of the back-

ground. Foreground objects would be segmented without

“holes” (missing pieces) and without their shadows. How-

ever, for any pixel-level segmentation method with no input

from higher level modules, we also expect some temporary

errors while the method adapts to changes made to the true

background. For instance, when the chair is moved, we ex-

pect to see, for some amount of time, two erroneous fore-

ground regions corresponding to the new and old locations

of the chair. Also, we expect temporary, undesirable fore-

ground inclusions near the beginning of the sequence, while

the method learns models for parts of the scene that were

initially occluded by foreground objects. We would like to

minimize the occurrence and duration of such errors.

Our experiments indicated that our method came much

closer to achieving this ideal segmentation than any of the

alternatives. We discuss our general observations below,

and will refer to the selected, illustrative frames shown in

Figure 2. All images in each column of the figure corre-

spond to the same frame from each sequence; the top row

shows the original video frame luminance, while the re-

maining rows show the foreground extracted by the various

methods. Several of the test sequence challenges described

above are indicated in result images for method (B).

In general, our method extracted people more consis-

tently and with many fewer holes than any of the alterna-

tives. We observe fewer holes in (A) due to color or depth

camouflage than in (B) and (C), since (A) has an addi-

tional measurement source to disambiguate each of these

situations. Very few shadows or inter-reflections were ob-

served in the foreground for our method, largely as a result

of our use of a luminance-invariant color space, as can be

seen from comparing frames of methods (A) and (D). Also,

our method rarely included the active video displays in the

foreground, and usually did not include the rotating sign.

For the sign in particular, it is evident that this success was

due in part to the use of multimodal (mixture of Gaussian)

background models, since the sign appears in several result

frames for the unimodal method (E). However, for the sign

and particularly for the active video displays, the loosen-

ing of the color matching criterion in the presence of depth

matches was also important. This is evidenced by the more

frequent appearance of the active displays in results for (G),

which did not use depth-based modulation of color match-

ing, and for (B), which did not use depth information at all.

In comparing the results of (B) and (G) to those for (A),

we also see fewer holes in the foreground people in the high-

traffic area. This can be explained by first noting that the

true scene background here contains a large amount of in-

valid depth, while the people usually have valid depth data.

In addition, several people in the scene are wearing blue

jeans, while the carpet is also blue. Method (A) tightens

the color matching criterion when the validity of the cur-

rent observation and background model do not match, and

therefore produces fewer foreground omissions due to color

camouflage in this part of the scene. Methods (B) and (G)

do not do this, and have greater camouflage problems.

Activity-based learning rate modulation proved very

helpful in minimizing temporary errors due to background

changes, without compromising robustness to other phe-

nomena. For example, the change in the location of the

chair was incorporated into the background model by (A) in

less than 2 minutes, while (A) segmented people accurately

in the high-traffic area for the full 5 minutes of its duration.

The slower background model learning rate in the presence

of activity largely accounts for this time difference, as can

be seen from the more significant foreground omissions in

the high-traffic area in the late frame results of (F).
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Figure 2. Comparison of our method to close relatives, at selected frames of a challenging video sequence. Color input is
shown in top row; input depth is not shown. Result rows are for the following methods: (A) the method of this paper; (B)
no depth (color-only); (C) no color (depth-only); (D) RGB (instead of YUV); (E) unimodal background models (not multiple
Gaussians); (F) no activity-based learning modulation; (G) no depth-based modulation of color matching. Where applicable,
parameter settings were K = 4, α = 0.0006, β = 2.5, ρ = 0.2, Ymin = 16, T = 0.4, TD = 0.2, λ = 0.09, H = 5, ξ = 5. Small,
isolated foreground regions, and small holes within foreground, were removed by applying an area threshold to the results
of connected-components analysis.



Activity-based learning modulation was also the most

important factor in enabling (A) to segment a significant

portion of the relatively inactive person in the upper-middle

of the later frames. Although this person did not move

much, he moved enough to cause the learning rate to be

lowered at his location much of the time, and he was al-

most always segmented, at least in part, for the entire 5 that

minutes he stood at his position. In contrast, in method (F),

where no learning rate modulation was used, he was almost

entirely incorporated into the background model after just

1.4 minutes, so that only small parts of him occasionally

appeared in the foreground thereafter.

For (C), in which color is not available, we improved

results by modeling valid and invalid depth with separate

Gaussians, as in [1], rather than combine them in single

Gaussians as described in section 3.2. Despite this, results

for (C) were rather poor, largely because of the substan-

tial low-texture image regions, such as the floor, that pro-

duce very noisy, often invalid depth data. At many pixels,

the floor is modeled primarily by one Gaussian for which

DVal(ηk) = false . Foreground objects passing through

these pixels, on the other hand, tend to have valid depth and

are modeled by Gaussians with DVal(ηk) = true. Accord-

ing to the criteria for selecting background model Gaussians

discussed in section 3.4, the latter Gaussians will be chosen

preferentially, and incorrectly, when their weight exceeds

TD. This happens most in the high-traffic area, since the

floor is frequently obscured here. The background model

here quickly becomes, roughly, the outer hull of the space

in which the people walk.

It is also important to note that, unlike in method (A),

the depth-only method (C) is unable to distinguish differ-

ent people passing through a pixel at similar depths, even if

they have different color characteristics. This causes the ob-

servations representing people in the high-traffic area to be

lumped into fewer Gaussians, whose weights rapidly grow

and cause them to even more quickly dominate the Gaus-

sians modeling the floor. Similar things occur in the color-

only method (B): for instance, a person in a light gray shirt

walking five feet in front of a white file cabinet may match

the cabinet in color. Not only will the segmented person

contain holes there, but he also will corrupt the model of

the cabinet, making its mean a little more gray as his color

data is used to adapt it. Method (A), on the other hand, uses

different Gaussians because of the very different depths of

these objects, and the colors associated with each Gaussian

more accurately reflect the respective objects. These exam-

ples point out a substantial, if subtle, advantage of using

combined input space of depth and color: observations cor-

responding to different objects may overlap substantially in

either space alone, but often do not in the combined space.

Methods that use both color and depth are therefore able

to build statistically cleaner models of the background, and

hence tend to produce cleaner foreground segmentations.

5. Conclusions

We have described a new algorithm for background esti-

mation and removal in video that possesses much greater ro-

bustness than prior state-of-the-art to a variety of common,

problematic, real-world phenomena. Because our method

operates only at the pixel level, it is well-suited for combi-

nation with any of a wide variety of foreground segmenta-

tion techniques that consider inter-pixel relationships, ana-

lyze regional scene properties, or use high-level input from

modules such as object trackers or identifiers. While it

operates in real-time on standard hardware, the fact that

it processes each pixel independently also makes it highly

amenable to a much faster, parallel implementation. This

combination of speed and reliability creates a solid back-

ground subtraction platform on which to build a wide vari-

ety of surveillance, human-computer interaction, and other

applications for practical, relatively unconstrained settings.
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