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based on convolutional neural networks
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Abstract

The material attributes of foreign object debris (FOD) are the most crucial factors to understand the level of damage

sustained by an aircraft. However, the prevalent FOD detection systems lack an effective method for automatic material

recognition. This paper proposes a novel FOD material recognition approach based on both transfer learning and a

mainstream deep convolutional neural network (D-CNN) model. To this end, we create an FOD image dataset

consisting of images from the runways of Shanghai Hongqiao International Airport and the campus of our

research institute. We optimize the architecture of the D-CNN by considering the characteristics of the material

distribution of the FOD. The results show that the proposed approach can improve the accuracy of material

recognition by 39.6% over the state-of-the-art method. The work here will help enhance the intelligence capability of

future FOD detection systems and encourage other practical applications of material recognition technology.

Keywords: Foreign object debris, Material recognition, Deep learning, Deep convolutional neural networks,

Transfer learning

1 Introduction

Foreign object debris (FOD) refers to any object located

in and around an airport (especially on the runway and

the taxiway) that can damage the aircraft or harm air-

carrier personnel [1]. Typical examples of FOD include

twisted metal strips, components detached from aircraft

or vehicles, concrete chunks from the runway, and plastic

products. FOD poses a safety risk to an aircraft and a

significant economic loss to airlines. The crash of Air

France Flight 4590 that killed 113 personnel in 2000 was

caused by a twisted metal strip [2], as shown in Fig. 1.

Moreover, the direct economic loss due to FOD damage is

conservatively estimated to be 3 ~ 4 billion USD per year [3].

To reduce or eliminate FOD damages, certain companies

have developed FOD detection systems, such as the Tarsier

system by QinetiQ, FODetect by Xsight, and iFerret by

Stratech [4]. All these systems use a camera to take a

photograph of suspicious FOD, and then, the photographs

are verified by human experts. These systems have been

commercially deployed in a few airports but have not

achieved large-scale global usage. One main reason for this

low-level deployment is that the final FOD verification step

relies exclusively on recognition by a human expert, which

has two disadvantages. The first disadvantage is that

reliable verification requires a capable and experienced

official, which incurs additional cost for the airport authority.

For example, the Vancouver Airport filled this position with

an employee from its FOD vendor. The second disadvantage

is that people’s recognition capability is not completely

trustworthy because they are inevitably fatigued from time

to time.

Han et al. [5, 6] worked on FOD object recognition

using a support vector machine (SVM) and random

forest. FOD object recognition is to identify what the

FOD is. Unfortunately, the exact nature of FOD is varied

because FOD can be composed of any object, any color

and any size. Over 60% of the FOD items are made of

metal. Therefore, recognition of the FOD material

constitution has much greater practical significance than

object recognition.

Material recognition is a fundamental problem in

computer vision. In contrast with the several decades of

object recognition research, material recognition has

only begun receiving attention in recent years. It is a

flourishing and challenging field. The approaches to
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material recognition can be broadly categorized as hand-

crafted or automatic feature extraction. Hand-crafted

approaches can be further divided into surface reflectance

[7–11], 3D texture [12–19], and feature fusion [20–22]

approaches. Automatic feature extraction approaches refer

to those that involve acquiring image features using a deep

convolutional neural network (D-CNN) [23–26].

There are some correlations between the surface

reflectance properties and the categories of materials.

For example, wooden surfaces tend to be brown,

whereas metallic ones tend to be shiny. However, different

classes of materials may exhibit similar reflectance proper-

ties, such as the translucence of plastic, wax, and glass.

Consequently, understanding an object’s reflectance

properties is insufficient to determine its material consti-

tution. Similarly, different materials may have the same

3D texture pattern, as shown in Fig. 2. To overcome these

challenges, researchers have attempted to combine

different features or have attempted automatic feature

extraction to perform material recognition tasks. Some

remarkable results were obtained on some specific datasets

in certain studies.

However, past research results remain inadequate to

meet the demands of FOD material recognition. First,

there is no specific FOD dataset for the task because of

the unique airport environment. Although Bell et al. [25]

used more than 300 million image patches for training,

the images were acquired mainly in indoor environments

where light conditions are quite different from the FOD

emergence locations. The results were hence quite poor

when these 300 million image patches were used for

training while FOD images were used for testing (please

refer to the “Section 4” for details). Second, a high-

recognition ratio is necessary for metal recognition.

Metallic objects are far more harmful than other

materials. Meanwhile, 60% of FOD is constituted by metal

[1]. However, according to prior results [19, 21], the

recognition rate was quite low for metallic objects.

This paper proposes a novel FOD material recognition

approach based on transfer learning and a mainstream

deep convolutional neural network (D-CNN) model.

This paper describes an FOD image dataset consisting of

images taken on the runways of Shanghai Hongqiao

International Airport and the campus of our research

institute. The dataset consisted of 3470 images divided

into three categories by material: metal, concrete, and

plastic. The proposed approach is optimized to

recognize metal because of the high risk that is due to

its high-damage level to aircrafts and its high occurrence

frequency in airports.

This research will help improve the intelligence

capability, the ease of using, and the user experience of

FOD detection systems. It will also encourage more

applications of material recognition systems, especially

in security and manufacturing, such as construction site

management [27, 28].

The rest of this paper is organized as follows: Section

2 introduces related work, and our approach is described

in Section 3. Section 4 presents a discussion of the

experiment results, and Section 5 summarizes our

conclusion and plan for future work.

2 Related work

Material recognition, a fundamental problem in computer

vision, has a wide range of applications. For example, an

autonomous vehicle or a mobile robot can make decisions

on whether a forthcoming terrain is asphalt, gravel, ice, or

grass. A cleaning robot can distinguish among wood, tile,

or carpet. The approaches to material recognition are

broadly divided into two categories according to feature

extraction methods: hand-crafted features and automatic

features. Hand-crafted approaches can be further divided

into surface reflectance-based, 3D texture-based, and

feature fusion-based approaches. Automatic feature

extraction approaches refer to those acquiring image

features through a D-CNN.

The most popular formalization for model surface

reflectance is the bidirectional reflectance distribution

function (BRDF). This function defines the amount of

light reflected at a given point on a surface for any

combination of incidence and reflection angles [21]. The

BRDF has a parametric type [29, 30] and an empirical

type [7–9, 11]. Parametric BRDF models cannot acquire

a broad set of real-world reflectance properties. In

Fig. 1 The twisted metal strip that caused Air France Flight 4590 to crash

Fig. 2 Surfaces with similar textures may be composed of different

materials. These objects are made of fabric, plastic, and paper, from

left to right [21]
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contrast, empirical BRDF models always require prior

knowledge, such as illumination conditions, geometry,

and surface material properties. Such prior knowledge

cannot be expected to be available for real-world images.

Zhang et al. [10] introduced an empirical model based

on a reflectance disk and reflectance hashing. The

reflectance disk, a measurement of the surface property,

was built using a customized camera apparatus. Gaussian

low-pass filters, Laplacian filters, and gradient filters were

applied to the reflectance disk. Textons, referring to

fundamental micro-structures in natural images, were

computed by k-means clustering on the output of the

filter banks. Following this approach, texton boosting and

reflectance hashing were employed for feature selection

and image classification. This approach is not feasible for

real-world images, as reflectance disks are generated by a

customized apparatus in a laboratory environment.

Moreover, different surface materials may exhibit similar

reflectance phenomena: for example, plastic, glass, and

wax are translucent. Therefore, fulfilling the goal of

material recognition only by using surface reflectance

properties appears to be difficult.

Three-dimensional texture refers to surface roughness

that can be resolved by the human eye or a camera. Such

texture-based approaches follow the feature extraction-

and-classification routine. Various researchers used a

number of descriptors to extract the local features of an

image. For example, some studies [12–17] used the

maximum response, one study [18] used sorted random

projections, and another study [19] applied a kernel

descriptor for this purpose. These feature vectors were

then fed into a classifier, usually SVM, latent Dirichlet

allocation (LDA), or nearest neighbor. These approaches

were designed to obtain salient results on CUReT [15–17],

ETHTIPS [12–14], and FMD [20]. However, these datasets

are inappropriate for FOD material recognition tasks. The

images from CUReT and ETHTIPS datasets were captured

using a customized apparatus in an ideal laboratory envir-

onment. These images not only had different appearance

with real-world images but also were unobtainable in daily

life. The FMD dataset is composed of real-world images

from the website Flickr. However, the FMD dataset suffers

three downsides with regard to FOD recognition: (1) Few

samples are FOD alike. (2) The photos are barely taken

outdoors. (3) There is a lack of intentional collection of

images of metal, concrete, and plastic materials.

Sharan et al. [20–22] combined reflectance and 3D

texture into new fused features as input to an LDA or an

SVM classifier. They chose four groups of features, namely,

color and texture (e.g., Color, Jet, and SIFT), micro-texture

(e.g., Micro-Jet and Micro-SIFT), shape (e.g., curvature), and

reflectance (Edge-Slice and Edge-Ribbon). As the previous

work, this research was also performed on an FMD dataset

that made it unfeasible for FOD material recognition tasks.

Since Hinton’s monumental work [31] in 2006, deep

learning has received considerable attention in both

academia and industry because of its superior performance

over other machine learning methods. He et al. [32] used a

152-layer D-CNN to obtain a 3.57% error rate on the

ILSVRS2015 dataset. The result was better than the error

of 5.1% incurred by humans [33]. Researchers have

attempted to apply D-CNNs to automatically extract image

features to achieve material recognition. Cimpoi et al. [23,

24] proposed the Fisher-vector CNN via amelioration of

the pooling layer in the D-CNN. They reported a consider-

able amount of improvement over the work by Sharen et

al. [21, 22]. Bell et al. [25] proposed a new dataset, the

Material-in-context Database (MINC), for material recogni-

tion based on Imagenet [34]. They achieved an impressive

recognition accuracy of 85.2% by utilizing Alexnet [35] and

GoogLeNet models [36]. Zhang et al. [26] assumed that the

features for object recognition could be helpful for material

recognition to some extent and integrated features learned

from the ILSVRC2012 [33] and the MINC [25]. The results

were state-of-the-art, as expected. However, the MINC

dataset was built using images taken from indoor environ-

ments, which are unsuitable for FOD material recognition.

3 Method

3.1 Dataset construction

The Columbia–Utrecht Reflectance and Texture Database

(CUReT) [15, 17], the KTH-TIPS [13], the Flickr Material

Database (FMD) [22], and the Material-in-context Database

(MINC) [25] are open datasets for material recognition.

CUReT consists of 61 textures imaged under 205 diverse

illumination and angle conditions. KTH-TIPS has 11

material categories, each category with four samples imaged

under various conditions. Images in the FMD dataset are

from the Flicker website. This dataset has 1000 images of

10 material categories. MINC has approximately 300

million image patches tailored from ImageNet. As stated in

Section 2, these four datasets are improper for FOD

material recognition.

We choose metal, plastic, and concrete as three typical

FOD materials to construct the dataset. According to

FAA’s AC 150/5220-24 [1], these materials appear most

frequently on runways and taxiways. Furthermore,

metallic FOD constitutes approximately 60% of all FOD.

Metal and plastic may exhibit similarly intense reflectance

phenomena under strong light in outdoor environments.

To complicate things further, these images are taken on

runways or taxiways, which are made of concrete. The

concrete background of metal or plastic images poses a

tremendous challenge to distinguishing these two

materials from the background. It is similar with detecting

Uyghur language text from complex backgrounds [37].

Therefore, careful treatment is imperative to recognize

metal, plastic, and concrete correctly.
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We constructed the FOD dataset using two approaches.

The first approach involved taking the images in the

backup runway of Shanghai Hongqiao International

Airport. It appears to be impossible for us to collect

images at a large scale because of the airport’s strict entry

requirements. Hundreds of images taken from Hongqiao

Airport were used as test data. The other approach to

construct the dataset was to collect images at the campus

of our institute. We chose a campus road made of

concrete to emulate as closely as possible the runway

environment. We used a HikVision DS-2df8523iw-a

camera with a maximum focal distance of 135 mm and a

maximum resolution of 1280 × 768. The camera was

mounted two meters from the ground, and the FOD was

located approximately five meters from the camera. This

setting was proportionally in accordance with the typical

setup of a FOD detection system. The metallic FOD used

includes wrenches, screws, nuts, metal strips, rusty nails,

and iron sheets of various shapes and sizes. For plastic

FOD, diverse shapes and sizes of polyethylene plastic

pipes, bags, and straws were chosen. We chose different

shapes and sizes of concrete blocks, stone blocks, and

pebbles as samples of concrete. Images of each material

category were taken from 9 a.m. to 5 p.m. on separate

days to ensure different illumination circumstances. We

also captured images from different angles. Figure 3 shows

the typical image samples for the metallic, plastic, and

concrete material categories from top to bottom. The

original image sample was divided into N ×N size patches

by hand. The patches were further resized to 256 × 256 for

convenient processing in Caffe.

Table 1 summarizes the statistics of the FOD dataset.

The images taken in indoor environments were only used

to compare our system with the prevalent D-CNN models

to gauge their different performances for indoor and

outdoor objects. These images were not used in either the

training or the testing of our proposed D-CNN model.

The FOD dataset introduced in this paper was different

in three aspects from previous datasets. First, there was a

significant extent of intra-class variations for each material

category. Images belonging to the same material category

usually had completely different shapes or even identities.

Second, all images had concrete as the background,

emulating the circumstances in airports. Third, all images

were captured in outdoor environments.

3.2 Choice of the D-CNN model

A D-CNN, an extremely efficient and automatic feature-

learning approach, transforms an original input to a

higher-level and more abstract representation using

non-linear models. A D-CNN is composed of multiple

convolution layers, pooling layers, fully connected layers,

and classification layers. The network parameters are

optimized through the back-propagation algorithm.

D-CNNs have a broad set of applications in image

classification, object recognition, and detection. Glasssix

[38] trained a CNN with an improved ResNet34 layer

and obtained 99.83% accuracy on the famous LFW face

recognition database. Considering the scale, context,

sampling, and deep combined convolutional networks,

the BDTA team won the championship of the

ILSVRC2017 object detection task. The Subbmission4

model provided by BDTA can detect 85 object categories

and achieved a 0.73 mean average precision on DET task

1a (object detection with provided training data) [39].

Chen et al. provided an effective CNN named Dual Path

Networks for object localization and object classification,

which obtained a 6.2% localization error rate and a 3.4%

classification error rate on the ILSVRC2017 object

localization task [40]. Yan et al. provided a supervised

hash coding with deep neural network for environment

perception of intelligent vehicles, and the proposed

method can obviously improve the search accuracy [41].

AlexNet [35], GoogLeNet [36], and VGG-16 [42] are

widely established and open D-CNN models. They are

de-facto candidate base models for researchers. AlexNet

is composed of five convolutional layers and three fully

connected layers, VGG-16 is composed of 13 convolu-

tional layers and three fully connected layers, and

GoogLeNet is composed of 21 convolutional layers and

one fully connected layer. The main size of the convolu-

tional kernel for AlexNet and VGG-16 is three by three,

whereas that of GoogLeNet is the inception module,

which is a two-layer convolutional network. Both

AlexNet and VGG-16 use the maximum pooling

mechanism. By contrast, GoogLeNet applies both the
Fig. 3 Typical image samples of the FOD dataset

Table 1 Statistics of the FOD dataset

Indoor Campus road training Airport runway and campus
road testing

Metal 30 1000 105

Plastic 0 1000 235

Concrete 0 1000 100
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maximum pooling and the average pooling schemes. We

describe three D-CNN models in more detail in Table 2.

The following choices were made with the help of

experimental results. AlexNet was chosen as the base

mode in our approach, as it yields the best performance

for metallic FOD. Regardless of the model employed,

metallic FOD is easily confused with plastic or concrete

FOD. This observation verifies our choice of material

categories, in addition to the reason that they occur

most frequently on runways or taxiways. Please refer to

Section 4 for detailed results.

With the increase of network depth, the recognition

accuracies of VGG and GoogLeNet on outdoor metal

images shown in Fig. 8 are reduced. We conjecture

that ResNet [32] may have a low accuracy rate for

FOD images from an outdoor environment. Thus, we

did not perform experiments using ResNet on the

FOD material dataset.

3.3 Transfer learning

The technique of transfer learning is applied in this

paper to avoid the overfitting problem. Transfer learning

is literally defined as the transfer of knowledge learned

in one domain to another domain. The technique is

especially useful for the D-CNN models because of their

high demand in terms of the huge amount of human-

labeled training data [43, 44]. Without sufficient training

data, the D-CNN models tend to be over-fitted. It would

be truly favorable to reduce the need and effort to

collect, clean, and label a large amount of data with the

help of transfer learning.

In this paper, the parameters of the improved AlexNet

model are initialized by those trained from MINC. This

model continues to be trained by fine-tuning the weights

of all layers based on the FOD dataset discussed in

Section 4. It is observed that earlier layers’ features of a

D-CNN entail more generic features (e.g., edge detectors

or color blob detectors) that are reusable for many tasks

[45]. In addition, later layers of the D-CNN contain

details more specific in the original dataset, e.g., MINC.

The weights of later layers should be optimized more

than the ones of earlier layers with the help of the new

dataset, e.g., the FOD dataset. Therefore, the dedicated

choice of weights’ initialization is equivalent to shortening

the distance from the starting point to the optimum,

which helps avoid the overfitting problem.

Transfer learning has achieved a wide range of applica-

tions in many tasks. In the recognition task, Reyes et al.

pre-trained a CNN using 1.8 million images and used a

fine-tuning strategy to transfer learned recognition

capabilities from the general domains to the specific

challenge of the Plant Identification task [46]. Bell et al.

trained all of their CNNs for material recognition by

fine-tuning the network starting from the weights

obtained on 1.2 million images from ImageNet (ILSVRC

2012) [25]. In object detection, OverFeat [47], the

winner of the location task of ILSVRC2013, also used

transfer learning. Google DeepMind used transfer learning

to solve complex sequences of tasks [48].

3.4 Improved D-CNN based on AlexNet

Inspired by transfer learning, an improved D-CNN based

on AlexNet is described in this section. The improved

Fig. 4 Image convolution

Table 2 Detailed descriptions of AlexNet, VGG-16, and GoogLeNet

Alexnet VGG16 GoogLeNet Improved
AlexNet

Input (RGB image) 227*227 224*224 224*224 227*227

Convolution (kernel
size/stride)

11*11/4 3*3/1 7*7/2 11*11/4

3*3/1

Max. pooling 3*3/2 2*2/2 3*3/2 3*3/2

Convolution (kernel
size/stride)

5*5/1 3*3/1 3*3/1 5*5/1

3*3/1

Max. pooling 3*3/2 2*2/2 3*3/2 3*3/2

Convolution (kernel
size/stride)

3*3/1 3*3/1 Inception(3a) 3*3/1

3*3/1 3*3/1 Inception(3b) 3*3/1

3*3/1 1*1/1 3*3/1

Max. pooling 3*3/2 2*2/2 3*3/2 3*3/2

Convolution (kernel
size/stride)

3*3/1 Inception(4a)

3*3/1 Inception(4b)

1*1/1 Inception(4c)

Inception(4d)

Inception(4e)

Max. pooling 2*2/2 3*3/2

Convolution (kernel
size/stride)

3*3/1 Inception(5a)

3*3/1 Inception(5b)

1*1/1

Pooling Max. pool
2*2/2

Average pool
7*7/1

Linear FC-4096 FC-4096 FC-1000 FC-4096

FC-4096 FC-4096 FC-4096

FC-1000 FC-1000 FC-1000

FC-3

Output Softmax Softmax Softmax Softmax
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D-CNN model has an additional fully connected layer

appended to the model as the last layer. It shares the

first eight layers with AlexNet; hence, the model consists

of five convolution layers and four fully connected layers.

The ninth layer has three neuronal nodes, indicating that

the network has three material tag outputs. We use

softmax loss as the classifier. The detailed network

structure is shown in Table 2. The experiments were

conducted on the Caffe framework with Nvidia Tesla K20

GPU card. Caffe [49] is a highly effective framework for

deep learning, such as Yan et al.’s framework [50–53] for

HEVC coding unit. Using the FOD training dataset, we

fine-tuned the improved D-CNN based on pre-training

the weights in MINC. Our implementation for FOD ma-

terial recognition follows the practice in Krizhevsky’s and

He’s papers[32, 35]. During training, the inputs to the im-

proved D-CNN were fixed-size 224 × 224 RGB images.

The batch was set to 256, the momentum was set to

0.9, the weight decay (the L2 penalty multiplier) was

set to 0.5, and the learning rate was set to 0.001. In

total, the learning rate was decreased three times, and

the learning was stopped after 20-K iterations. The

FOD testing dataset was used for the FOD material

recognition test after the fine-tuning stage. All of our

experiment base above hyperparameters achieved

state-of-the-art results.

The convolution layer learns input features through

the convolution of the kernel and the input vectors, as

shown in Fig. 4. The convolution function is given by

Eq. (1):

hki j ¼ RELU
�

ðW k � XÞi j þ bk
�

ð1Þ

In Eq. (1), W is the weight of the convolution kernel,

and k indicates the number of convolution kernels. hkij is

the output of the convolution kernel k in the output

layer (i, j), X is the input of the convolution layer, and b

is the offset. RELU is an activation function f(x) = max(0,

x), which is zero when x < 0 and is linear with slope 1

when x > 0, as shown in Fig. 5. Compared to the sigmoid

and tanh functions, RELU can greatly accelerate the

convergence of stochastic gradient descent [35].

The pooling layer is a down-sampling process that

reduces the computational complexity and retains the

rotational invariance of images—see Fig. 6. Mean pooling

and max pooling are usually used in the pooling layer and

involve averaging the image area and choosing the

maximum value, respectively.

In the output layer of the network, the softmax classi-

fier is applied to classify samples. The class tag of the

Fig. 5 RELU function

Fig. 6 Pooling

Fig. 7 Samples from the FOD verification dataset

Fig. 8 Indoor and outdoor image testing results for GoogLeNet, AlexNet,

and VGG-16 for metal
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maximum possibility is chosen as the output result. The

process of the output layer can be described as Eq. (2):

ŷ ¼ arg max
i

ezi
PN

j¼1e
z j

 !

ð2Þ

where z is the activation value of last layer neurons. The

activation value of neuron i is zi. N is the number of

categories and the number of last layer neurons. ŷ is the

prediction tag. For example, the FOD dataset has three

class of images, so N = 3, in which 1 denotes metal, 2

denotes plastic, and 3 denotes concrete.

4 Experimental results and discussion

4.1 Improved D-CNN based on AlexNet

We chose the base model from AlexNet, VGG-16, and

GoogLeNet. All of these models were trained on the

MINC dataset. The model with the best recognition

accuracy for metal was chosen as the base transfer learning

model. The FOD verification dataset consisted of 24 indoor

images (indoor images were included for performance

comparison, although there was no indoor case for FOD

detection) and 76 outdoor images, as shown in Fig. 7. The

first row is the indoor images of the metal items, and the

second row consists of the outdoor images.

Figure 8 shows the accuracy of FOD material recognition

for the three models in the indoor and outdoor cases. All

three convolution networks trained by the MINC dataset

recorded an approximately 80% accuracy for indoor

images but yielded poor performance for the outdoor case:

AlexNet had an accuracy of 13%, VGG-16 had an accuracy

of 5%, and GoogLeNet’s accuracy was close to 0%! The

unsatisfactory performance of the above three D-CNNs

was mainly because the MINC dataset was built using

images from Houzz, which collects interior decoration

images. These pictures are usually taken under soft

illumination and without strong reflectance. By contrast,

FOD, on runways or taxiways, often experiences strong

illumination, heavy rain, and dense fog. It is obvious that

these three D-CNN models trained on the MINC dataset

are not directly applicable to FOD material recognition.

AlexNet has the best metallic material recognition.

Table 3 displays the material classification results for

metal for GoogLeNet, AlexNet, and VGG-16 trained on

the MINC dataset. The results show that GoogLeNet

misclassified most metals as plastic or stone, AlexNet

misclassified metal as stone, water, paper, and plastic,

and VGG-16 misclassified metal as plastic and stone.

This set of results show that metallic FOD tends to be

easily misclassified as plastic and concrete. This observation

justifies our choice of material categories.

4.2 Results of the improved model

In this section, we compared the performance of the

three D-CNN models. The first was AlexNet with

parameters trained by MINC, abbreviated as AM. The

second was AlexNet with parameters trained by both

the MINC and FOD datasets—this model was called

Table 3 Outdoor metal image test results for AlexNet, VGG-16, and GoogLeNet trained on the MINC dataset

Carpet Ceramic Foliage Leather Metal Paper Plastic Stone Water

AlexNet 0.053 0.013 0 0.026 0.132 0.132 0.092 0.289 0.263

VGG-16 0 0 0 0 0.053 0.053 0.447 0.355 0.092

GoogLeNet 0 0 0.013 0 0 0.066 0.605 0.276 0.039

Fig. 9 FOD material recognition results
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AMF. The third model was the improved model shown

in Table 2 with parameters trained by the MINC and

FOD datasets, abbreviated as IAMF. All experiments

were conducted within the framework of Caffe.

The dataset description is given in Table 1. To guaran-

tee that the testing dataset was comparable to practical

situations, the items in the FOD testing dataset must

meet the following criteria: All samples in the FOD testing

dataset should have been collected at the airport or the

institutional campus. The testing samples did not overlap

with those used for training. Furthermore, samples had

various appearances within the same material category.

Please refer to Fig. 3 for the testing samples.

Figure 9 shows that for the metal recognition. The

IAMF model enhanced the recognition accuracy by 19%

over AMF and by 42.86% over AM for metal recognition.

The results prove the effectiveness of the IAMF model

and the importance of the FOD dataset. However, we also

noted that considerable room for improvement exists

because the best accuracy value was only 67%. For plastic

and concrete material recognition, the improved model

yielded similar performance to that of AMF.

Table 4 shows the confusion matrix of the IAMF

model. It is obvious that metallic FOD was most easily

misclassified as concrete objects. We inferred that the

concrete runway and taxiway might act as recognition

noise because they were the backgrounds in the images.

For the case of plastic FOD, metal and plastic were easily

confused for each other. We inferred that metals and

plastics have similar characteristics under the condition of

strong light illumination.

We further examined the deep features of these three

D-CNN models to understand the reasons for the

performance differences. Deep feature, the degree of a

neuron’s excitation, is defined as the input value to the

Table 4 Confusion matrix of the IAMF

Label Predicted label

Metal (%) Plastic (%) Concrete (%)

Metal 66.67 11.43 21.90

Plastic 22.13 67.66 10.21

Concrete 1.00 0.00 99.00
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Fig. 10 The neural output value distributions of three convolutional neural networks
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last softmax layer. Neuronal excitation values were taken

from layer 8 of the AM, layer 8 of the AMF, and layer 9

of the IAMF over the test images. Figure 10 compares

the deep features of the three D-CNN models over the

test images, where the horizontal axis means their image

IDs, and the vertical axis denotes the value of deep

features. From top to bottom, three rows of Fig. 10

demonstrate the results for AM, AMF, and IAMF,

respectively. The metal image IDs are from No. 1 to No.

105. No 106 to 340 indicates the plastic image IDs and

others are for the concrete image IDs.

We found that the ability to discriminate material was

based on the degree of neuronal excitation. For example,

a neuron might have been excited for metal but not for

plastic. To judge the discrimination ability of the D-CNN

model, we observed the distributions of the different

neurons’ excitations. The higher the value of a certain

neuron’s excitation compared to others, the stronger the

ability to discriminate a certain material. For example,

according to the red circles in Fig. 10, the values of

Neuron 3 were better than the values of Neuron 1 and

Neuron 2 for concrete images (image ID 341–440). Thus,

the AFM model had stronger ability to discriminate

concrete. According to the green circles in Fig. 10,

compared with the AM model and the AMF model,

Neuron 1 of the IAMF model had better excitation values

than the other neurons for metal images (image ID 1–105).

As a result, the IAMF model had stronger discrimination

ability for metal than other models. Besides, the IAMF

model had a more concentrated neuron excitation distribu-

tion, indicating that the IAMF model had a more stable

discrimination ability for FOD material. Therefore, the

discrimination abilities of the three D-CNN models for

FOD gradually increased from the AM model to the IAMF

model. The result also confirmed the effectiveness of the

IAMF model.

5 Conclusions

FOD material recognition is a challenging and significant

task that must be performed to ensure airport safety.

The general material recognition dataset is not applicable

to FOD material recognition. Therefore, a new FOD

dataset was constructed in this study. The FOD dataset

was different from previous material recognition datasets

in that all training and testing samples were collected in

outdoor environments, e.g., on a runway, on a taxiway, or

on campus. We compared the performances of three well-

known D-CNN models on the new dataset. The results

were far from acceptable, especially for the recogni-

tion of metal, which accounts for 60% of all FOD. An

improved D-CNN model was then introduced and

compared with AlexNet. The new model achieved a

38.6% improvement over AlexNet in terms of the rec-

ognition of metal FOD.

We also inferred that concrete backgrounds can adversely

affect the FOD material recognition performance, leading

to the misclassification of metal or plastic as concrete.

Therefore, our future work will investigate possible

approaches to introduce image segmentation to distinguish

metal and plastic from concrete. Other technologies, such

as radar or infrared imaging, may be required for better

recognition results.
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