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Abstract: With continuous development in the scales of cities, the role of the metro in urban

transportation is becoming more and more important. When running at a high speed, the safety of the

train in the tunnel is significantly affected by any foreign objects. To address this problem, we propose

a foreign object intrusion detection method based on WiFi technology, which uses radio frequency

(RF) signals to sense environmental changes and is suitable for lightless tunnel environments. Firstly,

based on extensive experiments, the abnormal phase offset between the RF chains of the WiFi network

card and its offset law was observed. Based on this observation, a fast phase calibration method is

proposed. This method only needs the azimuth information between the transmitter and the receiver

to calibrate the the phase offset rapidly through the compensation of the channel state information

(CSI) data. The time complexity of the algorithm is lower than the existing algorithm. Secondly,

a method combining the MUSIC algorithm and static clutter suppression is proposed. This method

utilizes the incoherence of the dynamic reflection signal to improve the efficiency of foreign object

detection and localization in the tunnel with a strong multipath effect. Finally, experiments were

conducted using Intel 5300 NIC in the indoor environment that was close to the tunnel environment.

The performance of the detection probability and localization accuracy of the proposed method

is tested.

Keywords: foreign objects intrusion detection; CSI; WiFi; indoor localization; phase calibration;

angle-of-arrival

1. Introduction

With the acceleration of urbanization, the metro system is developing rapidly to alleviate the

problem of urban traffic congestion [1]. The metro trains operate at high speeds in enclosed tunnels

and fixed tracks, making it difficult to avoid obstacles. Therefore, the safe operation requirements

of metro trains are extremely high. Foreign objects intrusion on the rail track is one of the crucial

issues that seriously affect the safety of trains. Thus, it is necessary to adopt an effective method to

achieve the detection and early warning of metro foreign object intrusion. At present, the main extant

detection methods for foreign objects in railway tracks include machine vision [2–4], passive and active

infrared [5,6], and microwave [7–9].
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However, in the metro tunnel environment, existing methods have some limitations. The machine

vision method cannot work well in low light environments such as metro tunnels, and the

implementation of machine vision algorithms need complex software and processing requirements.

The passive infrared method has the advantages of simple and low power consumption, but its

tracking and localization accuracy for intrusive foreign objects is low. Both the active infrared method

and the microwave method have high accuracy in detecting foreign objects. However, the detection

range of the active infrared method is short. Similar to machine vision, it requires complex software

and processing requirements. The microwave method has the problems of complicated hardware and

high cost.

In contrast, the WiFi devices, which introduce multiple input multiple output (MIMO) and

orthogonal frequency division multiplexing (OFDM) technology under the IEEE 802.11n, have greatly

improved signal transmission capability. With the release of open-source 802.11n came measurement

and experimentation tools such as Atheros CSI Tool and Linux 802.11n CSI Tool [10,11]. Researchers

can extract the detailed physical layer (PHY) wireless communication information from the Atheros

WiFi network interface card (NIC), including the channel state information (CSI), the received packet

payload, and other additional information (the time stamp, the received signal strength (RSS) of

each antenna, the data rate, etc.). Combining the principles of MIMO and OFDM technologies,

and using machine learning and signal processing algorithms to process this information, the WiFi

device has the ability of environment awareness and target tracking [12–16]. The WiFi networks

and devices are ubiquitous, and the price of a network card with a linear array antenna is extremely

low. Through simple software modification, the WiFi device can become a foreign object intrusion

detection equipment at a low cost. In addition, for foreign object intrusion detection systems for metros,

the signal command system for many metro lines is currently based on WiFi technology. For example,

in July 2014, the Shenzhen Metro opened a trial run of a WiFi-based mobile Internet system [17].

When implementing a foreign object intrusion detection system based on WiFi technology on such

subway lines, the existing WiFi network infrastructure can be used. Only software work is required.

Therefore, this solution has cost advantages and high feasibility.

According to the characteristics of foreign objects, there are two methods of RF-signal-based

detection: device-free and device-based detection. The device-based detection requires the target to

have communication capabilities with RF devices.

Based on the commercial WiFi chip, Spotfi employs the super-resolution angle-of-arrival (AoA).

Its estimation achieves high accuracy location. Synchronicity utilizes time synchronization offered by

the distributed MIMO network of wireless to locate the target [18,19]. Furthermore, on other devices,

Otrack realizes locating and classification by identifying radio frequency identification (RFID) tags on

targets [20]. Device-based detection achieves fine-grained localization with high accuracy; however,

it relies on the interactions between the signal transmitter and the devices on target objects; in that

case, the objects without communication devices are unable to be detected.

Device-free detection can locate unknown targets without communication capabilities.

The received signal strength (RSS) was first employed in the device-free detection in an indoor

environment; e.g., Nuzzer [21]. Because of the low location accuracy and poor anti-interference of

RSS, the CSI from the physical layer replaces the RSS in device-free detection. On the one hand,

a high accuracy location algorithm based on CSI was proposed. Pilot and MonoPHY use the CSI

from the physical layer to locate the target by building CSI fingerprints [22,23]. CARM builds the

CSI-speed model and CSI-activity model based on the good reflectivity of the human body to realize

human activity detection [24]. On the other hand, offline training is not essential. LiFS employs

pre-processed CSI to build an energy attenuation model to estimate the distance for locating, although it

gets a lower location accuracy than the CSI fingerprints methods [25]. Foreign objects intruding in

real scenes generally do not have communication capabilities. Therefore, it is reasonable to use

device-free detection methods that do not require offline training in the detection of foreign objects in

a metro tunnel.



Sensors 2020, 20, 3446 3 of 25

The metro tunnel environment is a complex indoor scene for WiFi-based foreign object detection

and localization. To address this problem, our conference paper [26] proposed a preliminary idea of

using WiFi channel state information combined with the MUSIC algorithm to detect foreign objects in

subway tunnels and verified the theoretical feasibility with Matlab. However, some challenges must

be solved to implement the proposed foreign object intrusion detection method in real scenes using

real hardware.

• The MIMO technology introduced by IEEE 802.11n enables the WiFi network card to have the

hardware basis for AoA estimation of the target using CSI phase information. However, in a

MIMO antenna array, each antenna corresponds to an RF chain. The unsynchronized clocks

between the RF chains result in an abnormal random phase difference between different antennas;

that is, a phase offset. Therefore, to implement the method proposed in our conference paper

on actual hardware, phase calibration must be performed first to eliminate the phase offset.

The Phaser [27] is literature that first proposed a method to solve the phase offset of WiFi NICs,

but its algorithm is complicated, and the calibration time is long. In Section 3.2, we give the

analysis and comparison of the time complexity of our proposed algorithm and the algorithm.

The literature [28] proposed a simple phase calibration method. However, this paper only sets the

scene containing a single device-based target to verify the effectiveness of the proposed method.

At the same time, the phase offset value they observed is fixed at π, which may be true under

certain conditions. However, our experiments found that this phase offset value is random.

• The detection and tracking of foreign objects are achieved by acquiring and analyzing the reflected

signals caused by foreign objects. However, in real scenes, besides the line of sight (LOS) signal

path between the receiver and the transmitter, and the reflection path caused by intruding foreign

objects, there are also many reflection paths caused by walls and non-target objects. The existence

of these reflection paths seriously affects the detection and tracking of intruding foreign objects.

Therefore, ensuring the accuracy of foreign object detection and tracking in a real scene with

multiple signal paths is one of the core problems that needs to be solved.

To address these challenges, we propose a static clutter suppression MUSIC algorithm based

on fast phase calibration to achieve foreign object detection in tunnel environments. The fast phase

calibration algorithm efficiently realizes the phase offset correction, and the static clutter suppression

reduces the influence of the non-target reflected signal path on the foreign object detection in the

tunnel scene. Compared with the existing research and the author’s published conference paper [26],

this paper’s main contributions are summarized as follows:

1. Fast phase calibration algorithm. A fast phase calibration algorithm is proposed based on

the law of phase offset observed from the results of extensive experiments. The algorithm

calculates the CSI phase offset matrix based on the AoA information of the direct path between

the transmitter and the receiver to implement automatic phase calibration. Compared with other

phase calibration algorithms, this algorithm has a lower time complexity, which is O(M) +O(N);

M is the number of antennas, and N is the number of subcarriers. The theoretical basis for phase

calibration based on CSI data is given in Section 3.2.

2. MUSIC algorithm based on static clutter suppression. Based on the in-depth analysis of the change

of radio frequency signals in the process of foreign objects intrusion, using the non-coherence

between the static path signal and the dynamic reflection signal caused by the foreign objects

intrusion, a MUSIC algorithm without spatial smoothing is proposed. Without spatial smoothing,

static path signals that are coherent are superimposed into one signal, thereby significantly

reducing the total number of signals (paths) and improving the efficiency of foreign object

detection and tracking. Simultaneously, combined with static clutter suppression technology,

the algorithm’s adaptability to the environment is enhanced.

3. The intrusion detection system is implemented with the commercial intel 5300 WiFi NIC, and only

a pair of transceivers are required. That is a system that integrates sensing and communication.
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When a foreign object is detected, the intrusion information can be sent to the control center

through the communication link.

The remainder of this paper is organized as follows: Section 2 presents the system architecture

of the foreign object intrusion detection in metro. The CSI data preprocessing methods, including

fast phase calibration, are presented in Section 3. Section 4 presents the location method by MUSIC

algorithm based on static clutter suppression. In Section 5, the performance of the proposed method is

analyzed and verified by presenting numerous experiment results, and followed by the conclusions

and future works in Section 6.

2. System Architecture

The architecture and signal processing flow of the WiFi-based subway foreign body intrusion

detection system is shown in Figure 1. The system’s basic principle is to find and locate foreign

objects by analyzing the effects of foreign objects on the propagation of radio frequency signals.

The system is divided into three main modules: CSI acquisition, CSI preprocessing, foreign object

positioning, and tracking. First, the original CSI data with phase abnormality is obtained through the

CSI acquisition module. Second comes inputting the original CSI data to the CSI preprocessing module

to correct the phase abnormality. Finally, a positioning algorithm is used to process the corrected CSI

data in real-time to estimate the position of foreign objects, and a clutter suppression algorithm is used

to improve the robustness of the algorithm. The detailed description of each module is as follows:

1. CSI acquisition. CSI could provide detailed channel frequency response information on multiple

channels in the physical layer. In our system, Intel 5300 NIC and CSI Tool firmware [10,11] are

used to obtain CSI. However, because the clock is not synchronized, there is a phase abnormality

in the raw CSI data collected directly, which cannot be used by the positioning algorithm.

2. The CSI preprocessing module implements the correction of the phase anomalies in the raw CSI

data. There are two types of phase anomalies.

Phase anomaly type I. The first type of phase anomaly is caused by the unsynchronized clock

between the receiver and the transmitter. The phase sanitization algorithm in SpotFi [18] is used

to correct it.

Phase anomaly type II. The second type of phase anomaly is caused by the unsynchronized

clocks between the receiver’s RF chains and is called an abnormal phase offset. It can be corrected

by the fast phase calibration algorithm proposed in this paper. The algorithm is described in

detail in Section 3.

3. Localization and tracking of foreign objects. In this module, based on the MIMO and OFDM

technologies of the Intel 5300 NIC, the MUSIC algorithm is used to process the calibrated

CSI data to realize the estimation of the AoA and distances of foreign objects, and to locate

and track the foreign objects in real-time. A spatial smoothing strategy for scene matching is

proposed to improve the utilization of sensors (antennas and subcarriers) through an in-depth

analysis of the relationship between the motion state of foreign objects and signal coherence

efficiency of foreign object detection. Besides, by introducing static clutter suppression technology,

the algorithm’s anti-interference and environmental adaptability are improved. Finally, the radar

cross section (RCS) data set of foreign objects and trains is constructed based on simulation, and

the classification of foreign objects and trains is realized by using the SVM algorithm. The detailed

explanation is in Section 4.
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Figure 1. System architecture of foreign object intrusion detection in metro.

3. Cause and Calibration Method of Phase Abnormality

As mentioned in Section 2, the original CSI data must be preprocessed because of the abnormal

phase. The phase anomaly type I is caused by the unsynchronized clocks between the transceivers.

The method described in Appendix A can be used to correct the anomalies. This section analyzes the

causes of phase anomaly type II and proposes a fast phase calibration algorithm to calibrate this type

of phase anomaly.

3.1. Phase Anomaly Induced by Clock Non-Synchronization between RF Chains on a WiFi NIC

The three antennas at intel 5300 NIC are uniformly arranged at a spacing of d. In theory, when the

detection target is stationary, the phase difference between two RF chains is −2π × d × sin(θ)× f /c,

where θ is the signal incident angle and f is the subcarrier center frequency.

In the real experiment, in an outdoor open space, we keep the angle between the receiver and the

transmitter at 5 degrees and the distance of 6 m. The transmitter is equipped with a single antenna,

the receiver is equipped with three antennas, and the antenna 2 is in the middle position. We perform

200 experiments, and each experiment sends 100 packets from the transmitter to the receiver, and the

time interval between the packets is 10 ms.

After phase sanitization, the phase of the 15th subcarrier of each antenna is plotted with the

packet index as the horizontal axis coordinate. The results of 200 experiments are almost the same,

as shown in Figure 2.
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Figure 2. Phase offsets of the 15th subcarrier.

Based on this extensive CSI data collection and analysis experiment, we discovered the law

of phase offset between receiver RF chains. First, because the angle between the receiver and the

transmitter is fixed at 5 degrees, and the experiment is conducted in an open outdoor environment,

the phase difference between the RF chains should be small and kept constant. As shown in Figure 2,

the experimental results show that the phase difference between the RF chains is not constant,

but changes randomly. We consulted relevant literature to explain this phenomenon. As shown

in [29], a WiFi network card with MIMO capability is composed of a master chip and several slave

chips. Each slave chip is responsible for processing signals on an RF chain, and different PLLs

drive the slave chips. Because the clock signal output by the PLL cannot achieve nanosecond-level

synchronization, different slave chips generate additional abnormal phase offset when processing the

same received signal.

This phase offset is disadvantageous to the AoA estimation of foreign objects based on the

MUSIC algorithm. However, a useful feature is that the phase offset only occurs on one RF chain

simultaneously, and there has never been a case where more than two RF chains have a phase offset at

the same time. For example, from the first packet to the 46th packet, there is phase offset on chain 2,

and the phase of chain 1 and chain 3 are not offset. From the 47th to 78th packets, the phase of chain 1

is offset, and the phases of chain 2 and chain 3 are normal. This characteristic of phase offset makes

it possible to achieve phase calibration rapidly. In the next section, we give the theoretical basis for

phase calibration and then provide the specific implementation of the fast phase calibration algorithm.

3.2. Fast Phase Calibration Algorithm

To eliminate the phase offset between RF chains, this section proposes the fast phase calibration

algorithm. This section first describes the theoretical basis of the algorithm and then gives the specific

implementation of the algorithm.

It is assumed that in a tunnel environment, WiFi signals propagate on L paths due to reflections of

foreign objects and other non-target objects, and the LOS path between the receiver and the transmitter.

On the kth propagation path, the signal is incident on the uniform line array composed of M antennas

in Figure 3 at an angle θk, and the interval between the antennas is d. In the real experimental

environment, there are three receiving antennas on the intel 5300 WiFi NIC; i.e., M = 3. Suppose S(t)

represents the transmitted signal on all L propagation paths:

S(t) = [S1(t) S2(t) · · · SL(t)]
T (1)
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A(θ) represents the ideal steering matrix for transmitting signals on all L propagation paths:

A(θ) =







1 1 · · · 1

e−jφ1 e−jφ2 · · · e−jφL

e−j(M−1)φ1 e−j(M−1)φ2 · · · e−j(M−1)φL






(2)

where φk = −2πd sin (θk) λ is the phase offset of the transmitted signal on the first antenna of the

uniform linear array, λ is the signal wavelength; the kth column represents the phase function of the

three antennas on the kth propagation path, k ∈ 1, 2 . . . L.

Figure 3. Uniform linear array of M receiving antennas.

In the OFDM technology, data are propagated over N subcarriers. On the kth propagation path,

transmitting signal is:

Sk(t) = [s1(t) s2(t) · · · sN(t)] (3)

The subcarriers are introduced with a phase difference ψk = 2π × fδ × τk after the time of flight

(ToF) τk from the subcarriers, where fδ is the frequency interval of adjacent subcarriers. Let Φθk = e−jφk

and ψτk = e−jψk ; then the steering matrix of the kth path can be expressed as:

A (θk, τk) =













1 ψτk · · · ψN−1
τk

Φθk Φθkψτk · · · ΦθkψN−1
π

...
...

. . .
...

ΦM−1
θk ΦM−1

θk ψτk · · · ΦM−1
θk ψN−1

τk













(4)

The multipath signal and noise n(t) on all RF chains are superimposed to form the ideal CSI matrix:

CSI = [A (θ1, τ1) A (θ2, τ2) · · · A (θL, τL)]













S1(t)

S2(t)
...

SL(t)













+ n(t) (5)

However, in actual hardware, because the clocks of the NICs’ RF chain are not synchronized,

the phase offset e−jδm is induced on the RF chain. Thus, a phase offset matrix on the antenna array

is O(δ):
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O(δ) =















e−jδ1 0 · · · 0

0 e−jδ2 · · ·
...

...
...

. . . 0

0 0 · · · e−jδM















(6)

Then the actual CSIre matrix should be the result of multiplication with the phase offset matrix,

CSIre = O(δ)× CSI.

If all RF chains have a phase offset, that is, e−jδm 6= 0 for ∀m ∈ {1, 2, ..., M}, the matrix data are

difficult to obtain. However, according to the experiments in Section 3.1, it is found that only one

RF chain has a phase offset at any time so that it is possible to obtain the matrix O(δ). The goal of

the fast phase calibration algorithm is to calculate the phase offset according to the AoA information

of the LOS path between the receiver and the transmitter, find the phase offset chain and correct it,

and finally obtain the CSI matrix without phase offset.

According to Figure 3 and Section 3.2, when the distance d between the antennas is constant,

the phase difference between the RF chains is a function of the AoA of the propagation path. Given the

AoA of the LOS path, the theoretical value of the phase difference between RF chains can be calculated.

By comparing the theoretical and actual values, the RF chain that induced the phase offset can be

found. The key issue is to find the mapping relationship between the three logical RF chains and the

three antenna ports.

The CSI Tool generates a CSI-entry for each packet. The CSI-entry contains a 1 × 3 × 30 CSI matrix

and an attribute named perm. The attribute perm indicates how the NIC permuted the signals from the

three receive antennas into the three RF chains that process the measurements. For example, the value

of perm [3 2 1] implies that Antenna C was sent to RF Chain A, Antenna B to Chain B, and Antenna

A to Chain C. This operation is performed by an antenna selection module in the NIC and generally

corresponds to ordering the antennas in decreasing order of RSS.

According to this characteristic, we use an attenuator, a power divider, and two coaxial RF lines to

find the mapping relationship between the antenna and the RF chain. As shown in Figure 4, one end

of the coaxial cable is connected to one antenna port of the transmitting NIC, and the other end of the

cable is sequentially connected to three antenna ports of the receiving NIC, because the RSS on the

antenna port connected with the coaxial cable is much higher than the other two ports. By analyzing

the changes in the value of the perm attribute, the mapping relationship between the RF chains and the

antenna ports can be obtained, as shown in Table 1. We summarize the complete fast phase calibration

algorithm in Algorithm 1. By analyzing the fast phase calibration algorithm, we can calculate that the

time complexity of the core part of the algorithm is O(M) +O(N), where M is the number of antennas

(M = 3), and N is the number of subcarriers (N = 3). The Phaser’s [27] time complexity is O(L ∗ S),

L is the number of antennas, and S is the number of calibration candidate populations. To obtain the

same AoA estimation accuracy as the algorithm proposed in this paper, S must be greater than or

equal to 32.

(a) (b) (c)

Figure 4. The connection of the antenna port of the transmitting NICand the receiving NIC.

(a) transmitting port2 connects receiving port1. (b) transmitting port2 connects receiving port2.

(c) transmitting port2 connects receiving port3
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Table 1. The mapping relationship between the logical RF chains and the antenna ports.

Antenna1 Antenna2 (Mid Antenna) Antenna3

RF Chain1 RF Chain3 RF Chain2

Algorithm 1 The fast phase calibration algorithm.

Input: the AoA of the LOS path θ, raw CSI matrix obtained by the CSI Tool [10], antenna spacing d,

subcarrier center frequency f

Output: CSIre matrix

1: Read the mapping relationship Table 1.

2: Calculate the theoretical phase difference ϕt = −2π × d × sin(θ)× f /c

3: unwrap: ψ = unwrap(angle(CSI))

4: for subcarriers n ∈ 1, 2 . . . N(N = 30) do

5: Calculate the actual phase difference ϕ12, ϕ13, ϕ23 between the RF chains

6: Compare ϕt and ϕ12, ϕ13, ϕ23 to find the phase offset chain m

7: Calculate phase offset e−jδm,n

8: end for

9: Calculate e−jδm using the least squares algorithm

10: Calculate the phase offset matrix O(δ) in Equation (6)

11: Return: CSIre matrix without phase offset

To test the fast phase calibration algoritm, the receiver and transmitter are placed outdoors at

an angle of 5 degrees. The actual and calibrated CSI phase responses for the same packets obtained

from CSI Tool collected from our experiments are presented in Figure 5. Figure 5a is experimental

result without phase calibration. As shown in Figure 5a, the RF chain3 phase offsets, resulting in

incorrect path number and angle estimates. Figure 5b is the experimental result after phase calibration.

As can be seen from Figure 5b, the phase offset of RF chain3 is corrected, and the angle of LOS path

between receiver and transmitter is estimated to be 5 degrees, which is the same as the actual angle in

the experiment.

(a) (b)

Figure 5. Unwrapped CSI phase. (a) Unwrapped CSI phase with phase sanitization, without phase

calibration. (b) Unwrapped CSI phase with phase sanitization and phase calibration.

4. Localizing the Foreign Object

The CSI data without phase anomaly problem are sensitive to the foreign objects’ location;

therefore, we must use a reasonable algorithm to accurately locate the target by the CSI data.
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It is a typical device-free localization problem to detect foreign objects in metro tunnels. In this

paper, WiFi technology is used to achieve the target location, which relies on the radio frequency (RF)

techniques and the existence or movement of foreign objects’ assumption that will, in turn, disrupt the

original RF models.

Firstly, as shown in Figure 6a, in the tunnel environment, the state of foreign object intrusion is

from motion to static. In this process, there are two types of signals according to the differences in

signal propagation paths. One type is the static path signal. This type of signal includes the signal

propagating on the LOS path (direct path) between the receiver and the transmitter, and the signal

propagating on the reflection path caused by static objects (for example, the signal near the track,

the wall, etc.). The signals are coherent with each other. The MUSIC algorithm perceives the distinct

coherent signals as one superimposed signal, so it is impossible to distinguish these signals using the

traditional MUSIC algorithm.

(a) (b)

Figure 6. Foreign objects intrusion model. (a) Scene of foreign object movement. (b) Scene of foreign

object static.

Another type of signal is a dynamic path signal that propagates on a dynamic path caused by

moving foreign objects. The dynamic path signal and the static path signal are mutually incoherent

signals. The traditional MUSIC algorithm can distinguish incoherent signals, so that it is easy to detect

the dynamic path caused by foreign objects and locate foreign objects. Using this coherence, the number

of signals to be processed at the receiving end is greatly reduced, thereby greatly improving the sensor’s

utilization efficiency. For example, for a receiver with three receiving antennas and 30 subcarriers,

theoretically, it is possible to detect 3 × 30 − 1 dynamic path signal signals. However, in practical

applications, the number of paths that can be detected is much smaller than the theoretical value due

to the influences of calibration, noise, and especially the distribution density of foreign objects.

Secondly, another scenario is shown in Figure 6b, when the foreign object completes the intrusion

process and changes from the motion state to the stationary state. In the scene, all signals are static path

signals and are coherent signals with each other. The spatial smoothing algorithm needs to be used to

pre-process the CSI matrix, and then the MUSIC algorithm can be used to estimate the information of

the reflection path caused by Static foreign objects. The method for constructing a smoothed CSI matrix

from the raw CSI matrix is shown in Appendix C. Constructing a smoothed CSI matrix can achieve

signal decoherence, but it will reduce the utilization efficiency of the sensor (antenna, subcarrier).

4.1. Propagation Paths Number and Super-Resolution AoA Estimation

In the tunnel environment, the WiFi signal propagates through a direct path and reflection path.

The intrusion of foreign objects will increase the number of reflection paths. If the foreign object is

in a stationary state, the signals of these reflection paths are coherent, and the coherence signals are

decohered using a smoothing technique. The MUSIC algorithm and the optimal information theory

criterion are used to estimate the number of propagation paths accurately. By comparing the number

of propagation paths before and after foreign object intrusion in real-time, the existence of foreign

objects can be judged. Furthermore, the spectrum peak search is performed by calculating the spatial

spectrum function to estimate the AoA of the foreign object.
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First, construct the covariance matrix R, as shown in Equation (7), where X is the CSIre matrix

obtained by performing phase calibration on the raw CSI. The calculation method of the CSIre matrix is

shown in Equations (5) and (6). The matrix X needs to be spatially smoothed if the received signals are

coherent, according to the method shown in Appendix C. Because the signal and noise are independent

of each other, the covariance matrix R can be decomposed into two parts—signal and noise, where

RS is the signal covariance matrix and ARsA
H is the signal part, where A is the steering matrix in

Equation (4).

R = E
[

XXH
]

= ARSAH + σ2I (7)

The eigen-decomposition of R is as Equation (8), where US is a signal subspace constructed by

the eigenvectors corresponding to the largest a eigenvalues, and UN is a noise subspace constructed by

the eigenvectors corresponding to the smallest A − a eigenvalue.

R = USΣSUH
S + UNΣNUH

N (8)

a is the number of the largest eigenvalues; that is, the number of paths of WiFi signal propagation.

The value of a is estimated using the information theory criterion. The information theory criterion

proposed by Wax M and Kailat T in the literature [30,31] includes effective detection (EDC),

Akaike information theory criteria (AIC), and minimum description length criteria (MDL).

The calculation method of each criterion is shown in Appendix B. Accurate path number

estimation is an essential basis for realizing foreign object detection. Therefore, it is necessary to

determine which criterion has better performance in the current experimental environment. Based on

the experimental comparison, it is proven that the hannan-quinn (HQ) criterion has the highest

accuracy of path number estimation. The specific experimental results are shown in Section 5.1.1.

After the path number estimation is completed, the angle estimation is performed. Ideally, the US

and the UN are completely orthogonal, and it means the steering matrix of the signal subspace is

orthogonal to the noise subspace:

AH(θ)UN = 0 (9)

In practice, the number of receiving data packets is limited. So the maximum likelihood estimation

of covariance matrix R is expressed as:

R̂ =
1

Z

Z

∑
i

XXH (10)

where Z is receiving data packets. In addition, the US and UN are not completely orthogonal because

of the noise. As a result, the AOA is estimated by the minimum optimal search:

θMUSIC = arg min
θ

AH(θ)ÛNÛ
H
NA(θ) (11)

The spatial spectrum function of the MUSIC algorithm is expressed as:

PMUSIC =
1

AH(θ)ÛNÛ
H
NA(θ)

(12)

Once there are coherent signals, the rank of signal subspace US is not full. It results in the

dimension of US being smaller than UN, which cannot be orthogonal so that AOA cannot be correctly

estimated. Thus, it is necessary for US of coherent signals to obtain a full rank. We use the way of spatial

smoothing to decoherent R from literature [18]. Spatial smoothing is achieved by reconstructing the

CSI matrix. The specific method is shown in Appendix C. Spatial smoothing can achieve decoherence,

but it reduces the efficiency of the sensor (antenna).
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4.2. Target Distance and Location Estimation

Since super-resolution AoA estimation offers the reliable AOAs of foreign objects, what we need

to locate the foreign objects are the distances from foreign objects to the receiver. In this way, we can

overcome the disadvantage of location methods based on fingerprints that off-line training is required.

Moreover, the fingerprints method has a good performance just for one target, while there could be

more than one target intruding into the metro system [32,33].

In general, the RSS from the physical layer is used to estimate the distance, resulting in a low

estimation accuracy because of its poor anti-interference of multipath environment. Therefore, we

estimate the distance by using the CSI energy attenuation from literature [25], which suggests that

CSI is sensitive enough to the target, and by modeling the CSI energy attenuation, the distance can be

estimated. Thus, locating foreign objects can be expressed as the following steps:

1. Distance estimation. The use of the CSI amplitude as the signal energy attenuation to construct

the distance-energy attenuation model. There are three kinds of energy attenuation from

transmitter i to receiver j of signals in wireless communications: propagation attenuation Lij,

diffraction attenuation Dij, and target t absorption attenuation At. All the Lij, Dij, and At are the

functions of the distance di,t from transmitter i to target t and the distance dj,t from target t to

receiver j. Thus, the amplitude attenuation of CSI denoted by Rij can be expressed by:

Ri,j(di,t, dj,t) =

{

Li,j(di,t, dj,t) + Di,j(di,t, dj,t) + At(di,t, dj,t), NLOS

Di,j(di,t, dj,t) + At(di,t, dj,t), LOS
(13)

The non line of sight (NLOS) in Equation (13) denotes that the foreign object appears in the NLOS

path, while LOS denotes that the foreign object appears in the LOS path. Thus, the amplitude

attenuation of CSI Rij is a function of di,t and dj,t, Rij = f (di,t, dj,t). Then we get the distance dj,t

to locate the foreign objects.

2. Calculate foreign object coordinates. We use the signal receiving as the origin to establish the

two-dimensional plane coordinate system where the angle of the foreign object repoint relative to

the origin is θt, and the distance is dj,t. Thus, the coordinates of the foreign object P(x, y) will be

uniquely determined, where the x-coordinate x = dj,t · cos θt and the y-coordinate y = dj,t · sin θt.

4.3. Static Clutter Suppression

In addition to the localization of static foreign objects, it is also necessary to locate the coordinates

of foreign objects in real-time and continuously in the dynamic process of foreign object intrusion.

The coordinate calculation of foreign objects in the intrusion process can be used to judge the

relationship between the intrusion route and the warning area. In the tunnel environment, in addition

to the signal reflection path induced by the intrusion of foreign objects, there are also direct paths

between the receiver and the transmitter and reflection paths induced by other non-target objects.

The existence of these signal paths obviously has a negative impact on foreign object detection.

However, these paths are all static paths, and the signals propagating on the static paths are coherent.

Therefore, these signals can be reduced by static clutter suppression algorithms.

The MUSIC algorithm generates a pseudo-spectrum for each packet. The pseudo-spectrum

can be regarded as a matrix containing the distance and angle information of the target. The static

clutter suppression algorithm is implemented by subtracting from the samples the mean value of the

matrix. Therefore, static clutter suppression is a cross packet algorithm. As shown in Equation (14),

PMUSIC,t is the pseudo-spectrum at time t, and P̂MUSIC,t is the new pseudo-spectrum after static

clutter suppression.

P̂MUSIC,t =

{

PMUSIC,t − ({∑
T
t=1 PMUSIC,t}/T), P̂MUSIC,t ≥ 0

0, P̂MUSIC,t < 0
(14)
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After static clutter suppression, as shown in Figure 7, the movement trajectory of foreign object

intrusion can be detected more clearly. To achieve available metro foreign object intrusion detection

and alarm, it is also necessary to construct a warning area that affects the safety of the train in the

scene and map the warning area to the pseudo spectrum. When a foreign object is detected entering

or passing through the warning area, an alarm message is sent over the WiFi communication link.

The width of the type B metro train is 2.8 m. In this paper, it is defined as a warning area where the

track centerline extends 1.5 m to both sides.

{

AOA = arctan(y/x)

TOF = 2(
√

x2 + y2)/c
(15)

The method of mapping the alarm area to the pseudo spectrum is shown in Figure 8 and

Equation (15). In the rectangular coordinate system with the receiver as the origin, a point on the

alarm line gets a coordinate with (x, y). In order to convert planar Cartesian coordinates (x, y) to

pseudo spectrum coordinates (AOA, TOF), a warning line model is used to figure out the relationship

between θ and (x, y), and the relationship between T and (x, y) in Figure 8 and Equation (15). After a

geometric change, θ is the AOA between each point on the alarm line and the receiver, and T is the

TOF converted by the distance between each point on the alarm line and the receiver.

(a) (b)

Figure 7. Pseudo spectrum of the foreign object detection and localization algorithm. (a) Without static

clutter suppression. (b) With static clutter suppression.

Figure 8. Warning line model.

Figure 7 is the visual output of a verification experiment of foreign object intrusion detection and

static clutter suppression algorithms. Figure 7a shows the results of foreign object detection without

static clutter suppression. It shows one direct path signal and three non-target reflection path signals,

and the intrusion path signals of the foreign object are almost covered by these signals. After static

clutter suppression, the static path is eliminated, and the trajectory of foreign object movement can be
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easily found. It can also be observed from Figure 7b that the trajectory of the foreign object intrusion

crossed the warning area and eventually stayed near the warning area. The complete foreign object

detection and localization algorithm is summarized in Algorithm 2.

Algorithm 2 Foreign object detection and localization algorithm.

Input: CSIre matrix after phase calibration output by Algorithm 1

Output: 1 Foreign object Intrusion Alarm

2 Coordinates of the foreign object

1: Demodulate coherence of the CSIre

2: Run MUSIC algorithm,output AOA θt

3: Calculate dj,t based on the CSI energy attenuation model (Equation (13))

4: Input coordinate(x, y) = (dj,t cos θt, dj,t sin θt)

5: if Foreign objects in the warning area then

6: Intrusion Alarm

7: end if

8: Static Clutter suppression using Equation (14)

9: if Dynamic trajectory pass throuh the warning area then

10: Intrusion Alarm

11: end if

4.4. Train Recognition Based on RCS

When the train passes by, it is necessary to distinguish between the train and the foreign object

without causing a false alarm. Compared with foreign objects, trains have fixed and obvious physical

features. Thus, we need a parameter representing such features to classify the trains and foreign objects.

The RCS is a physical quantity that measures the intensity of the echo generated by the target

under the irradiation of electromagnetic waves. The definition of RCS is as follows:

σ = 4π
Pr
Ar

d2
r

1
PtGt

4πd2
t

(16)

where the Pr is receiver power input and Pt is the transmitter’s power output. Gr and Gt are the

gain of the receiving antenna and the transmitting antenna, respectively. dt and dr are, respectively,

the distances from the transmitting antenna to the target and the receiving antenna to the target.

Ar denotes the effective area of aperture of the receiving antenna:

Ar =
Grλ2

4π
(17)

where λ is the wavelength.

According to Equation (16), if the sensor parameters are given, and the distance between the

sensor and the target is known, the RCS value of the target can be calculated based on the receiver

power input Pr. Simultaneously, when electromagnetic waves radiate the target with the same

frequency from different directions, the RCS is different. Besides, the shape and surface of the material

will also significantly affect the RCS value of the target. Therefore, RCS is an essential property of the

object. Therefore, if the RCS data set of a specific target (such as a train) can be constructed, the method

of machine learning can be used to classify and identify the target. Based on this idea, we use MatLab

to build a train RCS data set and use support vector machines (SVM) to classify trains and foreign

objects. The results of the simulation are in Section 5.3.
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5. Performance Evaluation

The Intel 5300 WiFi NIC is installed on the Dell OptiPlex 3050MT PC as the transmitter and

receiver. The operating system of the PC is Ubuntu 10.04 LTS, and CSI Tool [10,11] is installed to obtain

CSI information. The transmitter is equipped with one antenna, and the receiver is equipped with

three antennas. The experimental environment is shown in Figure 9, a transmitter and a receiver are

deployed on one side of the track. After the transmitter and receiver are deployed, the position of

the transmitter is kept unchanged, and the angle between the two devices is measured as the input

parameter of the fast phase calibration algorithm. In the experiment, the intruding foreign bodies are

an adult man, a box with a size of 25 × 30 × 20 cm, and a rail car that could move at a maximum

speed of 10 km/h. In order to reduce the difference between the experimental environment and the

real tunnel scene as much as possible, in the experiment, we set up two additional reflection planes

and wrapped the reflection plane with tin tin-foil to reduce the attenuation of the reflected signal.

The specific parameters of the experiment are shown in Table 2.

Table 2. Optimal results for two different load cases.

Experimental Facilities Parameters Value

Rail
width (m) 1.435

height (m) 0.176

Transceiver

NIC Intel 5300

distance (m) 4.5

angle (◦) 0

frequency (GHz) 5

distance between antennas (cm) 2.6

number of OFDM carrier 30

Figure 9. Photographs of the experimental scenario.

5.1. Visualization and Performance of Detecting Foreign Object

Two metrics, positive detection probability (PDP) and negative detection probability (NDP),

are defined to evaluate the foreign object detection performance of the proposed method. The PDP is

the probability that a foreign object is successfully detected in the presence of a foreign object. The NDP

is the probability that no false alarm will occur if there is no foreign object.

PDP =
pd

pr
× 100% (18)

NDP =
nd

nr
× 100% (19)
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When there is a foreign object in the detection area, in a PDP evaluation experiment, pd is the

number of experiments in which the algorithm detects the foreign object and pr is the total number of

experiments. When there is no foreign object in the detection area, it is an NDP evaluation experiment,

wherein nd is the number of experiments in which the algorithm has not detected foreign objects and

nr is the total number of experiments.

5.1.1. Comparison of Information Theory Criterion

The accurate estimation of the number of reflected signal paths in the tunnel is the basis for the

detection of foreign objects in the subway. In the case of SNR of 1dB, compare the accuracy of path

number detection of the three criteria of HQ, MDL, and AIC. The results are shown in Figure 10.

When the number of paths is less than four, all three criteria can achieve a detection accuracy rate of

more than 95%. When the number of paths is greater than seven, this is normal in real indoor and

tunnel environments. The detection accuracy of the path number of the HQ criterion is significantly

better than the other two. The higher the number of paths, the greater the advantage of the HQ criterion.

Therefore, in the following experiments, we use the HQ criterion to realize the path number estimation.
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Figure 10. Comparison of the probability of successful detection regarding the number of paths with

different information theory criteria.

5.1.2. Visualization of Detecting a Foreign Object

We designed a heat map visualization tool based on the MUSIC pseudo-spectrum to visually

observe the invasion process of foreign objects and calculate the location information of foreign objects.

In the experimental scenario, in addition to the LOS signal between the transceivers, objects in the

detection area will reflect the signal sent by the transmitter. These signals form peaks (highlighted

areas) in the heat map. Figure 11a is the experimental result before foreign body intrusion. In addition

to the LOS signal, there are five reflected signals. As shown in Figure 11b, after the foreign object

invades, the reflected signal increases by one, and obviously, the increased reflected signal is caused by

the foreign object. By calculating the coordinates of the signal in the thermal map, the positioning of

the foreign object can be achieved.
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(a) (b)

Figure 11. Visualization results of foreign object detection. (a) Without foreign object. (b) With

foreign object.

5.1.3. Impact of Spatial Smoothing and Phase Calibration on AOA Estimation

In order to verify the effect of spatial smoothing on AOA estimation, a comparative experiment

was carried out in the presence or absence of coherent signals. As shown in Figure 12a, there were

seven coherent signals, including one LOS signal and one NLOS signal of a foreign object on MUSIC

pseudo-spectrum. It is clear to estimate the AOA of each coherent signal with spatial smoothing,

and only the LOS coherent signal was estimated without spatial smoothing in Figure 12b. Therefore,

in the case of coherent signals, spatial smoothing must be used to decoherent to ensure the accuracy of

AOA estimation.

Compared to our conference paper [26], fast phase calibration is one of the core improvements

in this paper. In order to test the effectiveness and importance of the phase calibration algorithm,

Figure 12c shows the experimental results without pre-phase calibration. Compared with Figure 12a,

which has the correct result, Figure 12c has severe distortion in the calculation of the signal number

and the foreign object positioning information.

(a) (b) (c)

Figure 12. Impact of spatial smoothing and phase calibration on AOA estimation. (a) With spatial

smoothing and phase calibration. (b) Without spatial smoothing. (c) Without phase calibration.

5.1.4. Impact of Distance to Receiver on Detection Probability

In order to verify the coverage of the foreign object detection, the foreign object is placed at

a different distance from the receiver, and the verification is performed by analyzing the success

probability of the foreign object detection. For a single measurement, the transmitter sends ten packets

to the receiver, and the packet sending interval is 10 ms. As shown in Figure 13a, in the case of one

measurement, when the distance between the foreign object and the receiver is less than 10 m, the PDP

is greater than 90%. When the distance is greater than 10 m, the PDP gradually decreases. When the

distance is 18 m, the PDP is 63.9%. When the position of the foreign object is not changed and three
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consecutive measurements are adopted, the PDP of more than 95.8% can be achieved within 18 m.

The experiment shows that the system can meet the coverage of 18 m, and under the premise of

ensuring a higher PDP, it can complete the detection of foreign objects in 0.4 s.

While keeping the experimental settings unchanged, we performed three consecutive

measurements without phase calibration. In Figure 13a, the light blue curve is the experimental

result, and the PDP is always below 20%. This is due to the abnormal phase offset of the RF chains.

Therefore, whether the fast phase calibration algorithm is used to preprocess the CSI data has a great

influence on the probability of successful detection of foreign objects.

5.1.5. Impact of Packet Number on Detection Probability

In order to verify the impact of the number of packets on the performance of foreign object

detection, different numbers of data packets are sent to evaluate the PDP and NDP of foreign

object detection. As shown in Figure 13b, no matter whether the foreign object is stationary or

moving, when the number of packets exceeds 200, it can achieve a PDP of 96.8% and a NDP of 96.1%.

The experiment shows that it is easy to achieve the higher PDP and NDP by appropriately increasing

the interval of sending packets and increasing the number of packets. For example, the packet sending

interval is 1 ms, and the number of sending packets is 300, which can guarantee high success rate

detection within 0.4 s, and can satisfy the requirements of the application.

To test the effectiveness of the static clutter suppression (SCS) algorithm, in Figure 13b, the yellow

and green curves are the experimental results without the SCS algorithm. Both PDP and NDP are

reduced. Especially when the number of data packets is relatively small, the SCS algorithm’s impact is

more significant. When the number of data packets is 100, PDP and NDP drop to 86.5% and 84.1%,

respectively. This shows that the SCS algorithm can increase the probability of successful detection of

dynamic foreign objects. Especially when the number of data packets is relatively small, the role of the

SCS algorithm is more prominent.
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Figure 13. Experimental results of foreign object detection probability. (a) Impact of Distance to

Receiver and the number of measurements on Detection Probability. (b) Impact of Packet Number on

Detection Probability.

5.2. Performance of Localizing Foreign Object

In order to evaluate the localization performance of the proposed method, the proposed method

was compared with the dynamic-MUSIC algorithm [34], the accuracy of the object angle estimation

was tested, and the effects of the different object moving speeds, and different sending quantities on

the localization accuracy were verified. Considering that the object cannot be regarded as a point,

if the error of the estimated position is within 45 cm, it is considered that there is no localization error.

The experimental results in this section are based on this premise.
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At the same time, in order to highlight the improvement of this article compared to the conference

paper we published, Figure 14a,b also added the experimental results without phase calibration as

a comparison.

5.2.1. Comparison with Other Algorithms

A position estimation is performed on a foreign object moving at a speed of 3 km/h.

The comparative experimental results of the proposed method and the dynamic-MUSIC algorithm

are shown in Figure 14a. The experimental results show that the median localization error of the

proposed algorithm is 60.5 cm, and the dynamic-Music algorithm is 74.9 cm. The localization accuracy

of the proposed algorithm is higher than the dynamic-MUSIC algorithm. The reason may be that the

proposed fast phase calibration method has better phase calibration performance.

To test the impact of the fast phase calibration algorithm on the localization accuracy, a foreign

object positioning experiment was conducted without performing phase calibration on the CSI

data. In Figure 14a, the experimental results show that the median localization error is 296.2 cm

and has intense volatility. The localization error is substantial, and it is almost unavailable in

practical applications.

0 50 100 150 200 250 300 350

Localization Error [cm]

0

20

40

60

80

100

C
D

F
 [%

]

Proposed method
Dynamic-MUSIC
Proposed method without Ph CAL

(a)

0 5 10 15 20 25 30 35 40 45 50

Angle Estimation Error [Degree]

0

20

40

60

80

100

C
D

F
 [%

]

Dynamic foreign object
Static foreign object

Dynamic foreign object without Ph CAL
Static foreign object without Ph CAL

(b)

0 50 100 150 200 250 300 350

Localization Error [cm]

0

20

40

60

80

100

C
D

F
 [%

]

3Km/h
6Km/h
9Km/h

(c)

0 50 100 150 200 250 300 350 400 450

Localization Error [cm]

0

20

40

60

80

100

C
D

F
 [%

]

10 packets
50 packets
100 packets

(d)

Figure 14. Experimental results of foreign object localization performance. (a) Comparison with Other

Algorithms. (b) Performance of Angle Estimation. (c) Impact of Speed on Localization. (d) Impact of

Packet Number on Localization.

5.2.2. Performance of Angle Estimation

Figure 14b shows the cumulative distribution function (CDF) of the angle estimation error of the

foreign object. The median errors of the angle estimation of the foreign object in the stationary state

and the moving state (speed 6 km/h) are 5.1 degrees and 6.6 degrees, respectively. Experiments show

that the motion state of a foreign object has little effect on the accuracy of angle estimation.

To test the impact of the fast phase calibration algorithm on the accuracy of angle calculation,

without calculating the phase of the CSI data, angle calculation experiments were performed on



Sensors 2020, 20, 3446 20 of 25

dynamic and static foreign objects. As shown in Figure 14b, the experimental results show that the

average error of the angle estimation is 40 degrees, and it is almost impossible to achieve useful

angle estimation.

5.2.3. Impact of Speed on Localization

In order to verify the impact of the speed of the foreign object on localization accuracy. We set

the rail car to pass the detection zone at speeds of 3, 6, and 9 km/h, respectively. The test results are

shown in Figure 14c, and the median localization errors are 61.2, 64.6, and 67.1 cm respectively. It can

be seen that when the moving speed of the foreign object is below 9 km/h, the speed has little effect

on the localization accuracy.

5.2.4. Impact of Packet Number on Localization

It can be inferred from Equation (10) that the number of packets has an effect on the accuracy of

foreign object localization. In order to test this effect, keep the foreign body in a static state, and test

the foreign object localization accuracy when transmitting 10 packets, 50 packets, and 100 packets,

respectively. The test results are shown in Figure 14d. The median localization errors are 193.1 cm,

76.9 cm and 60.1 cm, respectively. The experimental results show that the number of packets has a

certain effect on the localization accuracy of foreign objects, but the number of packets exceeds 100,

and the impact of further increasing the number of packets on the localization accuracy is not obvious.

Therefore, if the number of packages is more than 100, satisfactory localization performance of foreign

objects can be obtained.

5.3. Simulation of Train Recognition

In order to verify the feasibility of the RCS-based train and foreign object classification method,

we used MatLab to build a simulation RCS dataset of trains and foreign objects. The train size is

set to 20 × 2.8 × 3.8 m, and the running speed is 100 km/h. The foreign objects are set as regular

tetrahedrons with volumes 0.5, 14.6, and 18 m3, respectively.

Figure 15a is the RCS change curve of the train and the foreign object with a volume of 0.5 m

driving through the receiver at a speed of 100 km/h, respectively. It can be seen from the figure that

the RCS change curve of the train and the foreign body has a significant difference, this is because the

reflection cross-section of the train is much larger than the foreign body. Collect the RCS change curve

to construct the RCS data set, and train the SVM classifier to classify and identify trains and foreign

objects. The classification accuracy rate is shown in Figure 15b. For normal-sized foreign objects,

the classification accuracy rate exceeds 95%. Simulation results prove that the classification of trains

and foreign objects based on RCS is feasible.

(a) (b)

Figure 15. Simulation results of classification accuracy. (a) RCS of train and foreign objects. (b) Impact

of train’s speed and foreign object’s volume on classification accuracy.
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6. Conclusions

In this paper, we have achieved an accurate intrusion detection of foreign objects in the metro

tunnel environment using commercial WiFi NICs based on the fast phase calibration algorithm,

which solves the CSI phase abnormality Induced by the clock non-synchronization between the radio

oscillators under each antenna of the WiFi NIC. The experimental results show that the proposed fast

phase calibration algorithm can rapidly and accurately correct phase anomalies, and the MUSIC

algorithm combined with static clutter suppression can achieve higher foreign object detection

probability and foreign object localization accuracy.

The accuracy of distance estimation from foreign objects is an important factor affecting the

performance of the proposed method. One of the future work is to solve the problem of clock

synchronization between the receiver and transmitter to improve the accuracy of distance estimation

of foreign objects. Another potential improvement of the proposed algorithm is to consider the use of

machine learning algorithms to analyze foreign object features (such as radar cross section (RCS)) to

achieve the material or size recognition of foreign objects.
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Abbreviations

The Symbol Notation Used in Algorithms and Models:

Symbol Description

τS the time delay of transceiver caused by clock unsynchronization

φs the phase offset caused by clock unsynchronization

fδ the frequency spacing between two consecutive subcarriers

n the subcarrier index

d the antenna distance of transceiver

θ the signal incident angle to reciever’s antennas

f the center frequency of subcarrier

c the speed of light

m the antenna index

i the packet index

φi(m, n) the phase of the nth subcarrier of the mth antenna in the ith packet

τs,i the time delay of the ith packet

ρ the linear fit variable

β the linear fit variable

M the number of antennas in transmitter or receiver

N the number of subcarriers

τ̂s,i the time delay of best linear fit

φ̂i(m, n) the sanitized phase of the nth subcarrier of the mth antenna in the ith packet

L the number of signal propagation paths

k the index of signal propagation paths

SL(t) the transmitting signal of Lth propagation paths

A(θ) the ideal steering matrix for transmitting signals

λ the wavelength of transmitting signals

φk the phase offset of the transmitted signal on the first antenna for kth path
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Sk(t) the transmitting signal of kth propagation paths

sN(t) the transmitting signal of nth subcarrier

ψk the phase difference between subcarriers in kth propagation paths

τk the TOF between subcarriers in kth propagation paths

Φθk e−jφk

ψτk e−jψk

n(t) the signal noise

A (θk, τk) the steering matrix of the kth path

e−jδm the phase offset caused by the clock unsynchronization of intel 5300 WiFi NIC

O(δ) the phase offset matrix on the antenna array

CSIre the real CSI matrix

φperm3,n the phase of mid antenna on nth subcarrier

ζ the performance evaluation parameter of the fast phase calibration

nt the data size

T(nt) the execution time of the code

f (nt) the total execution times

X the CSI matrix

R the covariance matrix of CSI phase

US the signal subspace

UN the noise subspace

J(l) the generalized expression of the information theory criterion

L(l) the log-likelihood function

P(l) the penalty function

l the number of signal sources to be estimated

S the number of samples

Λ(l) the likelihood function

PMUSIC,t the spectrum for AOA and TOF

P̄MUSIC,t the mean value of the spectrum for AOA and TOF

P̂MUSIC,t the suppressed spectrum for AOA and TOF

T the times number of spectrum estimation

Rij the amplitude attenuation of CSI from transmitter i to receiver j

Lij the propagation attenuation of CSI from transmitter i to receiver j

Dij the diffraction attenuation of CSI from transmitter i to receiver j

At the target absorption attenuation

θt the angle of the foreign object to the receiver

di,t the distance from transmitter to the foreign object

dj,t the distance from the foreign object to the receiver

x x coordinate of the foreign object

y y coordinate of the foreign object

pd the number of times that there is a foreign object detected in all the detection times

pr the number of times a foreign object actually exists in all the detection times

nd the number of times that there is no foreign objects detected in all the detection times

nr the number of times a foreign object actually doesn’t exist in all the detection times

Pr the receiver power input

Pt the transmitter power output

Gr the gain of the receiving antenna

Gt the gain of the transmitting antenna

dt the distance from the transmitting antenna to the target

dr the distance from the receiving antenna to the target

Ar the effective area of aperture of the receiving antenna
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Appendix A. Phase Sanitization Algorithm

To eliminate the additional phase induced by clock non-synchronization between a WiFi

transmitter-receiver pair, we use the method of linear fitting in literature [18] to correct it. Let the

phase of the nth subcarrier of the mth antenna in the ith packet be φi(m, n); τs,i is the time delay of the

ith packet. We remove the CSI phase best linear fit term of the packet i by using a phase sanitization

algorithm to obtain the sanitized phase. The CSI phase best linear fit is:

τ̂s,i = arg min
ρ,β

M,N

∑
m,n=1

(φi(m, n) + 2π fδ(n − 1)ρ + β)2 (A1)

where M and N are the total number of array antennas and the number of subcarriers, respectively;

both ρ and β are linear fit variables. Then, the sanitized CSI phase is:

φ̂i(m, n) = φi(m, n) + 2π fδ(n − 1)τ̂s,i (A2)

Appendix B. Information Theory Criterion

The information theory criterion J(l) consists of the log-likelihood function and the penalty function:

J(l) = L(l) + P(l) (A3)

where L(l) is the log-likelihood function and P(l) is the penalty function. By choosing different L(l)

and P(l), we can get different criteria. For example, the EDC criterion can be expressed as:

EDC(l) = S(M − l) ln Λ(l) + l(2M − l)C(S) (A4)

l is the number of signal sources to be estimated; M is the number of sensors (in this case antennas).

S is the number of samples in Equation (A4), where Λ(l) is the likelihood function:

Λ(l) =
1

M−l ∑
M
i=l+1 λi

(

∏
M
i=l+1 λi

)
1

M−l

(A5)

And the C(S) in Equation (A4) must meet two conditions to have the estimation consistent:

lim
S→∞

(C(S)/S) = 0 (A6)

lim
S→∞

(C(S)/ ln ln S) = ∞ (A7)

We can get AIC, MDL, and HQ criterion when the C(S) in Equation (A4) is selected as 1, (ln S)/2

and (ln ln S)/2:

AIC(l) = S(M − l) ln Λ(l) + l(2M − l) (A8)

MDL(l) = S(M − l) ln Λ(l) + l(2M − l)(ln S)/2 (A9)

HQ(l) = S(M − l) ln Λ(l) + l(2M − l)(ln ln S)/2 (A10)

Appendix C. CSI Spatial Smoothing Matrix

As shown in Figure A1, we construct the raw CSI matrix (obtained from CSI Tool) as a smoothed

CSI matrix. After spatial smoothing, the number of sensors is reduced from 90 to 30. Obviously,

the utilization efficiency of the sensor has decreased, and in theory, the upper limit of the number of

reflection paths that can be detected is also reduced.
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Figure A1. Construction of smoothed CSI matrix.
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