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Abstract

Standard procedures in computer forensics mainly describe the acquisition and analysis
of persistent data, e.g., of hard drives or attached devices. However, due to the in-
creasing storage capacity of these media and, correspondingly, significantly larger data
volumes, creating forensically-sound duplicates and recovering valuable artifacts in time
gets more and more challenging. Moreover, with the wide availability of free and easy-
to-use encryption technologies, a growing number of individuals actively try to protect
personal information against unauthorized access. If a suspect is unwilling to share the
respective decryption key such measures can therefore quickly thwart an investigation.
Last but not least, many sophisticated malicious applications entirely run in memory to
date and do not leave any traces on hard disks anymore. Solely focusing on traditional
sources can thus lead to an incomplete or inaccurate picture of an incident. In order
to cope with these issues, researchers have proposed alternative investigative strategies
and extracting pieces of evidence from a computer’s RAM. For this purpose, a so-called
memory snapshot is taken and inspected offline on a trusted workstation. These activ-
ities known as memory forensics have gained broad attention among practitioners over
the last years, primarily because operations are repeatable and may be safely verified
by other experts without polluting the system environment as, for instance, in a live
response situation.

In this thesis, we give a comprehensive overview of fundamental concepts and approaches
for seizing as well as examining volatile information. It consists of two parts: In the first
part, we formalize criteria for sound memory imaging and illustrate the characteristics,
benefits, and drawbacks of proven acquisition technologies available on the market to
date. As we will see, especially for software-based solutions it is difficult to produce
reliable memory snapshots, because the system state cannot be effectively frozen dur-
ing runtime. With the help of an evaluation platform that we have developed in the
course of the dissertation period, the performance and quality of software imagers can
be thoroughly assessed for the first time.

In the second part of this thesis, we explain how common system compromise and
manipulation techniques as they are typically employed by rootkits or other types of
intelligent malware can be discovered during memory analysis. We also present rkfinder,
a new plug-in for the popular, open source forensic suite DFF that facilitates some of
these tasks. Rkfinder implements cross-viewing algorithms for checking the integrity of
a machine and detecting possible inconsistencies that indicate the presence of a threat.
By automatically highlighting suspicious resources that are likely to have been tampered
with, even less experienced investigators are able to identify system areas that require
particular attention. Thereby, potential sources of an intrusion can be quickly found
and addressed.



Zusammenfassung

Standardvorgehensweisen im Bereich der Computerforensik beschreiben mehrheitlich
die Sicherstellung und Analyse persistenter Daten, zum Beispiel auf Festplatten oder
extern angeschlossenen Geräten. Auf Grund der zunehmend größeren Speicherkapa-
zität eingesetzter Medien und den damit verbundenen stetig wachsenden Datenmengen,
ist eine zeitgerechte Erstellung forensisch sauberer Duplikate sowie eine anschließende
Beweismitteluntersuchung mit immer mehr Schwierigkeiten verbunden. Mit der hohen
Verfügbarkeit von kostenlosen und einfach zu bedienenden Verschlüsselungswerkzeugen
nimmt die Zahl von Personen, die sensible Informationen bewusst gegen unberechtigten
Zugriff zu schützen versuchen, weiterhin zu. Sofern ein Verdächtigter in einem solchem
Fall nicht dazu bereit ist, den entsprechenden Dechiffrierungsschlüssel einem Ermittler
mitzuteilen, können derartige Maßnahmen maßgeblich den Erfolg einer Untersuchung
gefährden. Darüber hinaus wurden in der Vergangenheit zahlreiche Beispiele hochent-
wickelter Schadprogramme dokumentiert, die ihre Aktivitäten nur noch ausschließlich
im Hauptspeicher eines Systems ausführen und keine Spuren auf persistenten Daten-
trägern mehr hinterlassen. Die Einschränkung von Untersuchungsmethoden auf tradi-
tionelle Quellen einer Computerinfektion kann daher zu einem unvollständigen oder un-
genauen Bild eines Vorfalles führen.

Um den zuvor beschriebenen Missständen entgegen zu wirken, entwickelten Forscher
alternative Untersuchungsstrategien und schlugen eine Beweismittelextrahierung aus
den Daten des Arbeitsspeichers vor. Zu diesem Zweck muss zunächst ein so genannter
Schnappschuss des Hauptsspeichers angelegt werden, der im nächsten Schritt zur wei-
teren Analyse auf eine vertrauenswürdige Arbeitsstation transferiert wird. Die im Rah-
men dieser Hauptspeicherforensik vorgenommenen Tätigkeiten sind sowohl wiederhol-
als auch durch andere Experten nachvollziehbar und sind deshalb als forensisch sauberer
zu bewerten als entsprechende Live-Untersuchungen während des laufenden Betriebs.

In dieser Arbeit stellen wir die grundlegenden Konzepte und Ansätze zur Sicherstellung
und Analyse volatiler (flüchtiger) Daten im Hauptspeicher umfassend dar. Gegenstand
des ersten Teils ist eine Formalisierung geeigneter Kriterien für eine zuverlässige Daten-
sicherung. Wir beschreiben ebenfalls die Eigenschaften sowie Vor- und Nachteile häufig
verwendeter Akquirierungstechnologien. Wie wir weiter ausführen werden, ist insbeson-
dere eine geeignete Abbilderstellung für softwarebasierte Lösungen schwierig, da der
Systemzustand zur Laufzeit nicht effektiv eingefroren werden kann. Die Qualität dieser
Werkzeuge kann mit Hilfe einer Evaluationsplattform, die durch den Autor während der
Dissertationszeit entwickelt wurde, zum ersten Mal detailliert beurteilt und nachvollzo-
gen werden.

Im zweiten Teil dieser Arbeit erläutern wir, wie gängige Systemkompromittierungs- und
Manipulationstechniken durch Hauptspeicheranalysemethoden erkannt werden können.
Derartige Techniken werden typischerweise von Rootkits und anderen Arten intelligenter



Schadprogramme eingesetzt. Wir stellen ebenfalls das neue Erweiterungsmodul rkfin-
der für die beliebte und frei verfügbare Forensikapplikation DFF vor. Rkfinder nutzt
so genannte Cross-Viewing-Algorithmen, mit denen die Integrität des Betriebssystems
überprüft sowie mögliche Systeminkonsistenzen festgestellt werden können, die auf eine
Schadprogramminfektion hinweisen. Durch die automatische Hervorhebung verdächtig
eingestufter Ressourcen sind selbst Ermittler mit nur geringen Erfahrungen in der Lage,
kritische Systemteile zu identifizieren, die einer näheren Untersuchung bedürfen. Der Ein-
satz des Erweiterungsmoduls erleichtert somit die Aufspürung von Computerschädlingen
in nur kurzer Zeit.
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Chapter 1

Introduction: On Traditional and Novel Approaches in

Computer Forensics

Attacks on computer systems can significantly affect the performance of an organiza-
tion and may lead to substantial financial losses. In a study with 56 larger-sized U.S.
companies working in different branches of the industry, the individual costs for detect-
ing, responding to, and recovering from security incidents were estimated to comprise
✩8.9 million on average per year (Ponemon Institute, 2012a). According to a joint report
by Detica and the Office of Cyber Security and Information Assurance, businesses that
fell prey to digital industrial espionage caused annual losses of approximately ↔7.6 billion
in the United Kingdom alone (Detica, 2011). As a different survey by the Computer
Security Institute (2011) shows, about half of the interviewed 138 representative organi-
zations in the private and public sector decided to initiate a forensic investigation once
a security breach had been discovered. The main objectives of such an investigation are
understanding the series of actions that were taken by the adversary, identifying and
retrieving valuable pieces of evidence, and possibly bringing the issue forward to law
enforcement agencies for further prosecution. Investigative methods have changed and
been adapted over time though. In the following section, we will give a brief overview of
major phases in the evolution process. In Section 1.1.1, we illustrate the characteristics,
weaknesses, and limitations of traditional forensic approaches. More modern approaches
are discussed in Section 1.1.2. Our contributions to the latter research area are subject
of Section 1.2.

1.1 Evolution of Forensic Investigations

1.1.1 Traditional Investigation Approaches

Traditional approaches in computer forensics particularly focus on collecting and exam-
ining data of persistent storage media, e.g., of hard drives or USB-attached disks. To en-
sure a sound and verifiable acquisition process, procedures generally recommend “pulling
the plug” of the target machine as one of the first tasks at a digital crime scene (U.S.
Secret Service, 2007; U.S. Department of Justice, 2008). By explicitly cutting power to
the host, unintentional data overwriting or modification, e.g., due to shutting down the
operating system, are expected to be efficiently prevented. Guidelines also emphasize
the importance of creating bitwise copies of each device, so-called forensic images, that
serve as a starting point for all subsequent examinations (Stephenson, 2000; Association
of Chief Police Officers, 2007). Thereby, it is possible to recover potential evidence even
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in case the original medium is no longer available at a later time (Cohen, 2011). With
the help of (hardware) write blockers that are used during the duplication process, the
integrity of the source is protected. In turn, digital fingerprints in form of cryptographic
hash sums as well as proper documentation of all steps help prove the accuracy and
authenticity of the copied data and maintain a rigorous chain of custody that can be
reprocessed and verified by other investigators.

Weaknesses of Traditional Investigation Approaches

Although regarded as best practices for a long time, the previously described methods
have shown to struggle with a number of technical developments more recently: First,
in contrast to hard drive capacities, I/O transfer bandwidths have only grown linearly
(Patterson, 2004; Roussev and Richard III, 2004). Thus, generating a clone of a typical
modern hard disk with a size between various hundreds of gigabyte and several terabytes
can easily take multiple hours. Considering that even home users frequently possess
numerous storage devices that may be relevant to a case, the data acquisition phase
often needs to be extended and can delay an entire investigation. Shipley and Reeve
(2006, p. 6) argue, since “the current ranks of trained computer forensics personnel
are inadequate to support the ever-growing amount of digital evidence that should be
collected at crime scenes[,] [i]t is fairly common for investigators to wait months for
their reports”. Casey (2011, p. 3) summarizes, “[e]xisting best practice guidelines are
becoming untenable even in law enforcement digital forensic laboratories where growing
caseloads and limited resources are combining to create a crisis”. Second, while the
impact of turning off ordinary desktop PCs is usually negligible, shutting down a critical
company server may be overly disruptive and result in lost revenues or decreased business
productivity. Moreover, depending on its complexity and configuration, removing the
power cord from a running machine may severely damage system components. For
instance, it is possible that file system journals are left in an inconsistent state and
have to be rebuilt when the computer is started up again. Likewise, RAID arrays may
be corrupted and need to be repaired. All these activities are costly, time-consuming,
and may entail legal liabilities. Consequently, there is demand to “strike a balance
between the requirements for a forensically sound preservation process and the business
imperative of minimizing impact on normal operations” (Casey, 2010, p. 86).

In addition, there is a myriad of free and commercial software products that provide file
or even full disk (FDE) encryption capabilities. Examples include the popular cross-
platform TrueCrypt suite (TrueCrypt Foundation, 2013), SafeGuard Easy (Sophos Ltd.,
2013), and DiskCryptor (Ntldr, 2013). Alternative solutions are offered by SecurStar
(SecurStar Corporation, 2008), Check Point (Check Point Software Technologies Ltd.,
2013), and Symantec (Symantec Corporation, 2013). Encryption functionality is also
implemented in many modern operating systems (Saout, 2006; Microsoft Corporation,
2013a; Apple Inc., 2013), and studies have shown that organizations more and more
realize the benefits of these technologies and enable the respective security features by
default (Ponemon Institute, 2012b; SECUDE AG, 2012). From a forensic standpoint,
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such measures can tremendously slow down or even completely stall an investigation:
Standard cryptographic algorithms like AES are designed to render brute force attacks
on a cipher code infeasible. Thus, unless a suspect is willing to share the originally
chosen passphrase, evidence stored on an encrypted drive may be unrecoverable. For
instance, Casey et al. (2011, pp. 130-132) illustrate cases of alleged child pornography
as well as terrorism in which defendants could not be successfully convicted due to
concealing incriminating information on encrypted media. For this reason, the authors
conclude that “pulling the plug from a computer is not an acceptable response technique
when encountering FDE or even volume encryption”. Similar arguments hold true for
a high percentage of malicious applications that employ different kinds of armoring,
obfuscation, and self protection mechanisms in order to impede reverse engineering and
static binary analysis (e.g., see Linn and Debray, 2003; Christodorescu and Jha, 2004;
Young and Yung, 2004). A good overview of selected techniques used in this area and
how they can be mitigated in a forensic context can be found in the work of Sikorski
and Honig (2012).

It is also important to emphasize that certain worms, backdoors, or other attack pro-
grams operate solely in memory and do not leave any persistent traces any longer (Moore
et al., 2003; Miller, 2004; Sparks and Butler, 2005). In a traditional investigation, these
types of malware would therefore remain undetected, increasing the risk of drawing an
incorrect or incomplete picture of an incident. On the other hand, there is a large num-
ber of legitimate, portable software packages that run entirely in RAM for convenience
reasons (see Rare Ideas, 2013). Also, most major Internet browsers provide so-called
private modes and permit opening web sites without caching the transferred data on
hard disk. Although Aggarwal et al. (2010) have shown that these mechanisms can be
partially defeated, reconstructing the web session of a user can take significant efforts
and may require cooperation with Internet platform vendors or other third parties. Last
but not least, a plethora of state- and runtime-related information, e.g., about running
processes or established network connections, are lost when a computer is powered off.
As Shipley and Reeve (2006, p. 7) point out, however, these sources “can, in some cases,
mean the difference between solving a crime and not” or “proving someone’s guilt or
their innocence”.

1.1.2 From Persistent Data-Centric Approaches to Memory-Based

Investigations

To address the issues discussed in the previous section, forensic practitioners have started
considering volatile information in system RAM more carefully and conducting live ex-
aminations of suspicious machines. A major advantage of this type of investigation is
that comparatively equal amounts of evidence can be collected as during a traditional
post-mortem analysis, yet oftentimes significantly more quickly (Prosise and Mandia,
2003; Carvey, 2007). One main drawback of this approach is that the integrity of the
host is typically unknown. Specifically, when executing operating system commands,
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the corresponding output may be manipulated by possibly installed malicious applica-
tions (Carrier, 2006). Because of this risk, forensic reports may be inadmissible in court,
putting the value of the entire analysis at stake. Even though investigators can store a
collection of trusted, statically-linked tools on read-only media to prevent such scenarios,
one big problem of this methodology remains: since the state of the target computer
is changed with every launched program, the workspace is increasingly polluted, and
results can frequently not be independently verified and reproduced. In sum, live re-
sponse measures thus heavily violate forensic principles and are generally seen as not
sufficiently adequate for more delicate cases (Walters and Petroni, 2007; Waits et al.,
2008). For these reasons, researchers have suggested reducing the impact on the host
and only creating an image of a computer’s RAM that can later be inspected offline
on a secure, isolated workstation. The process of these activities is commonly referred
to as memory forensics and has gained broad attention in the recent past, inspired by
a challenge of the Digital Forensics Research Workgroup in 2005 (DFRWS, 2005). In
this thesis, we will give an in-depth overview of the benefits and challenges of memory
forensic tasks and explain techniques for acquiring and analyzing volatile information in
a forensically sound manner. In the following section, we will describe our individual
contributions in more detail.

1.2 Contributions of this Thesis

1.2.1 Illustration and Structuring of the Research Area

Due to the pressing need to find suitable alternatives for classic approaches, available
literature in the area of memory forensics has grown rapidly in the last years. In par-
ticular, a lot of research has been done to identify crucial system structures that store
core information and are of major importance for analyzing volatile information and ex-
tracting valuable pieces of evidence. However, many publications are strongly focused on
specific technologies or are of highly informal nature and solely illustrate aspects of single
investigative cases (for a list of selected cases, please see the Volatility Documentation
Project, Volatile Systems, LLC, 2013b). Especially in the latter works, the boundaries
under which proposed solutions can be applied frequently remain unclear though.

In this thesis, we give a comprehensive and structured overview of proven memory acqui-
sition and analysis techniques. By illustrating the advantages, weaknesses, and limita-
tions of the different methods, forensic practitioners have a reasonable basis for choosing
an appropriate response and investigation strategy. Likewise, our insights may serve
as a starting point for novice academic researchers to conduct further studies. Please
note, however, that unless otherwise stated, our explanations solely refer to the family
of Microsoft Windows operating systems. A description of memory forensic procedures
for other platforms such as Linux or Mac OS is out of the scope of this thesis. Good
introductory texts to these topics can be found in the works of Movall et al. (2005) and
Suiche (2010) though.
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1.2.2 Formalization of Criteria for Sound Memory Imaging

As a side effect of the rather unstructured research area, a formalization of the forensic
memory acquisition and analysis process has been neglected in the past. In particular,
even though investigators had frequently stressed the need for collecting volatile infor-
mation in a “sound” and “reliable” manner, the meaning of these terms was only vaguely
described in the literature. In this thesis, we introduce three criteria, correctness, ato-
micity, and integrity, that form the foundation for a sound and reliable memory imaging
process. We derive our criteria from established theories in other respected fields of
computer science. We will show that the proposed formalizations can model as well
as integrate the requirements pointed out by previous authors and help determine the
quality of a forensic memory snapshot more accurately.

1.2.3 Evaluation of Forensic Memory Acquisition Software

In order to measure the previously described factors, we have implemented an evaluation
platform that, for the first time, offers an in-depth and repeatable testing approach for
memory acquisition software. Our platform is built upon a highly customized version
of the Bochs PC emulator (The Bochs Project, 2013a) and is designed to automatically
assess the performance of the individual utilities. We have tested our solution with three
popular products available on the market to date. Results showed that not all imaging
applications were initially capable of generating a correct snapshot of a computer’s RAM
due to logical errors in their respective source code. We have developed patches for the
affected program components, so that all evaluation candidates eventually duplicated
volatile information successfully.

Another major observation we made in our evaluation was that the accuracy of cre-
ated memory snapshots significantly depends on the level of concurrent activity on the
system. Our platform allows monitoring this activity over the course of the imaging
process and estimating the degree of such negative influences. Also, we are able to es-
timate upper bounds for the impact of memory imagers, i.e., the amount of memory
that is overwritten by loading an acquisition program into RAM. Our insights support
investigators with choosing an appropriate imaging strategy and comparing available
solutions on a reasonable basis. By illustrating the benefits, but also the limitations and
weaknesses of existing technologies, the decision why a particular method was selected
or not can be better justified and defended in court.

1.2.4 Facilitation of the Memory Analysis Process for Less Experienced

Investigators

Due to the increased interest in memory-based investigations, various analysis tools
have been developed over the last years. However, many of these tools have originally
been developed as proof-of-concept (PoC) demonstrations and are partially not well
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documented. The de-facto standard in the industry at the time of this writing is the
Volatility Framework (Volatile Systems, LLC, 2008, 2013a) we will introduce in greater
detail in a later part of this thesis. The framework is very powerful and under active
maintenance of an expert community, yet it mainly aims at experienced investigators
that have a good knowledge of operating system structures and internals. For novice
practitioners or personnel in general IT departments that lack training with respect to
forensics-related tasks, the interpretation of generated reports may be too complex and
demanding.

To address this issue, we present a plug-in for the well-known forensic framework DFF
(ArxSys, 2009) that abstracts memory analysis-related aspects from the user to a sig-
nificant degree. Results are correlated in the background and displayed in an intuitive
and easy-to-use graphical interface. By visualizing the system state in a tree-like pane,
resources of special interests, e.g., running processes, open network connections, or ref-
erenced files, can be quickly accessed and examined. Additionally, the plug-in employs
several so-called cross-viewing techniques to check the computer for possible inconsisten-
cies. Such inconsistencies may occur when system objects are explicitly tampered with.
In many cases, manipulations of this kind indicate the presence of a security threat.

For convenience reasons, our plug-in automatically highlights inconsistent resources.
Thereby, sources of a potential incident are directly visible and can be addressed within
a short time. In a study that we performed in the dissertation period, we were able
to detect several common rootkits, i.e., especially sophisticated malicious applications,
found “in the wild” today. Because our plug-in operates on an existing memory snapshot
during a post-mortem analysis, reports can be reprocessed and verified by third parties
at later times, in contrast to other rootkit discovery programs that must be executed
on a running machine. For these reasons, forensic guidelines like the principle of non-
interference or the demand for result reproducibility (see Mocas, 2004) can be much
better satisfied.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows: In Chapter 2, we give a comprehen-
sive overview of the memory administration process as well as of established procedures
for preserving volatile information. Criteria that determine the quality of a forensic
memory snapshot are introduced and formalized in Chapter 3. The architecture of a
platform for evaluating acquisition utilities is subject of Chapter 4. We also present
performance results for three popular software products available on the market to date
and describe weaknesses and limitations these solutions have to cope with.

The second part of this thesis deals with memory analysis- and investigation-specific as-
pects. In Chapter 5, we explain structured approaches for extracting pieces of evidence
from a RAM image. In Chapter 6, we illustrate methods for identifying and detecting so-
phisticated variants of malicious software applications with memory forensic techniques.
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We conclude with a short summary of our work and indicate opportunities for future
research in Chapter 7.

1.4 List of Publications

This work is substantially based on a number of peer-reviewed articles and academic
papers that appeared in scientific journals or were presented at international confer-
ences. Unless otherwise stated, the original text corpora of these publications forms
the foundation for different chapters of this thesis and was only adapted, shortened, or
extended if necessary. For reasons of better readability, previously published larger text
fragments by the author of this thesis will not be cited again in later sections, except
for highlighting arguments of particular importance. Likewise, figures, tables, or other
visual elements that were created by the author and that originally appeared in other
publications will not be referenced.

In detail, the following works were created in the course of the dissertation period:

❼ Stefan Vömel and Felix C. Freiling: “A Survey of Main Memory Acquisition and
Analysis Techniques for the Windows Operating System”, published in Digital In-
vestigation, Volume 8, Number 1, 2011 (Vömel and Freiling, 2011).

This journal article was completely written by the author of this thesis, under guid-
ance of Felix C. Freiling. The first part of the article, i.e., a description of the memory
architecture and memory administration process under Microsoft Windows as well
as methods for acquiring a forensic copy of a computer’s RAM, is presented in Chap-
ter 2. The second part of the article that covers analysis- and investigation-related
aspects is subject of Chapter 5. Both Chapter 2 and 5 have also been extended to
include recent developments and approaches in memory forensics.

❼ Stefan Vömel and Felix C. Freiling: “Correctness, Atomicity, and Integrity: Defining
Criteria for Forensically-Sound Memory Acquisition”, published in Digital Investiga-
tion, Volume 9, Number 2, 2012 (Vömel and Freiling, 2012).

In this journal article, three major criteria for creating an image of volatile memory
in a forensically-sound manner are proposed, formalized, and discussed. This article
was also composed by the author of this thesis, advised by Felix C. Freiling. The
original manuscript text has only been marginally adapted with respect to this thesis
and is presented in Chapter 3.

❼ Stefan Vömel and Johannes Stüttgen: “An Evaluation Platform for Forensic Mem-
ory Acquisition Software”, presented at the 13th Annual DFRWS Conference, 2013
(Vömel and Stüttgen, 2013).

In this paper, the architecture of an evaluation platform for forensic memory acquisi-
tion software is described. The platform was developed in cooperation with Johannes
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Stüttgen. Precisely, Johannes designed a logging application for memory-related op-
erations, while the author of this thesis implemented most parts of the corresponding
log analyzer, developed patches for the considered acquisition programs, and wrote
several helper utilities for the guest system. The instrumentation interface of the
platform was designed in a joint effort.

The software evaluation was later performed by the author of this thesis. The final
research paper was also written by Stefan Vömel. It forms the basis for Chapter 4,
but has been extended to explain aspects of the development process of the platform
in more detail.

❼ Thomas Hauenstein and Stefan Vömel: “Possibilities for Extracting Traces of So-
cial Networking Sites from Volatile Memory”, in preparation, 2013 (Hauenstein and
Vömel, 2013).

Subject of this paper is a discussion of methods and techniques for identifying and
finding traces of social networking sites in memory. The manuscript text is in prepa-
ration at the time of this writing and is originally based on the diploma thesis by
Thomas Hauenstein, under guidance of the author of this thesis. The corresponding
proof of concept software was entirely designed by Thomas. In Chapter 5, the major
research results of this work are briefly summarized.

❼ Stefan Vömel and Hermann Lenz: “Visualizing Indicators of Rootkit Infections in
Memory Forensics”, presented at the 7th International Conference on IT Security
Incident Management & IT Forensics (IMF), 2013 (Vömel and Lenz, 2013).

In this paper, a plug-in for a popular forensic framework is presented that helps
detect sophisticated system manipulation attempts. The plug-in was developed by
Hermann Lenz as part of his diploma thesis. The software was evaluated together
with the author of this thesis based on a number of common rootkit samples. The
research paper was written entirely by Stefan Vömel. It is included in Chapter 6 of
this thesis.

Last but not least, the author was involved in several other IT security- and forensics-
related projects that are not or only marginally related to the content presented in this
thesis (Vömel et al., 2010; Benenson et al., 2011; Dewald et al., 2013). In particular, a
report of the behavior and characteristics of the German Bundestrojaner (federal state
surveillance program) was published at a national security conference in 2012 (Dewald
et al., 2012).
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Chapter 2

Background Information

In the following, we illustrate important background information about the memory
administration and acquisition process. The concepts and techniques outlined in this
chapter foster a better understanding of the remaining parts of this thesis. In Section 2.1,
we describe memory organization on modern computer systems and give a brief overview
of the memory address space layout, the virtual-to-physical address translation process,
and the paging mechanism. For reasons of simplicity, we thereby focus on the original
x86 32-bit architecture without considering advanced memory management capabilities
such as Physical Address Extensions (PAE) or Address Windowing Extensions (AWE).
Readers who would like to know more about these topics are referred to the work of
Russinovich et al. (2009). A detailed description of the peculiarities of the 64-bit plat-
form can be found in the Intel ➤ 64 and IA-32 Architectures Software Developer’s
Manual (Intel Corporation, 2013). A short summary report of the major differences is
available by Kornblum (2009). In Section 2.2, we sketch different approaches for creating
a forensic image of a computer’s RAM and depict their respective benefits, weaknesses,
and limitations. We argue that established terms in memory forensics cannot clearly
reflect the characteristics of existing acquisition methods any longer. We therefore in-
troduce two alternative criteria that form the foundation for a basic classification matrix
presented in Section 2.3. With the help of this matrix, investigators can better compare
different imaging technologies and choose the solution that is most suited and applicable
in a given situation.

2.1 Memory Administration Process

Modern multi-tasking operating systems typically do not access physical memory di-
rectly but rather operate on an abstraction called virtual memory. This abstraction of
physical RAM requires special hardware support, i.e., the Memory Manager or Mem-
ory Management Unit (MMU), and offers several inherent advantages, for instance, the
possibility of providing each process with its own, protected view on system memory or
restricting read and write activities on memory areas with the help of specific privilege
rules (Intel Corporation, 2013). The layout of the virtual and physical address space
may differ though, and blocks of virtual memory do not necessarily need to map to
contiguous physical addresses (see Figure 2.1).
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Virtual Memory

Physical Memory

Figure 2.1: Mapping Virtual to Physical Memory Regions
(Russinovich et al., 2009, p. 14)

2.1.1 Memory Address Space Layout

On Microsoft Windows operating systems, each process has its own private virtual ad-
dress space that is separated from other running applications unless portions of memory
are explicitly shared. Thereby, collisions and access violations between different exe-
cutables are prevented. In total, the virtual address space of a 32-bit process comprises
4 GB (232 bytes). Specifically, 2 GB of virtual memory are assigned to user space-related
activities by default, whereas the other half of the address space, i.e., memory areas in
the range of 0x80000000 to 0xFFFFFFFF, is reserved for system usage (Russinovich et al.,
2009).1 These kernel regions can be jointly used by system drivers and other core com-
ponents and, for example, include memory pools for dynamically-allocated data. Other
major resources that are part of the system space are a number of memory maintenance
structures that are required for translating virtual into physical addresses, a process
we will describe in more detail in Section 2.1.2. Because system memory is a shared
resource, on the other hand, kernel-level programs and artifacts must “be carefully de-
signed and tested to ensure that they don’t violate system security and cause system
instability” (Russinovich et al., 2009, p. 17). In Figure 2.2, the structure of the virtual
memory address space is depicted.

2.1.2 Virtual-to-Physical Address Translation Process

As we have already explained, processes usually operate on the virtual memory layer
only. Therefore, in order to manipulate the actual data in RAM, the Memory Manager
must continuously translate (map) virtual into physical addresses. For this purpose,
memory regions are organized in separate units called pages at the hardware level. Each

1 With the help of a special boot option, the user space of a large address space-aware process can be
increased to up to 3 GB (Russinovich et al., 2009).
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Figure 2.2: Virtual Address Space Layout
(Russinovich et al., 2009, p. 738)

page commonly has a size of 4 KB, although x86 processors also support larger page sizes
of 4 MB (Intel Corporation, 2013). To access a page, the operating system implements a
multi-level approach (Russinovich et al., 2009): In the first step, a pointer to the page di-
rectory of the currently running process must be retrieved. The base address of this data
structure is stored in the CR3 register of the processor and is reloaded from the _KPROCESS
block of a process at every context switch. The kernel process (_KPROCESS) block is part
of a larger structure, i.e., the executive process (_EPROCESS) block, that serves as an
internal representation for a Windows process. We will illustrate the _EPROCESS block
more thoroughly in a later part of this thesis.

A page directory internally consists of 1,024 so-called Page Directory Entries (PDEs)
that each have a size of 4 bytes. Page Directory Entries reference individual page tables
that, in turn, contain up to 1,024 Page Table Entries (PTEs). A PTE is another 4-byte
data structure that points to a specific page in memory. Thus, once the page directory
of a process has been determined, a virtual address can be translated into its physical
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Figure 2.3: Virtual-to-Physical Address Translation Process
(Russinovich et al., 2009, p. 763)

counterpart as follows (Russinovich et al., 2009): The first 10 bits of the virtual address
serve as an index into the page directory and specify the PDE in question. With the help
of the PDE and the page table index, i.e., the subsequent 10 bits of the virtual address,
the page table and corresponding PTE are identified in the next step. By parsing the
PTE as well as the 12-bit byte index of the virtual address, the requested data in RAM
can eventually be found. A summary of this process is illustrated in Figure 2.3.

2.1.3 Paging

With respect to the address translation process outlined in the previous section, we have
implicitly assumed that the requested information is always available in main memory.
However, in some cases, the total amount of virtual memory that is consumed by running
programs exceeds the capacity of the entire physical storage. To cope with these sce-
narios, the operating system can temporarily swap out (page) memory contents to hard
disk. Thereby, portions of RAM are freed and can be safely used by other applications.
When a thread attempts to access a swapped-out page at a later time, the memory
management unit generates a page fault, and the requested information is transparently
transferred back into memory. As these operations are abstracted from the user, a vir-
tual address space that is much larger than the size of available physical memory can be
simulated. Whether or not data has been paged to disk is indicated by a special flag in
the PTE (Russinovich et al., 2009). If the least significant bit of an entry is set to 1, it is
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0145910111231
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Figure 2.4: Example of an Invalid Page Table Entry (PTE)
(Russinovich et al., 2009, p. 775)

regarded as valid, and the corresponding page is correctly accessible in memory. In con-
trast, when the flag is cleared and both the Transition (11) and Prototype (10) bits are
set to 0, the entry points to an offset in a page file on the secondary storage of the system.
Windows supports up to 16 different page files, each having a size of up to 4,095 MB
(Hameed, 2007). The current file in use is denoted by a special field in a PTE, i.e., the
Page File Number (PFN, bits 1 to 4, see Figure 2.4). By default, the PFN references the
standard page file pagefile.sys that is saved in the root directory on the partition the
operating system is installed on. However, the names and locations of the files can be eas-
ily adapted and specified by editing the HKLM\SYSTEM\CurrentControlSet\Control\Ses-

sion Manager\Memory Management\PagingFiles key in the Microsoft Windows registry.

Please note that we have only given a brief description of the flags and elements contained
in a PTE. A more detailed explanation of the individual components and attributes can
be found in the work of other authors (Kornblum, 2007; Savoldi and Gubian, 2008). The
concepts presented in this section need to be thoroughly understood though, because
they form the basis for many memory acquisition approaches and tools. An overview
of proven methods for creating a forensic memory snapshot of a computer’s RAM is
subject of the following section.

2.2 Approaches and Techniques for Forensic Memory Acquisition

Techniques for capturing volatile data have conventionally been divided into hardware-
and software-based solutions in the literature (e.g., see Vidas, 2006; Maclean, 2006; Gar-
cia, 2007). While the latter ones depend on functions provided by the operating system,
hardware-based approaches directly access a computer’s memory during the imaging
process and, therefore, have long been regarded as being more secure and reliable. A
publication by Rutkowska (2007) has indicated, however, that these assumptions no
longer hold true. Moreover, several concepts that have been presented in the recent
past rely on a combination of both hardware and software mechanisms and cannot be
clearly categorized with the existing terminology (Libster and Kornblum, 2008; Hal-
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derman et al., 2008; Vidas, 2010). For these reasons, we believe that a classification
solely on implementation-specific attributes is obsolete and is not capable of properly
characterizing the latest developments any more.

As a viable alternative, Schatz (2007a,b) has proposed rather examining the conditions
under which specific solutions can operate best and assess existing technologies with re-
spect to potential influencing factors that may affect the creation of a (sound) memory
copy. Two major variables Schatz has identified are the atomicity and availability of
a technique. The demand for availability stipulates that an imaging method must be
“working on arbitrary computers (or devices)” (Schatz, 2007a, p. S128). More precisely,
an acquisition approach that is characterized by a high availability does not make any
assumptions about particular, pre-incident preparatory measures or pre-configurations
and can be applied even without detailed knowledge of the respective execution envi-
ronment. Thereby, the solution is suited for most scenarios, including incident response
situations.

Atomicity, on the other hand, intuitively reflects the demand to produce an accurate
and consistent image of a host’s volatile storage. Concurrently running processes in
the course of the imaging period may disturb this process and result “in the memory
image being imprecise, and not attributable to a specific point in time” (Schatz, 2007a,
p. S128). Because these properties are contradictory to classic perceptions of forensic
soundness, methods that satisfy higher degrees of atomicity are generally preferable to
less atomic approaches when in doubt.

For the remainder of this chapter, a rough understanding of the previously described
terms is sufficient. Based on our explanations, we will outline the benefits, limitations,
and drawbacks of existing memory acquisition solutions in the following sections. In
Chapter 3, we will define and formalize the criterion of atomicity as well as other factors
for sound memory imaging in greater depth.

2.2.1 Memory Acquisition Using a Dedicated Hardware Card

One of the first propositions for obtaining a forensic image of a computer’s RAM de-
scribed the use of a special hardware card. In 2004, Carrier and Grand presented a proof-
of-concept (PoC) solution called “Tribble” that duplicates areas of physical memory via
Direct Memory Access (DMA). Because the approach is independent from possibly sub-
verted functions of the operating system, its reliability is assumed to be high. Tribble
is designed as a dedicated PCI device and is capable of saving volatile information to
an attached storage medium. Upon pressing an external switch, the card is activated,
and the imaging procedure is initiated. During this process, the CPU of the target
host is temporarily suspended to prevent an attacker from executing malicious code and
illegitimately modifying the status of the system. Once all operations are completed,
control is given back to the operating system, and the acquisition card returns to an
idle state again. Two lesser known but comparable implementations are suggested by

14



2 Background Information

Petroni et al. (2004) with their “Copilot” prototype and BBN Technologies (2006) in
the form of “FRED”, i.e., the Forensic RAM Extraction Device.

In comparison to existing solutions at that time, the described methods offer several
inherent advantages: First, as the processor of the target machine is successfully halted,
the imaging operation can be atomically completed without interference by other pro-
cesses. Second, because all information is directly retrieved from physical RAM, the
procedure has long been believed to act outside the view of even sophisticated malicious
applications such as rootkits, resulting in a pristine copy of a computer’s memory (Ko-
rnblum, 2006). In a more recent presentation that gained broad attention, Rutkowska
(2007) has pointed out though that the memory map of the Northbridge can be sub-
ject to manipulation (see also Sang et al., 2011). Thereby, it is possible to present a
different view of physical memory to peripheral devices. Due to these findings, several
authors have stated that hardware cards can no longer be fully trusted and must not be
regarded as forensically sound any more, making the development of more robust and
reliable memory acquisition techniques necessary (Libster and Kornblum, 2008; Ruff,
2008). In addition to these concerns, it is important to emphasize that a PCI card must
be installed prior to its use and, thus, is only suited for certain scenarios. Specifically,
Carrier and Grand (2004, p. 12) clarify that “the device has not been designed for an
incident response team member to carry in his toolkit”, but “rather needs to be consid-
ered as part of a forensic readiness plan”. According to the authors, a card is therefore
most beneficial when it is built-in in (business-)critical servers “where an attack is likely
and a high-stake intrusion investigation might occur”. Other options for deployment
are, for instance, within a honeypot environment.2 In this case, volatile information can
be comfortably captured before a decoy is shut down and set up again.

2.2.2 Memory Acquisition via a Special Hardware Bus

As an alternative to PCI cards, Dornseif and Becher (2004) as well as Becher et al.
(2005) have suggested reading memory via the IEEE 1394 (FireWire) bus as early as
in 2004. Several years later, Gladyshev and Almansoori (2010) presented their Goldfish
project and illustrated how volatile information can be acquired on a Mac OS system
in the course of a digital investigation. A similar set of tools for the Linux platform
was provided by Piegdon and Pimenidis (2007). With respect to the product family
of Microsoft-based operating systems, Boileau (2006b, 2008) was first in demonstrating
the feasibility of the approach for Microsoft Windows XP. In turn, Panholzer (2008)
and Böck (2009) succeeded in accessing memory over FireWire in Windows Vista and
Windows 7, respectively.

Imaging activities do not necessarily need to be restricted to the IEEE 1394 interface
though, but “any hardware bus can potentially be used” (Ruff, 2008, p. 84). For example,

2 A honeypot is “an information system resource whose value lies in unauthorized or illicit use of this
resource” (Spitzner, 2003b,a). It acts as an electronic decoy for studying the behavior of (Internet)
miscreants. More information on this topic can be found in the work of the Honeynet Project (2004).

15



2 Background Information

Direct Memory Access (DMA) operations can be performed both over the PCMCIA (PC-
Card) bus (Hulton, 2006) or over the more modern Thunderbolt port (Maartmann-Moe,
2012). With regard to the latter method, a working prototype has been released by the
same author (Maartmann-Moe, 2013).

Retrieving volatile information via a hardware bus can address some of the issues we
have outlined in the previous section. For instance, the FireWire interface is available in
a large number of systems, especially laptops. Consequently, the method is suited even
for scenarios that permit little or no time for pre-incident preparation. On the other
hand, as Vidstrom (2006) notes, random system crashes or similar stability issues must
be expected when accessing regions in the Upper Memory Area (UMA), i.e., addresses
in the range from 0xA0000 (640 KB) to 0xFFFFF (1 MB) (see also Zhang et al., 2011).
In addition, Carvey (2007) and Boileau (2006a) have indicated inconsistencies after
comparing created images with raw memory dumps. Last but not least, because the
size of a host memory address is limited to 32 bits, a maximum of 4 GB of memory
can be referenced (Promoters of the 1394 Open HCI, 2010). Taking these aspects into
consideration, obtaining a copy of a computer’s RAM via a hardware bus can therefore
not be seen as sufficiently reliable at the time of this writing.

2.2.3 Memory Acquisition with the Help of Virtualization

The concept of virtualization permits simulating complete, isolated, and reliable system
environments, so-called virtual machines, on top of a host computer (Smith and Nair,
2005). A special software layer, the virtual machine monitor (VMM), is responsible for
sharing as well as managing and restricting access to the available hardware resources.
By emulating replicas of the different physical components, each virtual machine is
equipped with its own virtual processor, memory, graphics adapter, network and I/O
interface, and may run in parallel to other guest systems. One exceptional characteristic
of a virtual machine is its capability to be suspended, i.e., to pause its execution process.
In this case, the state of the guest operating system is temporarily frozen, and its main
memory is saved to a file on the hard disk of the underlying host. For instance, when
suspending an instance of a VMware-based machine, a .vmem file, located in the working
directory of the virtual machine, is created (VMware, Inc., 2013). This file contains a
copy of the volatile storage in raw format and can simply be duplicated.

Virtual machines were originally believed to play only a minor role in digital investiga-
tions. For example, Carvey (2007, p. 95) pointed out that “virtualization technologies
do not seem to be widely used in systems that require the attention of a first responder”.
With the growing importance of Internet-hosted services, this situation has drastically
changed over time though, and forensic analysts are likely to encounter running virtual
machines in practice. With respect to these scenarios, a physical memory snapshot of a
guest system can then be acquired with only little effort.

In addition to the software-based technique outlined above, Martignoni et al. (2010) as
well as Yu et al. (2012) have presented two approaches that rely on the recent VMX in-
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struction set of the Intel architecture (Intel Corporation, 2013). Thereby, the acquisition
program acts as a minimal virtual machine monitor and transparently transforms the
target operating system into a virtualized guest. Because the solution essentially runs in
ring -1 privilege mode, i.e., beneath the kernel level, it is immune to attacks originating
from the host, and the contents of memory can be safely and atomically duplicated. On
the other hand, several authors have proven that the hypervisor layer may be subject to
manipulation, too (King et al., 2006; Rutkowska, 2006; Zovi, 2006; Myers and Youndt,
2007). To cope with these issues, Wang et al. (2011a) and Reina et al. (2012) have
suggested running acquisition-related operations on the firmware level by leveraging the
System Management Mode (SMM). The System Management Mode “offers a distinct
and easily isolated processor environment that operates transparently to the operating
system or executive and software applications” (Intel Corporation, 2013, p. 1025). Due
to these characteristics, it is possible to generate an atomic image of memory as well
as save the contents of relevant CPU registers. A major disadvantage of this method
is, however, that it requires patching the BIOS of the target machine. Because the sys-
tem subsequently needs to be rebooted to make the changes effective, the technique is
restricted to specific scenarios in controlled environments.

2.2.4 Memory Acquisition Using Software Crash Dumps

Starting with Microsoft Windows 2000, all modern versions of the Microsoft Windows
product family can be configured to save important debugging information to hard disk
when the target machine unexpectedly stops working (Microsoft Corporation, 2012a).
The execution of the operating system can also be intentionally interrupted by pressing
the ScrollLock key twice, while holding the right control (Ctrl) key at the same time
(Microsoft Corporation, 2011). When the keyboard combination is invoked, the internal
KeBugCheckEx function is executed with the stop code 0xE2 that signals the initiation of
a “manual crash”. As a result, interrupts on all processors of the system are disabled, a
blue screen is displayed, and a so-called crash dump file is generated by overwriting parts
of the page file. For a more detailed description of this process, the reader is referred to
Russinovich et al. (2009).

In contrast to many other acquisition approaches, a created crash dump does not only
contain volatile information from main memory but also of relevant processor registers.
With the help of these registers, valuable artifacts such as the Page Directory of a
process (see Section 2.1.2) can be quickly restored in the course of a memory-based
investigation. It is important to note, however, that a dump file does not necessarily
include a copy of the entire physical address space but may comprise smaller subsets,
in dependence of the system configuration. For instance, a kernel memory dump solely
contains areas of the system space, while a minidump only saves memory regions that
are related to the currently running process. The option for acquiring a specific snapshot
type can be adapted in the Control Panel of the operating system, a list of standard
values for different platforms is maintained in the Microsoft Knowledge Base (Microsoft
Corporation, 2012a).
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One major drawback of the crash dump method is that the previously described keyboard
shortcut is disabled by default. In order to activate it, an investigator must manually edit
the CrashOnCtrlScroll value in the Microsoft Windows registry and subsequently reboot
the system (Microsoft Corporation, 2013d). Due to these requirements, the technique
is of limited use in situations where immediate actions need to be taken. On the other
hand, in a controlled environment, the approach permits obtaining a snapshot of physical
memory with a comparatively high degree of atomicity. Furthermore, even though the
file format of a crash dump is proprietary, it has been well studied in the past (Schuster,
2006a, 2008a) and can be natively processed by both the Microsoft Windows kernel
debugger as well as standard memory analysis frameworks today. Given sufficient time
for preparation, the solution is thus well applicable in practice.

2.2.5 Memory Acquisition with the Help of Software Imagers

One of the most widely used techniques for obtaining a snapshot of a computer’s RAM
involves the use of a special imaging application. Classic tools accessed physical memory
directly in user space (Garcia, 2007; Ruff, 2008). For security reasons, however, these
capabilities were revoked with the introduction of the first service pack for Microsoft
Windows Server 2003 (Microsoft Corporation, 2013b) and are generally not available in
modern operating systems any longer. To cope with these restrictions, most software
vendors ship their products with a kernel-level driver to date. The driver typically opens
a handle to the internal \\.\Device\PhysicalMemory section object and sequentially maps
the address space for later duplication. We will illustrate this process in more detail in
Chapter 4 when we present our evaluation platform for forensic memory acquisition
software.

Investigators may choose between a myriad of free and commercial solutions being avail-
able on the market to date: Well-known utilities include, for example, KnTDD (GMG
Systems, Inc., 2007), mdd (ManTech CSI, Inc., 2009), Memoryze (Mandiant, 2011), FTK
Imager (AccessData, 2012), WinPMEM (Cohen, 2012b), FastDump (HBGary, 2013),
or MoonSols (Suiche, 2013). The functionality of these tools is frequently similar, and
we will evaluate the performance of selected applications in a later part of this thesis. In
addition to the noted programs, several other tools permit acquiring the address space of
a single, specific process. For example, with PMDump, it is possible to “dump the mem-
ory contents of a process to a file” (Vidstrom, 2002). A comparable solution is provided
by Klein (2006b) in the form of Process Dumper that redirects all collected information
to standard output by default. Thus, the final image can be easily transferred over a
remote connection for further investigation as well, e.g., with a simple network admin-
istration utility such as netcat (nc).3 However, both PMDump and Process Dumper
also have various drawbacks: First, since the applications are closed source and use a

3 Netcat does not establish an encrypted communication channel by default. To securely transfer data
over the network, the connection can be tunneled over the SSH (Secure Shell) protocol. Alternatively,
the cryptcat implementation may be used as well. For more information on these topics, please see
Farmer and Venema (2005a).
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proprietary data format, verifying their correctness or adapting their functionality is
difficult. Second, because an explicit process ID must be passed as a parameter when
launching the programs, a corresponding process listing utility must be run in the first
place. Thereby, the level of system contamination on the target host is further increased
though.

The previous arguments can be generalized for all software-based imagers: In order
to create a copy of physical memory, the respective solution must be first loaded into
RAM. As a consequence, portions of memory are irrevocably overwritten, and valuable
pieces of evidence may be destroyed. Sutherland et al. (2008) have shown in a study
that the impact of a tool on the target host can be significant. Furthermore, in the
course of the imaging period, concurrently running processes may access and modify the
address space as well. As we have already argued, such operations affect the accuracy
and consistency of the generated snapshot and are therefore contradictory to classic
perceptions of forensic soundness. Last but not least, it is also crucial to point out that
the described methods inherently rely on functions provided by the operation system
and, as such, are vulnerable to attacks. For instance, a malicious program can block
direct access to the \\.\Device\PhysicalMemory section object and, thus, prevent memory
imaging completely (see Crazylord, 2002). Although these types of manipulations are
fairly easy to identify and immediately indicate the presence of a threat (Kornblum,
2006), several much more sophisticated malware species are known that may be even
difficult to discover for trained practitioners (Sparks and Butler, 2005; Bilby, 2006).

In sum, software-based imaging must be critically judged from a forensic standpoint:
On the one hand, most applications do not require special hardware setups or system
configurations. For this reason, they are generally suitable for most incident scenarios
and permit capturing a forensic image even in case a first responder only has little time
for preparation. On the other hand, trusting the output of an unknown system eventually
“decreases the reliability of the evidence” (Carrier and Grand, 2004, p. 6) and may put
an entire investigation at stake. Forensic analysts should be aware of these peculiarities
and should carefully decide in what cases – and what not – using an acquisition utility
is appropriate.

2.2.6 Memory Acquisition via Operating System Injection or Adaption

Schatz (2007a) has presented a proof-of-concept demonstration called BodySnatcher
which injects an independent operating system into the possibly subverted kernel of
a target machine. By freezing the state of the host computer and solely relying on func-
tions provided by the acquisition OS, an atomic and reliable snapshot of the physical
address space may be created. The presented prototype suffers from several inherent
drawbacks though: First, it is platform-specific to a high degree due to its low level ap-
proach and high complexity. Second, injecting the alternative operating system changes
significant amounts of memory, similarly to the software-based technologies outlined in
the previous section. What is worse, BodySnatcher only supports data operations over
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the very slow serial port. According to Schatz, creating an image of 128 MB of memory
takes about 45 minutes with a speed of 115 kbps. With respect to modern computer
systems and considerably higher RAM capacities, these benchmarks are unacceptable.
Consequently, even though the concept is promising, its technical constraints prevent it
from being truly applicable in real-world situations.

In contrast, Libster and Kornblum (2008) have recommended integrating acquisition-
related program logic as a separate module into the system core. This module is loaded
at boot time and can be invoked by a special keyboard trigger. In this case, currently
running processes are suspended to ensure atomic imaging operations. The authors also
encourage implementing support for several storage dump locations, e.g., remote network
drives or externally attached media. For increased security, the use of hardware-side,
read-only memory flags or encrypted Trusted Platform Modules (TPMs) is suggested.
These mechanisms shall guarantee the integrity of the imaging process and prevent
attacks on the executing code.

The proposal made by Libster and Kornblum is viable and addresses some of the issues
previously described acquisition methods are confronted with to date. As we have argued
in an earlier publication though, major concerns that may be expressed by platform
vendors are that “an atomically-operating acquisition module that is embedded in the
system kernel is in blatant contrast to operating system guidelines that stipulate multi-
parallelism and generally try to prevent resource monopolization” (Vömel and Freiling,
2012, p. 136). Therefore, the approach has yet to be realized in practice.

2.2.7 Memory Acquisition via Cold Booting

Halderman et al. (2008) have illustrated a memory acquisition approach that leverages
the so-called remanence effect of RAM modules. The method is based on the obser-
vation that, in contrast to prior assumptions, volatile information is not immediately
erased when a machine is powered off but is still retained for short periods of time, even
at normal room temperatures (Anderson, 2001; Gutmann, 2001). Chow et al. (2005)
indicated in a study that these effects can be noticed as well after a computer has been
rebooted. Further experiments have shown that data remanence times can be signifi-
cantly extended by artificially cooling down the individual RAM chips. For this task,
standard refrigerants are perfectly viable. Halderman et al. (2008, p. 2) note that at
temperatures of approximately −50◦C, “decay rates were low enough that an attacker
who cut power for 60 seconds would recover 99.9% of bits correctly”. With the help of
liquid nitrogen or other liquefied gases, the time span can be substantially prolonged,
leading to decay rates “of only 0.17% after 60 minutes”. The authors therefore argue
that “even in modern memory modules, data may be recoverable for hours or days with
sufficient cooling” (Halderman et al., 2008, p 5).

Due to the characteristics outlined above, forensic analysts have the possibility of invok-
ing a cold boot attack on a target computer and, thereby, obtain a copy of its physical
memory. For this purpose, power to the host is briefly cut. In the subsequent reboot
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phase, a custom kernel is started that launches a minimal acquisition program and ini-
tiates the imaging process. The usability of this approach has been proven in a number
of recent works: Vidas (2010) has demonstrated the proof-of-concept utility AfterLife
that saves the contents of physical RAM to an external storage medium after rebooting.
The implementation depicted by Chan et al. (2008, 2009) provides an investigator with
an interactive shell when the computer is restarted and permits analyzing state-related
data on the fly. Both projects are still in development though and are not sufficiently
mature yet for daily use.

An alternative, even more powerful technique involves installing the different RAM mod-
ules in another system that is under control of the analyst. As Halderman et al. (2008,
p. 2) point out, these measures “deprive the original BIOS and PC hardware of any
chance to clear the memory on boot”. Carbone et al. (2011) criticize, however, that this
method may bear risks for particularly inexperienced practitioners, because the cooling
liquids or gases that are required for safely transplanting the chips frequently contain
toxic or inflammable components. Thus, all operations must be performed with great
care.

2.2.8 Memory Acquisition Using the Hibernation File

The Windows hibernation file may be an important source for a forensic investigator,
too. Similarly to a crash dump file (see Section 2.2.4), it does not only contain a copy of
physical memory, but also the contents of relevant processor registers. When a computer
is about to be suspended to disk and transitions to a so-called S4 mode (ACPI Promot-
ers Corporation, 2011)4, the system state is temporarily frozen, and a compressed RAM
snapshot is created and saved to the hiberfil.sys file in the root directory of the system
partition (Russinovich et al., 2009). Even though the file format is proprietary, it has
been successfully reverse engineered in the past (Suiche, 2008) and is supported by stan-
dard memory analysis frameworks to date. In addition, with the help of the MoonSols
suite (Suiche, 2013, see Section 2.2.5), it is possible to convert the hiberfil.sys file into
a raw memory dump to facilitate data extraction and analysis even further.

From a forensic standpoint, the hibernation file may yield valuable pieces of evidence.
However, Carvey (2007, p. 96) also argues that it may possibly be significantly out of
date in dependence of the user behavior and in “most cases[,] will not contain the current
contents of memory”. Investigators should keep these aspects in mind when conducting
their examinations.

2.3 Categorization of Forensic Memory Acquisition Approaches

Based on the two factors availability and atomicity we have introduced in Section 2.2,
we are now able to broadly group and compare the previously illustrated memory acqui-

4 The Advanced Configuration and Power Interface (ACPI) specification is jointly developed by the
Hewlett-Packard, Intel, Microsoft, and Toshiba Corporation as well as Phoenix Technologies Ltd.
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Figure 2.5: Categorization of Memory Acquisition Approaches
(Based on Schatz, 2007b)

sition approaches. The corresponding decision matrix is visualized in Figure 2.5. Please
note, however, that the exact positioning of the individual methods within the fields
of the matrix may certainly be subject to discussion in parts. Likewise, the discussed
dimensions do not describe the characteristics of existing technologies in their entirety.
In Chapter 3, we will formalize and describe criteria for sound memory imaging in more
detail. In spite of these issues, we believe that the presented model serves as a starting
point for giving investigators a good insight into when – or when not – to choose a
specific solution. Vital points to keep in mind are especially:

❼ An ideal acquisition method is characterized by both a high degree of atomicity and
availability and is therefore located in the right upper corner of the matrix.

❼ Techniques that are listed in the right half of the matrix must generally be favored
upon techniques that are grouped on the left side, because they are better capable
of coping with concurrent activity (and are possibly more available as well).

❼ Methods that are located in the bottom field on the left side of the matrix (currently:
none) are generally not suitable for obtaining volatile information in a forensically
sound manner and must not be considered further.

❼ Approaches that are categorized in the right bottom field of the matrix are applicable
for scenarios where an investigator has sufficient time for pre-incident preparation.
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❼ Techniques that are listed in the right upper field of the matrix are especially suited
for smoking gun situations, i.e., where little time between an incident and the inves-
tigation phase has passed.

2.4 Summary

In this chapter, we have given a general overview of memory administration on the x86

32-bit platform. Additionally, we have illustrated the layout of the virtual address space,
the virtual-to-physical address translation process, and the paging mechanism as imple-
mented in the product family of Microsoft Windows operating systems. These concepts
must be thoroughly understood, because they form the foundation for many memory
analysis techniques presented in later parts of this thesis. We have also described various
approaches for creating a copy of a computer’s RAM and explained their individual ben-
efits, drawbacks, and limitations. These approaches partially differ tremendously with
respect to their availability and their capability of coping with concurrent activity. For
instance, the use of special hardware cards permits acquiring the contents of memory
with a comparatively high degree of atomicity. However, these cards must be built in
prior to an incident and are therefore only valuable in specific scenarios. Software-based
imaging solutions, on the other hand, are applicable in most forensics-related situa-
tions, but are only able to create a “fuzzy” snapshot that is not attributable to a single
point of time. Moreover, these technologies depend on functions provided by the host
operating system and, thus, are especially vulnerable to potentially installed malicious
applications. Investigators must keep these aspects in mind when balancing the need for
availability with the reliability of a particular method.

In order to support their decision strategy, we have outlined a classification matrix that
groups existing technologies in distinct fields. Thereby, analysts may quickly choose
an approach that is best suited for a case. In the following chapter, we will define
and formalize criteria for sound memory imaging in more detail. With the help of
these criteria, the quality of memory acquisition solutions can be better determined and
assessed.
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Chapter 3

Criteria for Sound Memory Acquisition

As we have indicated in the introduction of this thesis, memory forensics has moved more
gradually into the focus of security professionals over the last years and is increasingly
regarded as an integral part of an investigation. Especially the evidence extraction and
examination phase we will describe in Chapter 5 has been thoroughly covered in the
literature and has received broad attention by both academic researchers as well as
forensic practitioners. With respect to the analysis process, authors frequently request
the corresponding memory snapshot to be “sound” or “reliable” (e.g., see Maclean, 2006;
Garcia, 2007). However, even though we have outlined the characteristics of existing
memory acquisition approaches in the previous chapter, an overall evaluation of these
techniques is mostly missing. What is worse, properly defining the meaning of forensic
soundness and reliability in the context of memory forensics has been utterly neglected in
the past and still remains vague and informal to a high degree. In order to address these
issues, we will introduce and formalize three fundamental criteria, correctness, atomicity,
and integrity, in this chapter. We will show that with the help of these criteria, the
quality of a memory snapshot can be determined. Thereby, we can set a starting point for
actually measuring, instead of estimating, the performance of acquisition technologies,
in contrast to many previous works that merely explain specific behavioral aspects.

Outline of the Chapter

The remainder of this chapter is outlined as follows: In Section 3.1, we give a short
overview of existing memory acquisition models and describe their benefits and limita-
tions. In Section 3.2, we illustrate several terms originally used in distributed systems
theory. Based on these terms, we define our criteria for forensically-sound memory
imaging. Formalizing the definition of correctness, atomicity, and integrity of a memory
snapshot is subject of Section 3.3. In Section 3.4, we discuss the meaning of forensic
soundness in the context of memory-based investigations, followed by a description of
how previously established terms in memory forensics can be mapped and integrated into
our model in Section 3.5. Challenges that memory acquisition solutions must frequently
cope with in practice are discussed in Section 3.6. We conclude with a short summary
of our findings and a brief outlook on the capabilities our proposed model permits in
Section 3.7.
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3.1 Overview of Existing Memory Acquisition Models

Even though the memory acquisition process has been researched to a lesser degree, sev-
eral authors have discussed different factors that affect the quality of a forensic memory
snapshot in the past. Schatz (2007a) was first in identifying three major criteria for
forensically-sound memory imaging, namely the fidelity and reliability of the memory
copy as well as the availability of the respective acquisition method. The principle of
fidelity dictates that the generated memory image is “a precise copy [of] the original
host’s memory” (Schatz, 2007a, p. S128). On the other hand, reliability stipulates that
an acquisition technique is not vulnerable to subversion and either produces “a trust-
worthy result or none at all”. Last but not least, availability refers to the applicability
of a method “on arbitrary computers (or devices)”.

As we have indicated in the previous chapter, Schatz (2007b) adapted these criteria in
a later work and outlined a preliminary evaluation framework for memory acquisition
techniques based on the two dimensions atomicity – which serves as a metric for fidelity –
and availability. However, both dimensions were only vaguely described, and especially
the definition of atomicity remained unclear. In this chapter, we will elaborate the
characteristics of an atomic memory image in depth and derive suitable metrics for
assessing the performance of acquisition solutions. We will also show that the atomicity
of an approach must be determined in independence from other fundamental influencing
variables, for instance, its correctness. Thereby, differences between these factors will be
illustrated based on a number of intuitive examples.

As an alternative to the criteria outlined by Schatz, Inoue et al. (2011b) described four
metrics in a study, namely the correctness of a method, its completeness, speed, and the
amount of interference. Precisely, correctness demands that “the physical address of a
page in the image [corresponds to] the actual physical address of that page in memory”
(Inoue et al., 2011b, p. S43). In turn, the notions of completeness and speed request
that the snapshot contains “all of the physical address space which is not allocated to
devices or the BIOS” and is recorded “as quickly as possible”. Finally, the amount of
interference refers to “the amount of memory [a method] alters on the machine” and
should be minimized. As we will see, the proposed criteria come close to the definitions
we suggest in this chapter. However, we will also show that our criteria are capable of
mapping and integrating the original metrics and permit greater flexibility as well as
easier adaptability when assessing memory acquisition solutions.

3.2 Background on Distributed Systems

In the following, we will briefly describe major characteristics of distributed systems.
The explanations given in this section are mainly based on the works of Lamport (1978)
as well as Mattern (1989) and need to be thoroughly understood, because they form the
foundation for our memory acquisition model presented in Section 3.3.
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3.2.1 Characteristics of Distributed Systems

A distributed system can be viewed as a collection of distinct processes that cooperate
and communicate with each other by exchanging messages (Lamport, 1978). Thereby,
a process in a distributed system is characterized by a sequence of individual events.
Such an event is triggered when a message is sent to a process, a message is received by
another process and, as a consequence, the internal state of the recipient is updated, or
said state is changed by performing a local computation. The events of a single process
are totally ordered according to their local occurrence. In more detail, for two local
events a and b, it is possible to introduce a “happened before” relationship, denoted by
a → b, if a precedes b. In contrast, if a does not precede b, we denote this by a 9 b. With
respect to the entire system, this relationship can be extended as follows (see Lamport,
1978, p. 559):

1. For two events a and b, if a is the sending event of a message and b is the corresponding
receive event, then a → b.

2. Given three events a, b, and c, the relation is transitive, i.e., if a → b and b → c, then
a → c.

As can be seen, the previously described relation is unidirectional, and an event a that
“happens before” an event b can causally affect this event but not vice versa. According
to Mattern (1989, p. 121), it is this causality relation that is “the central concept [...]
which determines the primary characteristic of time, namely that the future cannot
influence the past”. Likewise, two events a and b are concurrent when they do not
causally affect each other, i.e., a 9 b and b 9 a.

The flow of messages and events may be graphically visualized with the help of a space-
time diagram as shown in Figure 3.1. In the example, the vertical direction of the
diagram represents the space of distinct processes, whereas the horizontal direction rep-
resents (real) time. Events that occur at a specific point of time are indicated by a single
dot, the exchange of messages is depicted by diagonal arrows. An event a that “happens
before” (causally affects) an event b is horizontally aligned to the left of this event. As
such, by following the respective arrows “in time” from the left to the right, it is easy to
see that e11 → e21 and e31 → e22. Likewise, e31 → e33, due to the transitivity condition
outlined above. However, e22 9 e32, and e32 9 e22, thus, e22 and e32 are concurrent.
Please note that, for instance, the events e21 and e32 are also concurrent, even though,
as depicted in the space-time diagram, the event e21 appears to happen at an earlier
time than the event e32. However, since the events are not causally related, process p3
is only informed about the state of process p2 after receiving the corresponding mes-
sage in event e33. By the same reasoning, the events e31 and e21, for instance, are also
concurrent.
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p1

p2

p3

e11

e21 e22

e31 e32 e33

Figure 3.1: Process Event Diagram

3.2.2 Consistent and Inconsistent Cuts

For the remainder of this chapter, we denote the set of events in a system by E. Addi-
tionally, we assume the relation →l defines the local event order of two events e and e′,
i.e., for two events e and e′, e →l e

′ ⇒ e → e′, and e and e′ refer to the same process.
We can then cut the set E into two partitions, past and future, that comprise the events
occurring before and after the cut, respectively. Formally:

Definition 1. A cut C of an event set E is a finite subset C ⊆ E such that for two local
events e and e′, e ∈ C and e′ →l e ⇒ e′ ∈ C (see Mattern, 1989, p. 123).

An example for a cut is depicted in Figure 3.2a. The dashed cut line is in compliance
with our definition, because the local ordering of the individual events is taken into
consideration, and a local event e′ that occurs before a local event e is included in the
past partition shown on the left side of the cut line. As can also be seen in the diagram,
the event e13 is triggered when process p1 receives a message from process p2 and is part
of the cut. However, the corresponding send event e24 is not. As Mattern (1989, p. 123)
points out, “[s]uch a situation is undesirable because cuts are used to compute the global
state of a distributed system along a cut line”. This motivates the definition of a system
with consistent cuts where every message that is received was also sent.

Definition 2. A consistent cut C of an event set E is a finite subset C ⊆ E such that
for two events e and e′, e ∈ C and e′ → e ⇒ e′ ∈ C (Mattern, 1989, p. 123).

To check whether a cut is consistent or not, Mattern (1989) proposes a simple “rubber
band consistency test”: Assuming a time line behaves like an idealized rubber band, it
can be stretched and compressed until the cut is vertically fully aligned. If the message
flow does not go backwards in time, i.e., there are no message arrows pointing from the
right to the left, the cut is consistent, otherwise it is not.

The aligned rubber band transformation for the previously described space-time diagram
is illustrated in Figure 3.2b. It is clearly visible that the message flow between the two
events e13 and e24 is reversed. Thus, the consistency test fails. By adapting the cut
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(b) Testing the Consistency of a Cut
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(c) Adaption of the Cut

Figure 3.2: Consistent and Inconsistent Cuts
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line as presented in Figure 3.2c, a valid and consistent set of past and future events
can be created. Obviously, the cut shown in Figure 3.2c can also be vertically aligned
without affecting the message flow. In general, Mattern (1989, p. 124) argues that “[f]or
any time diagram with a consistent cut consisting of cut-events c1 . . . cn, there is an
equivalent time diagram where c1 . . . cn occur simultaneously, i.e., where the cut line
forms a straight vertical line”. The definitions outlined in this section will help us form
the basis for our memory acquisition model. In the following, we explain the intricacies
when generating a forensic image of a computer’s RAM in more detail.

3.3 An Evaluation Model for Forensic Images of Physical Memory

Modern computers typically comprise two or more central processing units (CPUs) that
permit the execution of multiple tasks in parallel. As such, a computer can be viewed
as a miniature distributed system with concurrent system activities.

3.3.1 Events and Causality

Memory is a shared resource and too large to be accessed in its entirety in one atomic
machine instruction. We therefore model every memory region that can be read or
written with one atomic machine instruction as an individual process in terms of the
terminology of distributed systems. An event is a read or write operation on such a
region, performed by a program running on one of the available CPUs. The notion of
potential causality is encoded in the programs that run on the CPUs. As an example,
consider the two programs running on two processing units as illustrated in Figure 3.3.
We denote the different memory regions that are accessed by the individual programs
by rn. A read instruction indicates that the value of a specific addressable memory
region is read out. In contrast, a write instruction indicates that the value of a specific
addressable memory region is updated and modified. As can be seen, the first instruction
of the program running on core 1 causally precedes the second instruction which, in turn,
causally precedes the third and forth operation. One possibility of a corresponding space-
time diagram that visualizes the individual program steps and their causal dependencies
is shown in Figure 3.4a. Another possible execution is depicted in Figure 3.4b. The only
difference between the two executions is that the read operation invoked by core 2 on
the memory region r2 now occurs after the write operation of core 1 has been carried
out.

Apart from the causal relation that is implicitly defined by the control flow of programs,
there may be inter-program dependencies due to synchronization primitives that are
implemented by the operating system, e.g., mutexes, locks, or messages. For instance,
there exists a synchronization dependency between the two sample programs shown in
Figure 3.5: Core 2 uses a mutex to deblock the program on core 1. Therefore, there
is an explicit synchronization resulting in the fact that the program running on core 2
reads the value of the memory region r2 before the program running on core 1 updates
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RAM

core 1 core 2

read(r1)

write(r2)

write(r3)

read(r4)

read(r2)

write(r4)

write(r1)

Figure 3.3: Sample System with Two Processing Units

said value by performing a write operation. Such dependencies must also be reflected
in the causal relation and in the corresponding space-time diagram of the computation,
respectively.

Based on the terms we have derived, we are now able to define the characteristics of
a memory snapshot more clearly as well as explain major factors that may be used to
assess its “goodness”.

3.3.2 Memory Snapshots

We denote the set of all addressable memory regions by R, the set of all possible values
of a given memory region by V, and the set of all timestamps by T . To formalize a
snapshot we need to refer to the contents of main memory at specific points in time. We
therefore define the function

m : R× T → V

that takes a specific memory region as well as a specific point in time and returns the
contents of that memory region. So, for example, m(x, y) refers to the value of memory
region x at time y.

Definition 3. A memory snapshot (or simply snapshot) is a vector of tuples that, for
every memory region, contains the value of that region together with the point in time
the value was retrieved from this region.
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Figure 3.4: Possible Space-Time Diagrams for Two Programs
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Figure 3.5: Use of Mutexes to Synchronize Program States

A snapshot is formalized by the function

s : R → V × T

from memory regions to tuples (x, y). For any such tuple we denote by s(r).v the first
component and by s(r).t the second one. For example, if s(r) = (x, y), then s(r).v = x

and s(r).t = y.

Observation 1. Every snapshot corresponds to a cut through the space-time diagram of
the system.

A full snapshot covers all memory regions of the system, i.e., it stores a value for every
memory region in R. Sometimes, however, also partial snapshots are useful that only
cover subsets R ⊂ R of all memory regions. Such snapshots are of interest when an
investigator only wants to image specific parts of main memory, e.g., the address space of
a particular program or the kernel address space of the operating system. The evaluation
criteria we will describe in the following sections apply to both variants of memory
snapshots. With respect to a partial snapshot, it is necessary to adapt the original
“happened before” relation (→) so that the principle of causality is also maintained in
the reduced set of memory regions.

Let Ê be the set of events occurring in the set of memory regions R ⊂ R. We define

causality with respect to a set of memory regions R ⊂ R, denoted by
R
−→, as follows:

R
−→= {(a, b)| a ∈ Ê ∧ b ∈ Ê ∧ a → b}

We can then compress the original space-time diagram for the entire memory address
space R into a smaller partial space-time diagram that only comprises the subset of
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Figure 3.6: Construction of a Partial Space-Time Diagram

memory regions R ⊂ R, but still maintains causality across all events involved. A
transformation of a space-time diagram into a smaller version is depicted in Figure 3.6.
In the example, the addressable space of main memory consists of only three memory
regions for reasons of simplicity, i.e., R = {r1, r2, r3}. We assume that an investigator
is interested in acquiring two of the three memory regions R = {r1, r2}. However, the
causality relations that are defined in the original snapshot must also be reflected in its
partial version. Therefore, as e21 → e31 → e11 and, consequently e21 → e11 due to the

transitivity condition, e21 also causally affects e11 with respect to R, i.e., e21
R
−→ e11 (as

indicated by the dashed arrow line in Figure 3.6). We can generalize this conclusion and
make the following observation:

Observation 2. For two events a, b, {a, b} ∈ Ê, the following condition holds:

a → b ⇒ a
R
−→ b

Please note that, in practice, a memory snapshot, no matter whether it is a full or partial
variant, generally contains only raw physical data. The point of time when the value of
an individual memory region is read out is usually not stored due to efficiency reasons.
To define notions of correctness and integrity, however, we need to refer to this particular
timestamp. It is therefore also vital to the definition of a memory snapshot.

3.3.3 Correctness of a Snapshot

Intuitively, correctness means that the snapshot contains only “true” values, i.e., those
values that were actually stored in memory when the snapshot was taken. Correctness
applies to any memory region contained in the snapshot, i.e., the concept can be applied
to both full and partial snapshots.

Definition 4. A snapshot is correct with respect to a set of memory regions R ⊆ R if
for all these regions, the value that is captured in the snapshot matches the value that is
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stored in this region at this specific point of time. Formally, a snapshot s is correct if it
satisfies the following condition:

∀r ∈ R : s(r).v = m(r, s(r).t)

To explain the characteristics of a correct snapshot more clearly, consider the two sample
algorithms depicted in Listing 3.1. For reasons of simplicity, we model regions of main
memory to be imaged as an array m of size n, where n refers to the largest element of
R. The snapshot is stored in an array s of the same size. The first lines of the listing
show an algorithm that produces a correct full memory snapshot. It iterates through
main memory and copies the values of those regions to the snapshot array. On the other
hand, the bottom of Listing 3.1 depicts an algorithm producing an incorrect snapshot
as it only obtains the “true” values of every second memory region, i.e., regions ending
with even numbers. We will see in Chapter 4 that such errors in the program logic –
even though they are often more complex and, in contrast to this example, usually not
intentionally inserted in the source code – may exist in memory acquisition solutions
available on the market to date. It is still important to keep in mind though that the
second algorithm will produce a correct partial snapshot if R is restricted to the set of
memory regions with even numbers.

Satisfying correctness may seem trivial at first glance. However, creating a correct copy
of a host’s volatile storage becomes significantly more difficult in the light of a possibly
subverted operating system. For example, an early memory acquisition technique for
Linux systems that makes use of a loadable kernel module (LKM) has been presented by
Ring and Cole (2004). The technique relies on functions provided by the analyzed host in
question though. Therefore, as the authors acknowledge, it is based on the questionable
assumption that “[a] rootkit does not purposefully alter the behavior of how non-intruder
related programs and files interface with the operating system” (Ring and Cole, 2004,
pp. 165-166). By the same reasoning, we can argue that other (software-based) acquisi-
tion procedures suffer from similar limitations. We will describe the problem of correctly
imaging memory of compromised systems in more detail in Section 3.6.

1 # Correct Memory Acquisition Approach

2 for i = 1 to n {

3 s[i] = m[i]

4 }

5

6 # Incorrect Memory Acquisition Approach

7 for i = 1 to n {

8 i f i mod 2 == 0

9 s[i] = m[i]

10 e l se

11 s[i] = 0

12 }

Listing 3.1: Example of a Correct and Incorrect Memory Acquisition Algorithm
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3.3.4 Atomicity of a Snapshot

An atomic snapshot should not show any signs of concurrent system activity. We for-
malize this by reverting to the theory of concurrent systems as outlined in Section 3.2.

Definition 5. A snapshot is atomic with respect to R if the corresponding cut is consis-
tent. Likewise, a snapshot is atomic with respect to a subset of memory regions R ⊂ R
if the corresponding cut through the partial space-time diagram is consistent.

With regard to the two examples presented in the previous section, we can see that
the algorithms do not take any precautions to cope with concurrent system activity
and, thus, will generally produce non-atomic snapshots. In the course of the respective
imaging operations, it is, therefore, possible that concurrently running processes may
access and change memory regions that have already been read out by the acquisition
product. Libster and Kornblum (2008, p. 14) argue that these modifications cause “the
captured data to be inconsistent” and lead to a “fuzzy snapshot” of the system state.
In Listing 3.2 we have modified the two examples, using a special lock synchronization
primitive. If lock is issued, all activities on the target system that are not related
to the memory acquisition process are halted (i.e., frozen). Thereby, the atomicity of
the respective operations can be ensured. Note that the second algorithm, although
now being atomic, is still incorrect. This shows that correctness and atomicity are two
independent properties of snapshots.

1 # Atomic and Correct Memory Acquisition Approach

2 lock

3 for i = 1 to n {

4 s[i] = m[i]

5 }

6 unlock

7

8 # Atomic , but Incorrect Memory Acquisition Approach

9 lock

10 for i = 1 to n {

11 i f i mod 2 == 0

12 s[i] = m[i]

13 e l se

14 s[i] = 0

15 }

16 unlock

Listing 3.2: Example of an Atomically-Correct and Atomically-Incorrect Acquisition
Algorithm
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3.3.5 Integrity of a Snapshot

Even atomic snapshots are not taken instantaneously but require a certain time period
to complete. The placing of this time period within a digital investigation is vital to
the quality of a snapshot. For example, memory snapshots should be taken as early as
possible within a digital investigation and not at the end when, e.g., activities of live
analysis have permeated the system. The third property of memory snapshots, which
we call integrity, refers to this aspect. Intuitively, integrity ties a snapshot to a specific
point of time chosen by the investigator.

Definition 6. Let R ⊆ R be a set of memory regions and τ ∈ T be a point in time.
A snapshot s satisfies integrity with respect to R and τ if the values of the respective
memory regions that are retrieved and written out by an acquisition algorithm have not
been modified after τ . Formally:

∀r ∈ R : τ ≤ s(r).t ⇒ ∃t ∈ T :

t ≤ τ ∧ ∀t′ ∈ T : t ≤ t′ ≤ s(r).t : s(r).v = m(r, t′)

In a certain sense, integrity refers to the “stability” of a memory region’s value over a
certain time period. In contrast, the correctness of an imaged memory region only refers
to the “true” value of this region at a specific point of time. To illustrate the definition
more clearly, consider the example space-time diagram in Figure 3.7. The example
consists of four memory regions only, i.e., R = {r1, r2, r3, r4}. We assume that at time τ ,
the imaging operation is initiated and leads to a change in the memory regions r3 and r4,
as indicated by the dark-grey dots. We can, for instance, imagine that a software-based
imaging solution is loaded into memory, thereby overwriting said regions. We can then
find a specific time t ≤ τ that represents the original state of memory, i.e., the state of
memory that is solely defined by intrinsic system as well as process operations and is
not yet affected by the imaging process. By s(ri).t, r ∈ {1, 2, 3, 4}, we denote the point
of time (as indicated by a black square) when the respective memory region is read out
by the acquisition algorithm, and its value is saved to the snapshot.

Taking Definition 6 into account, the snapshot satisfies integrity with respect to time τ

and memory regions r1 and r2. On the other hand, for memory regions r3 and r4, we
can find point of times t′ ∈ T , t ≤ t′ ≤ s(ri).t, i ∈ {3, 4}, where the value that is stored
in the snapshot does not equal the value that was originally stored in the respective
memory region before τ , i.e., a manipulation of said memory region has occurred in
the course of the observation period. By τ , we refer to the point of time when an
investigator “decides” to take an image of a computer’s memory. Although being highly
subjective, this point of time ideally defines the very last cohesive system state before
being affected (in any way whatsoever) by the imaging operation. As we have already
indicated, τ should therefore mark a time very early in the investigation process. A
first-class memory snapshot satisfies integrity with respect to this time and a preferably
high number of memory regions.
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Figure 3.7: Assessing the Integrity of a Snapshot
with Respect to a Specific Point of Time τ

Depending on the chosen τ , the level of integrity of a generated snapshot can vary
dramatically. Five sample benchmarks (τ1 to τ5) concerning two memory regions R =
{r1, r2} are shown in Figure 3.8. Similarly to Figure 3.7, a black dot indicates an event
that is caused by system process operations, while a grey dot indicates the point of time
the imaging operation is initialized, and an acquisition program is loaded into memory.
By s1, we denote the point of time when the first memory region is read out and saved
to the snapshot. We assume that at time s2, another, second snapshot is taken. It
can be easily seen that the first snapshot does not satisfy integrity with respect to R

and times τ1 and τ2. It does satisfy integrity with respect to τ3 though. The second
snapshot, on the other hand, satisfies integrity with respect to R and all times past τ3.
In particular, it satisfies integrity with respect to R and τ3, even though the imaging
program is already loaded into memory at that time. In dependance of the chosen τ (i.e.,
point of times very early in the investigation process versus later point of times where
certain investigative measures have already been taken), the level of contamination of
the target system due to a memory acquisition procedure can therefore be estimated
quite accurately or only to a lesser degree.

It is important to note that a snapshot that satisfies integrity with respect to a set of
memory regions R ⊆ R and a time τ ≤ s(r).t for all r ∈ R implies that the snapshot is
both correct with respect to R and atomic. On the other hand, satisfying correctness
and atomicity does not automatically imply the integrity of the snapshot with respect
to time τ as well: Considering the memory regions r3 and r4 from the example shown
in Figure 3.7, we can construct a consistent cut through the partial space-time diagram
and a partial snapshot that is correct with respect to R = {r3, r4}, although the original
values in these memory regions have been overwritten.
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Figure 3.8: Assessing the Integrity of a Snapshot
with Respect to Different Point of Times

Based on these observations, we can derive the following lemmas:

Lemma 1. Let s be a memory snapshot that satisfies integrity with respect to a set of
memory regions R ⊆ R and a point of time τ . If for all r ∈ R holds τ ≤ s(r).t, then the
snapshot is both correct and atomic with respect to R.

Lemma 2. The implication of Lemma 1 cannot be strengthened to an equivalence.

3.4 Discussion of Forensic Soundness

In the previous sections we have shown that the three criteria we have identified, correct-
ness, atomicity, and integrity, are independent and cannot be reduced to each other. On
this basis, we postulate that all three criteria have to be satisfied for creating a forensic
copy of physical memory. This leads to the following rule:

Rule. The quality of a forensic snapshot is determined by its (degree of) correctness,
atomicity, and integrity.

So far, we have only broadly described when a snapshot should be considered “good” or
“reliable”, even though we have extensively discussed the respective influencing factors
in the preceding sections. In fact, there has been an intense debate within the forensic
community over the last years upon the meaning of and requirements for forensic sound-
ness.1 Classic definitions that mostly apply to the area of persistent media-oriented dead
forensics stress, for instance, that a forensically-sound duplicate “must contain a copy
of every bit” of the source in question and must not alter, “in any way”, the respective
data (Ball, 2005, p. 43). As various authors point out, these principles are often more of
an ideal though and are especially hard to meet in the field of live forensics, e.g., when

1 For a complete overview of the debate, please see the respective Yahoo Group at
http://tech.groups.yahoo.com/group/forensically_sound/.

38

http://tech.groups.yahoo.com/group/forensically_sound/


3 Criteria for Sound Memory Acquisition

obtaining a forensic image of a computer’s RAM (e.g., see Murr, 2006; Bejtlich, 2006).
To resolve this conflict, Casey (2007, p. 49) suggests “looking at methods in traditional
forensic disciplines, such as DNA analysis”. Casey argues that these methods are re-
garded as “forensically sound”, even though a DNA sample frequently smeared pieces
of the original evidence. For this reason, he concludes that “[f]ocusing on whether an
item of digital evidence was altered in any manner, rather than in a manner that affects
the reliability or authenticity of the results, distracts from the substantive aspects of
the evidence”, and “imposing a paradigm of ‘preserve everything but change nothing’
is impractical and doing so can create undue doubt in the results of a digital evidence
analysis, with questions that have no relation to the merits of the conclusions” (Casey,
2007, pp. 49-50).

We have attempted to consider the relevant aspects of this discussion by defining the
correctness, atomicity, and integrity of a snapshot with respect to a set of memory regions
R ⊆ R. Thereby, a memory image may be regarded as “forensically sound” although
parts of the image do not, for instance, reflect the “true” state of memory when the
image was taken. Please note that, according to our definitions, we neither specify how
big (or small) R should be, nor what areas of memory R should comprise. These aspects
are intentionally left to be defined by the investigator (respectively by the the forensic
community or vendors of memory acquisition solutions), i.e., an investigator ultimately
decides the degree of forensic (un)soundness she expects and is willing to accept. A
good acquisition method, of course, will seek to satisfy the different evaluation factors
with respect to a set of memory regions R that maximizes both information quantity
(i.e., R better approximates the set of all addressable memory regions R) and quality
(i.e., R comprises areas of memory that contain information that are “essential” to the
investigation). It is imaginable that vendors of memory acquisition solutions evaluate
their products upon the performance they achieve for a given R. Thus, the difficult
question of choosing a “forensically sound” acquisition method may, in the end, be
reduced to simply comparing performance results for available technologies and choosing
a solution with an “R index” that best fits the needs and expectations of the investigator.
In Chapter 4, we will assess the soundness of a number of common imaging solutions
available on the market to date.

3.5 Integration of Existing Concepts into the Model

Before we outline typical challenges and limitations memory imaging approaches are
frequently confronted with, we briefly illustrate how existing concepts established by
Schatz (2007a,b) and Inoue et al. (2011b) can be mapped and integrated into our model.

At first glance, Schatz’s (2007a, p. S128) notion of fidelity, i.e., “the copy of the memory
(or the memory image) is a precise copy [of] the original host’s memory”, appears to
correspond to our definition of correctness. However, Schatz proposes to measure the fi-
delity of a snapshot based on the level of atomicity an acquisition method can satisfy. As
we have shown in the previous sections though, the correctness and atomicity of a snap-
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shot are two orthogonal dimensions and, therefore, should be measured independently.
Moreover, while Schatz only vaguely describes the different criteria by outlining various
factors that may, for instance, affect the atomicity of a snapshot, our definitions are
more specific and actually permit to quantify the degree of correctness, atomicity, and
integrity a memory image achieves. Schatz (2007a, p. S128) also emphasizes determining
the reliability of an acquisition method, i.e., to check whether the method produces a
“trustworthy result or none at all” and may be compromised by malicious activity. This
is an important requirement, especially with regard to a later forensic analysis, and is
reflected in our model by assessing the correctness of a snapshot (which stipulates that
the state of memory that is saved at a specific point of time represents the “true” state
of the memory in question). The last factor that Schatz considers to be notable is the
availability of a given memory imaging solution, i.e., the solution must be “working on
arbitrary computers (or devices)” (Schatz, 2007a, p. S128). This factor does not affect
the quality of a snapshot in the first place and, therefore, has been neglected in our
discussion. However, as we have pointed out in Chapter 2, the availability of a technique
is nonetheless highly relevant in practice and, thus, must be taken into account when
trying to classify memory acquisition approaches.

In contrast to the work of Schatz, Inoue et al. (2011b) have introduced four evalua-
tion metrics for physical memory snapshots: Correctness, completeness, speed, and the
amount of interference. The perception of correctness that Inoue et al. (p. S43) have,
i.e., “the physical address of a page in the image [corresponds to] the actual physical
address of that page in memory”, is not as strict as the one we have proposed in this
thesis and does not explicitly take the actual data into consideration that is stored in
said page. With regard to the notion of completeness, i.e., “all of the physical address
space which is not allocated to devices or the BIOS”, we can easily form a corresponding
set of memory regions R that comprises the address space in question. On the other
hand, our definition is more flexible and permits generating partial snapshots that are
“complete” concerning specific parts of memory, e.g., the kernel address space or the
address space of an application.

The metric of speed, although of high importance in practice, should not be regarded as
a primary evaluation criterion for a memory acquisition technique in our opinion. Speed
is desirable but does not directly influence the forensic soundness of an image. As long
as an approach is capable of producing a snapshot of a computer’s RAM that satisfies
correctness, atomicity, and integrity to a degree that is acceptable for the investigator,
the performance of the respective operation should only be considered in the second
place. Last but not least, the authors’ definition of amount of interference, i.e., “the
amount of memory [an acquisition program] alters on the machine”, roughly corresponds
to our level of integrity. By monitoring memory regions that are updated when the
memory imaging operation is initialized, we cannot only estimate the impact of the
respective solution (thereby “discriminating against” software-based approaches), but
we are able to determine the level of concurrent system activity that “smears” the
snapshot as well. In contrast to prior works, we have also formalized the criteria for
evaluating the “soundness” of a memory image. With the help of our definitions, it is
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possible to derive suitable metrics for measuring the quality of a forensic snapshot and,
thus, help vendors of forensic acquisition solutions assess and drive the development of
their products forward.

3.6 Critical Perception of Current Technologies

In addition to our explanations given for different memory acquisition approaches in
Chapter 2, we now briefly describe how current technologies are capable of roughly
satisfying the criteria of correctness, atomicity, and integrity introduced in this chapter.

As we have argued in Section 3.3.3, creating a correct snapshot of a computer’s RAM
is particularly demanding in the light of possibly installed malicious applications. For
example, a rootkit may attempt to prevent the imaging operation directly by block-
ing access to certain system structures, e.g., to the internal \\.\Device\PhysicalMemory
section object (see Section 2.2.5). Kornblum (2006) has pointed out though that such
manipulations do not reflect normal system behavior and, thus, easily indicate the pres-
ence of a security threat. Malicious programs may, however, also intervene with the
acquisition process more subtly. For example, Bilby (2006) has demonstrated how mem-
ory imaging may be subverted by hooking the System Service Dispatch Table (SSDT), a
core system table that contains pointers to system service routines. Likewise, Sparks and
Butler (2005) have presented a prototype that is able to dissemble different views of vir-
tual memory to applications by manipulating the Translation Lookaside Buffer (TLB),
a CPU cache that stores recently used memory pages for accelerating the virtual-to-
physical address translation process. Last but not least, as we have already discussed
in Chapter 2 as well, even hardware-based approaches that are, for instance, invoked
over the FireWire interface and are independent from functions of the target operating
system are prone to attack and may lead to false results. As can be seen, even though
the correctness of a memory image is crucial for establishing a “ground truth” with re-
gard to a later investigation, it is non-trivial to achieve in practice when the integrity
of the target system is unknown. Even if the trustworthiness of a computer can be
reasonably assumed, (unintentional) errors in the program code of an imaging solution
may distort the correctness of a created memory snapshot and impede a later analysis
of the captured data. We will see examples for such scenarios in Chapter 4 of this thesis.

Ensuring the atomicity of a snapshot may be significantly difficult in practice as well.
It is to be expected that software solutions such as mdd (ManTech CSI, Inc., 2009),
Memoryze (Mandiant, 2011), or MoonSols (Suiche, 2013) do not sufficiently prevent
concurrent system activity and, therefore, are incapable of creating an atomic image
of a computer’s RAM. By the same reasoning, we can assume that these techniques
significantly affect the level of integrity of produced memory snapshots. In particular,
we assume that applications with a complex graphical user interface such as FTK Imager
(AccessData, 2012) lead to a higher degree of memory contamination than more light-
weighted products that do not require any additional libraries. Similar concerns also
apply for applications used on other platforms. For instance, with regard to Linux
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operating systems, the memdump utility may be invoked to retrieve contents of physical
memory over the /dev/mem device file (Farmer and Venema, 2005a,b).2 In the course
of this operation, other processes continue running though and, thus, may change the
respective data. The latter issue is partially addressed by Ring and Cole (2004). The
authors implement a loadable kernel module that is capable of blocking rescheduling of
other processes by setting a special “zombie flag” in the corresponding task structure.
Thereby, the level of concurrent activity may be reduced, and the atomicity of the
imaging procedure is increased.

Acquisition approaches that are based on dedicated hardware cards or that operate on
the firmware level (see Sections 2.2.1 and 2.2.3) promise true atomicity as they freeze
the system state before starting to copy memory. The same is true for virtual machines
that permit suspending the execution environment. All these approaches require spe-
cial, preparatory measures though and are therefore only suited for specific scenarios.
With respect to virtual machines, it is also important to point out, that the correctness
and integrity of a memory image has not been examined in detail yet. For instance, a
discussion on a memory forensics-related mailing list has indicated that volatile informa-
tion are not completely reflected in the respective snapshot file when a virtual machine is
temporarily paused, and the contents of memory is saved to hard disk (Volatile Systems,
LLC, 2012).

Estimating the performance of alternative operating system injection methods as the
one illustrated by Schatz (2007a) remains difficult at the time of this writing. On the
one hand, such an approach offers a high level of atomicity, because the host operating
system is stopped. On the other hand, the technique requires both the acquisition OS as
well as auxiliary software to be loaded into RAM. The actual impact of these activities
on the level of integrity still needs to be more closely evaluated, but first measurements
by Schatz suggest it is notable. According to the author, the technique leads to a 35%
difference in memory pages compared to a reference image. Further testing is required
in the future, however, to confirm these results.

3.7 Summary

In this chapter, we have defined three factors for evaluating the quality of a forensic
memory snapshot: correctness, atomicity, and integrity. A correct snapshot contains
the actual values of (a set of) addressable memory regions that were stored in those
regions at a specific point of time. In contrast, an atomic snapshot is free of the signs
of concurrent system activity. By the level of integrity, we can estimate how “stable”
values of memory regions remain in the course of the imaging operation. In particular, we
can estimate the “impact” of a certain acquisition approach and “discriminate against”

2 The /dev/mem device file is a special file that serves as a representation of physical memory. Please
note that on more recent Linux systems, access to this object is frequently restricted with the help of
a special kernel configuration option (see van de Ven, 2008).
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more invasive, software-based methods that must be loaded into memory and, thereby,
potentially destroy valuable pieces of evidence.

In order to produce a high-quality memory snapshot, acquisition techniques must satisfy
the presented factors to a high degree. As we have illustrated, however, this is often a
non-trivial task in practice. For instance, if the target operating system is subverted by
a malicious application, the correctness of the captured data may be at stake, especially
when an imaging solution internally relies on functions that are provided by said sys-
tem. Likewise, if concurrent activity is not sufficiently prevented during the acquisition
process, the level of atomicity may be significantly affected. Taking these aspects into
consideration, it is important to assess forensic tools upon whether or not or to what
degree they meet the criteria described above. With the help of the model presented
in this chapter, investigators have a starting point for comparing available technologies
more reasonably and choosing a product that best fits their needs and expectations.
The architecture of an evaluation platform that permits measuring the performance of
software-based solutions in greater detail is subject of the following chapter.
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Chapter 4

An Evaluation Platform for

Forensic Memory Acquisition Software

With the help of the criteria we have introduced in the previous part of this thesis, we are
now able to determine the quality of a forensic memory snapshot more thoroughly and,
thus, assess the performance of an acquisition solution in more detail. In this chapter,
we present the architecture of an evaluation platform that helps quantify the degree
of correctness, atomicity, and integrity of selected imaging applications in an in-depth
and repeatable manner. For this purpose, we execute the software on top of a highly
customized version of the Bochs x86 PC emulator (The Bochs Project, 2013a). The
adapted emulator serves as the foundation for our platform and forms the starting point
for the experiments and measurements we will outline in a later section. Our approach
is based on a white-box testing methodology, i.e., we inspect the source code of an
acquisition utility in question and slightly adjust it to our needs. By specifying a number
of hypercalls that are inserted in the program code, we are able to keep track of important
system events and operations, e.g., the point of time when the imaging process is initiated
or finished, respectively, or when a page of RAM is about to be copied. Our platform
intercepts these hypercalls, creates a protocol of the different activities, and generates its
own view of the system state. This view is matched with the produced memory snapshot
in a later analysis phase to derive the value of the individual performance factors. With
our method we are able to answer specific questions concerning the functionality and
operability of imaging applications. These include, for instance:

❼ Does an acquisition utility produce a snapshot that equals the size of the physical
address space?

❼ Does the created snapshot contain the data that was stored in a memory page at the
time said page was imaged?

❼ How does an acquisition utility cope with errors and areas of memory that cannot
be accessed?

❼ In how far does concurrent activity interfere with the imaging process?

❼ What is the impact of an acquisition utility, and how much memory is changed when
the application is loaded into RAM?

❼ What is the amount of memory that is changed in the course of the imaging period?

The approach we describe in this chapter is generally applicable to all acquisition ap-
plications for which access to source code is given. We exemplify this by focusing on

44



4 An Evaluation Platform for

Forensic Memory Acquisition Software

three popular imaging utilities for the family of Microsoft Windows operating systems,
i.e., win32dd (Suiche, 2009b), mdd (ManTech CSI, Inc., 2009), and WinPMEM (Cohen,
2012b). As we will see, two of the three evaluated products initially produced forensic
memory snapshots that differed both in size and contents. In more detail, the respective
solutions ignored regions of the physical address space that were used by hardware de-
vices. As a consequence, the offset mapping of subsequent memory areas was corrupted.
Because such errors may lead to potential data misinterpretations in the course of the
evidence investigation phase, they must be critically judged. We have developed patches
for the affected program components so that all evaluation candidates eventually gen-
erated correct images of a computer’s RAM. As we will also see, in dependence of the
time that is required for the imaging process, maintaining the atomicity and integrity
of a snapshot gets increasingly more difficult, even on idle systems. We will illustrate in
a later section how the degree of such consistency violations can be estimated with the
help of our platform.

Outline of the Chapter

The remainder of this chapter is outlined as follows: In Section 4.1, we give a brief
overview of existing models and concepts for determining the quality of memory acqui-
sition solutions. We also briefly illustrate major characteristics of the standard memory
imaging process on Microsoft Windows operating systems. In Section 4.2, we describe
our evaluation methodology as well as the architecture of our testing platform. A study
of three software-based acquisition utilities and their corresponding performance results
are subject of Section 4.3. In Section 4.4, we explain the advantages and disadvantages
of our approach and discuss possible alternatives. In addition, we outline a number of
weaknesses and limitations our platform still has to cope with at the time of this writing.
We conclude with a short outlook on future research possibilities and a summary of our
work in Sections 4.5 and 4.6.

4.1 Background Information

4.1.1 Existing Work

Existing literature on the quality or impact of imaging solutions is unfortunately still
sparse, and the majority of researchers has solely focused on assessing a memory snapshot
with respect to a single factor. A noteworthy exception is Schatz (2007a, p. S128), who
sketches a general process for duplicating volatile information in a forensically sound
manner. According to the author, an acquisition method is thus “ideal” if it produces
an image of physical RAM that “is a precise copy [of] the original host’s memory” and
is “available, working on arbitrary computers (or devices), and additionally [is] reliable,
either producing a trustworthy result or none at all”.
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Even though Schatz outlines the previous requirements in more detail in the remain-
der of his paper, his explanations rather aim at illustrating the limitations of current
technologies than at finding accurate metrics for sound memory imaging. In contrast,
Inoue et al. (2011b) suggest the four factors correctness, completeness, speed, and the
amount of interference for determining the quality of forensic images (see Chapter 3).
Using so-called graphical dotplots, they are able to reveal and visualize systematic errors
in memory snapshots. Walters and Petroni (2007) attempt to estimate the degree of
system contamination that is caused by acquisition-related activities. For this purpose,
they create so-called snapshot “baselines” and match the system state before and after
an utility has been launched. Similarly, Sutherland et al. (2008) pursue an empirical
approach and observe the system state over the time a memory snapshot is generated.
The main objective of their study is to assess common imaging programs by monitoring
modifications of certain system resources, e.g., the Windows registry or the hard disk
partition.

With respect to the latter works, Lempereur et al. (2010, p. 3) argue that “[w]hile [the
authors’] results and method can serve as useful guidelines for the developers and users
of forensic software, the selection of metrics [is] arbitrary and may not represent the
best way to quantify the impact of forensic tools”. Lempereur et al. therefore propose
comparing “the state of a machine on which forensic acquisition has been performed, to
the state of an identical, unaltered, machine”. To illustrate the practicability of their
approach, they set up several virtual machines and correlate the results of the individual
test runs with the help of a Python-based framework.

Last but not least, Su and Wang (2011) present a statistical model for calculating the
probability a memory area is changed when loading an imaging program into RAM. A
similar methodology is pursued by Savoldi et al. (2010) in order to quantify the degree
of “uncertainty” due to executing an imaging solution on a machine. These concepts
are helpful in fostering a better understanding of the challenges in forensic memory
acquisition, yet they only aid little in recommending a specific solution in practice.

In the following section, we will give a brief overview of the imaging process as it is
frequently applied on Microsoft Windows operating systems.

4.1.2 Forensic Memory Imaging on Microsoft Windows Operating Systems

A common technique for acquiring a (raw) forensic copy of a computer’s RAM relies on
leveraging the internal \\.\Device\PhysicalMemory section object. As the name suggests,
the object provides access to sections of physical memory. However, as we have explained
in Section 2.2.5, permissions to open the resource in user space were revoked with the
introduction of Microsoft Windows Server 2003 (Service Pack 1) for security reasons
(Microsoft Corporation, 2013b). For this reason, all of the imaging applications we
considered for our evaluation did not only consist of a user-mode administration program,
but also of a kernel-level driver. The kernel driver is responsible for obtaining a handle
to the section object. For this purpose, the ZwOpenSection function is usually called in
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Retrieve a handle to the
\\.\Device\PhysicalMemory section object

Get the number of pages in the address space

Map a view of the current page

if success if error

Save the contents of the page
to the image file

Zero out the respective parts
in the image file

Unmap the view of the page

repeat
for

all pages

Close the handle to the
\\.Device\PhysicalMemory section object

Figure 4.1: Sample Algorithm for Acquiring a Forensic Copy of Memory

the first step. After the size of available memory has been determined, portions of RAM
may then be read out page wise, for instance, with the help of the ZwMapViewOfSection

function. In the last step, a mapped section can either be directly written to the image
file in kernel space or transferred to user space via a buffer for further processing.

An illustration of a typical imaging algorithm is depicted in Figure 4.1. As can be
seen, the design of an acquisition solution can be quite simple in practice. Particularly
error-prone program parts include determining the capacity of the physical address space
though. In Section 4.3.2, we will discuss how miscalculations in this area may corrupt a
memory snapshot. Other examples for nuisances in imaging applications are implicitly
assuming the correctness of conducted operations and not – or not sufficiently – testing
the return values of called functions. For instance, Stüttgen and Cohen (2013) point out
that it is possible to induce a fatal error in the majority of imaging solutions available
on the market to date by simply manipulating the MmGetPhysicalMemoryRanges function
we will describe in more detail in a later part of this chapter. Likewise, Milković (2012)
demonstrates various anti-forensic techniques for blocking or evading the imaging pro-
cess. In this regard, it is also important to emphasize that the procedure of invoking the
\\.\Device\PhysicalMemory object may also be susceptible to manipulation (see Bilby,
2006). Therefore, more sophisticated solutions frequently support alternative acquisi-
tion methods as well, e.g., via the MmMapIOSpace kernel routine (Microsoft Corporation,
2013e). In the scope of this thesis, the latter approaches have not been evaluated though.
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4.2 Measurement Methodology and Platform Architecture

As mentioned in the beginning of this chapter, our evaluation is based on a white-box
testing approach, i.e., we examine the source code of the desired acquisition software,
identify the relevant instructions that are responsible for reading and writing out portions
of memory to the respective image file, and slightly adapt the code to our needs by
inserting a number of hypercalls. The different hypercalls are intercepted and processed
by our platform in the course of the imaging period to create an external view of the
system state. By matching this view with the produced memory snapshot, its level of
correctness, atomicity, and integrity can later be determined. In the following sections,
we describe the design, functionality, and mode of operation of our platform in more
detail.

4.2.1 Platform Architecture

As we have already indicated, our testing platform is built upon Bochs, an open source
x86 PC emulator (The Bochs Project, 2013a). Bochs’ distinct advantages over similar
products such as QEMU are its smaller code base by roughly 50% (∼ 250,000 lines of
code) and the possibility to implement the stub of a custom instrumentation interface
comparatively easily. Our interface is largely written in C, apart from performance-
critical parts that were developed in assembly language, and provides a series of callback
functions that are invoked when specific system events and operations occur. In partic-
ular, with the help of the bx_instr_lin_access function, we are able to monitor linear
memory accesses of the guest system. We will see in a later section of this paper that
this capability is beneficial for determining the degree of atomicity.

As we have also pointed out already, the guest system can communicate with the em-
ulator via a number of hypercalls that are triggered in the case of imaging-related ac-
tivities. Technically, a hypercall uses the EAX register to indicate a specific event and
pass additional meta information to the instrumentation interface if required. By is-
suing a breakpoint command (INT 3), the respective hypercall is executed in the next
step. In Listing 4.1, a sample hypercall is depicted. In the example, the beginning
and end of a page acquisition operation is signaled with the HCALL_BEGIN_IMG_PAGE and
HCALL_BEGIN_END_PAGE constructs, respectively (Lines 39 and 47). The instructions invoke
the EXECUTE_HYPERCALL_SYSTEM_MODE function (Line 17) that expects four parameters, in-
cluding an offset to the imaged region in the physical address space. By truncating the
lower 12 bits of the offset (Line 20), the corresponding page number is determined.1

This value, in combination with the page operation and an indicator whether the opera-
tion was successful or not (PAGE_TYPE_ACCESSIBLE or PAGE_TYPE_INACCESSIBLE), is finally
saved in the EAX register before the breakpoint interrupt is triggered (Line 25). We
have patched Bochs such that the interrupt is intercepted and gets solely processed
by our interface. Before control is returned to the guest operating system, the vector

1 As explained in Section 2.1.2, the upper 20 bits of a 32-bit address define the physical page number.
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1 Platform Definition File <hypercall.h>

2

3 enum page_types {

4 PAGE_TYPE_ACCESSIBLE = 0,

5 PAGE_TYPE_INACCESSIBLE = 1,

6 };

7

8 typedef union HCALLARGS_T {

9 unsigned int raw;

10 struct {

11 unsigned int op : 4;

12 unsigned int page_type : 1;

13 unsigned int page : 20;

14 };

15 } HCALLARGS;

16

17 #define EXECUTE_HYPERCALL_SYSTEM_MODE(ARGS , OP, \

18 VIEWBASE , PAGE_TYPE) \

19 do {ARGS.op = OP; \

20 ARGS.page = VIEWBASE.LowPart >> 12; \

21 ARGS.page_type = PAGE_TYPE; \

22 asm { \

23 asm lea ebx , ARGS \

24 asm mov eax , [ebx] \

25 asm int 3 \

26 } \

27 } while (0)

28

29

30 Kernel Driver File of the Memory Acquisition Software

31

32 // reference the UNION

33 HCALLARGS args;

34

35 ...

36

37 // inform the platform of the beginning of a page acquisition

38 // operation

39 EXECUTE_HYPERCALL_SYSTEM_MODE(args , HCALL_BEGIN_IMG_PAGE ,

40 <Offset >, PAGE_TYPE_ACCESSIBLE);

41

42 // internal imaging operations

43 ...

44

45 // inform the platform of the end of a (successful) page

46 // acquisition operation

47 EXECUTE_HYPERCALL_SYSTEM_MODE(args , HCALL_END_IMG_PAGE ,

48 <Offset >, PAGE_TYPE_ACCESSIBLE);

Listing 4.1: Example of a Hypercall
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Hypercall Description

HCALL_BEGIN_LOG
Signals the beginning of the memory acquisition pro-
cess.

HCALL_END_LOG Signals the end of the memory acquisition process.

HCALL_BEGIN_IMG_PAGE
Signals the beginning of an image operation to the
platform for each page.

HCALL_END_IMG_PAGE
Signals the end of an image operation to the platform
for each page.

HCALL_LOAD_ACQUISITION_SOFTWARE

Notifies the platform of the point of time shortly be-
fore the memory acquisition program is loaded into
memory.

HCALL_END_ACQUISITION_SOFTWARE

Notifies the platform of the point of time the acqui-
sition program has completed its operations and is
unloaded from memory.

HCALL_QUIT_SIM
Notifies the platform that the imaging process has
finished and that the guest should be shut down.

HCALL_LOAD_IMAGER_CONFIG

Notifies the platform that more information about
a certain acquisition program is requested for a test
run.

HCALL_SIGNAL_PAGE_SIZE Notifies the platform of the page size.

HCALL_SIGNAL_NUMBER_OF_PAGES
Notifies the platform of the number of memory
pages.

Table 4.1: List of Hypercalls Processed by the Instrumentation Interface

is discarded. Thereby, the operation appears as completely transparent to the guest.
Due to this behavior, applications running on the emulated machine can no longer be
debugged. We believe that this loss of functionality is acceptable in the scope of our
evaluation though. An overview and short description of the hypercalls we have defined
is given in Table 4.1. As can be seen, several calls are reserved for administrative pur-
poses, e.g., for externally shutting down and resetting the guest system or for signaling
the size of the physical address space to Bochs (see also Section 4.3.2). On the other
hand, most hypercalls are directly related to the imaging process. For instance, the
HCALL_LOAD_ACQUISITION_SOFTWARE instruction is invoked by a small wrapper program in
order to mark the point of time before the acquisition program is loaded into memory.
We will illustrate in the following section how, based on the individual hypercalls, the
different factors for sound memory imaging can be measured.
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4.2.2 Measuring Factors for Sound Memory Imaging

Correctness

In order to determine the correctness of an acquisition solution, we create a view of the
guest’s physical address space as it is seen by Bochs, in parallel to the imaging process.
This external view is then matched with the produced snapshot in a later analysis phase
to identify possible deviations. Specifically, when an imager accesses a memory page
for subsequent duplication (e.g., via the ZwMapViewOfSection function), the respective
page number is signaled to the instrumentation interface. Our platform then creates a
concomitant copy of the memory region the page is stored in before passing control back
to the guest system. The algorithm for acquiring the contents of memory is shown in
Listing 4.2. The depicted function acquire_page expects a pointer to the desired page in
question, its offset in the physical address space as well as the page size, and is invoked
each time the HCALL_BEGIN_IMG_PAGE hypercall is received.

On the first function call, the external snapshot file (dump_file) is set up. For this
purpose, the posix_fallocate interface of the system is used (Line 12) that ensures
sufficient storage capacity for the parallel image is provided on the machine. After the
(empty) snapshot has been successfully created, the file is mapped into the host’s virtual
memory (Lines 21-24), and the page acquisition process is initiated in the following
(Lines 38-46). For performance reasons, data are thereby written out to the respective file
offsets eight bytes at a time. Please note that while the latter operations are atomically
executed, mapping a page inside the guest system and informing the host platform of
this process are generally not, because we wanted to reduce modifications of the original
imaging code to a minimum. Consequently, there is a small time frame in which a
page may be updated, and the respective changes are reflected in the memory snapshot
of the host system but not of the acquisition utility (or vice versa). As we will see
in Section 4.3.2 though, these differences comprise only a few bytes and are therefore
negligible in our opinion. In sum, with the help of the described method, we are able
to verify whether the size of a forensic memory snapshot equals the size of the physical
address space as well as whether the data stored in the image file corresponds to the
contents of memory at the time the snapshot was taken.

Atomicity

Directly measuring the level of atomicity a forensic memory image satisfies turned out
to be infeasible in our experiments. For this reason, we pursued an indirect approach
and attempted to quantify the degree of atomicity violations. An atomicity violation
occurs when a memory region that has already been imaged is accessed by a running
thread, and, based on this access, another memory region is modified that still needs
to be duplicated. In this case, the snapshot becomes inconsistent, because an effect is
reflected in the image file without including the corresponding cause. For instance, in
the space-time diagram depicted in Figure 4.2, a concurrent thread (as indicated by the
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1 void acquire_page(unsigned long long *page ,

2 unsigned long long page_offset ,

3 s i z e t page_size) {

4

5 // initialize the external physical memory snapshot file

6 i f (first_acquisition) {

7 LOG("Creating dumpfile with size %s.",

8 commaprint(pMemoryStructure ->memory_size));

9

10 // check whether sufficient storage capacity can be

11 // allocated for the external snapshot file

12 i f (posix_fallocate(dump_file , 0,

13 pMemoryStructure ->memory_size)) {

14

15 // the allocation failed

16 (...)

17 }

18

19 // create a mapping of the external snapshot file

20 // into virtual memory

21 dump_mapping = (unsigned long long *)

22 mmap(NULL , pMemoryStructure ->memory_size ,

23 PROT_READ | PROT_WRITE , MAP_SHARED ,

24 dump_file , 0);

25

26 // check whether the mapping operation succeeded

27 i f (dump_mapping == MAP_FAILED) {

28 (...)

29 }

30

31 first_acquisition = false;

32 }

33

34 // perform further file sanity checks

35 (...)

36

37 // locate the offset in the snapshot file

38 unsigned long long *mapped_page = dump_mapping +

39 (page_offset / s i z eo f (unsigned long long));

40

41 // write the desired page out to the snapshot file

42 for ( s i z e t position = 0; position < page_size /

43 s i z eo f (unsigned long long); position ++) {

44

45 *( mapped_page + position) = *(page + position);

46 }

47 }

Listing 4.2: Algorithm for Generating the External Physical Memory Snapshot
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Figure 4.2: Example of an Atomicity Violation

black circles) accesses the memory regions r1, r2, r3, r4, while an acquisition program (as
indicated by the black squares) is being executed. In the given example, the thread
accesses the memory region r1 at time t1 after the region has been imaged, and, in the
following, manipulates memory regions r2 and r3 at times t2 and t3, although these are
not yet represented in the snapshot and will be written out at a later time. Consequently,
with respect to the regions r2 and r3, the atomicity criterion is violated.2

In practice, it is hard to verify whether the memory operations of a thread are truly
causally related, i.e., whether changing the value of one memory region (directly) leads
to the change of another region (see Chapter 3.2). With respect to all threads running
on a machine, we believe this task is almost impossible to carry out efficiently, because
otherwise, we would have to dynamically taint track the entire system. Due to the
previously described arguments, our platform measures a slightly weaker metric, namely
the degree of potential atomicity violation, i.e., atomicity violations that are unspecified
whether they effectively lead to a modification of the respective program flow. As such,
the metric is an upper bound for the degree of atomicity violation. The complement of
this value, on the other hand, represents the absolute and accurate minimum degree of
atomicity a snapshot satisfies.

To quantify the amount of potential atomicity violations, we hook the callback function
bx_instr_lin_access as indicated in Section 4.2.1, observe all memory operations once
the imaging procedure has started, and keep track of the pages that have already been
acquired. If a thread accesses a page after it has been imaged, it is inserted into a self-
balancing binary search tree that serves as a watchlist for potential atomicity violators.
The currently running thread is identified with one of two methods, depending on the
processor privilege level (ring 0 or ring 3 ) the corresponding process is executed on.

2 Technically, the atomicity criterion is violated with respect to memory region r4 as well. This violation
is of no relevance in the example, however, because the memory region has already been acquired at
the time the violation occurs.
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Figure 4.3: Retrieving the Identification Number of a
Kernel-Level Thread in Privileged Mode

For user-level threads, we obtain a pointer to the Thread Environment Block (TEB)
that is referenced at an offset of the FS segment register (Schreiber, 2001). The TEB,
in turn, points to a _CLIENT_ID structure that stores the unique thread identification
number. In contrast, for kernel-level threads, we obtain the corresponding pointer from
a substructure of the Kernel Processor Control Region (KPCR, see Figure 4.3). The
KPCR stores processor-related information and is accessible over the FS segment register
as well (Schreiber, 2001). It is important to keep in mind that all referenced addresses are
virtual though. Thus, to process the respective data within Bochs, a virtual-to-physical
address translation process has to be completed first for each operation.

When a thread performs a write operation on a memory region that has not been imaged
yet, it is checked whether the corresponding thread identification number is included
in the watchlist of potentially atomicity-violating candidates. If this is the case, the
operation is logged, using a custom binary logger we have implemented for this task.
With the help of the generated log file, the upper bound for the degree of inconsistency
in the memory image can then be estimated in the next step.

Integrity

Similarly to the process of measuring the correctness of a memory snapshot, we determine
its level of integrity by creating copies of the physical address space at several points
in time that are later matched in an analysis phase. In more detail, we duplicate the
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state of memory of the guest operating system shortly before the acquisition program
is loaded into RAM as well as after the imaging process has finished. The former
state is defined to represent the state of memory at time τ , in correspondence to our
explanations outlined in Section 3.3.5. To signal the respective point of times, we trigger
the HCALL_LOAD_ACQUISTION_SOFTWARE and HCALL_END_LOG hypercalls that are intercepted
by our instrumentation interface. For the first task, a small wrapper utility is running
on the guest machine. When the hypercalls are received, the platform temporarily
suspends the execution of the guest system and creates a raw memory snapshot. An
additional third snapshot is taken before the actual imaging process is started, i.e., after
the respective solution has been loaded into RAM, but before the first page has been
acquired. Thus, by comparing the snapshot taken at time τ with the state of memory
at the end of the acquisition process, we can quantify the amount of memory that has
either changed over time or remained stable. By the same reasoning, we can roughly
estimate the impact of the imaging solution on the system, i.e., contents of RAM that
have been overwritten by launching the respective program files, by matching the images
taken at time τ and at the beginning of the acquisition process. Please note, however,
that the latter metric is only meaningful when other influencing factors such as the level
of concurrent activity have been minimized. Finding better approaches for measuring
the impact of an acquisition utility is left for future work.

We have conducted several experiments to quantify the correctness, atomicity, and in-
tegrity of forensic memory snapshots created by three different imaging applications. A
summary of these activities is subject of the following section.

4.3 Evaluation

4.3.1 Evaluation Methodology

We have evaluated the performance and quality of three popular memory acquisition util-
ities, namely win32dd (Suiche, 2009b), mdd (ManTech CSI, Inc., 2009), and WinPMEM
(Cohen, 2012b). While all applications have originally been open source, win32dd has
been replaced by a closed source variant and is only distributed as part of the MoonSols
Windows Memory Toolkit to date (Suiche, 2013). We were therefore only able to test
the last publicly available version of the source code (v1.2.1.20090106).

All experiments were run on a standard off-the-shelf computer system with an Intel
i5-650 processor and 8 GB of RAM. The only addition was a solid state drive that was
used by the binary logger for performance reasons. For our platform, we reserved a
maximum of 2 GB of physical memory. In contrast, for the emulated machine, we chose
memory sizes between 512 MB and 2 GB. The latter value represents the maximum
amount of memory that is supported by Bochs at the time of this writing, a fact that
had unfortunately not been documented in the corresponding user manual and was only
discovered after development of the platform had been finished. As the main guest
system, we set up a default installation of Microsoft Windows XP (Service Pack 3). To
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Figure 4.4: Evaluation Procedure for the
Forensic Memory Acquisition Applications

simulate a standard computer as best as possible, the list and configuration of system
services was not adapted. However, all tests initially started from an idle state, i.e.,
after the startup process of the operating system and all applications had been fully
completed.

For each memory size we considered in our evaluation (512 MB, 1,024 MB, 2,048 MB),
we prepared 30 system snapshot templates. Such a snapshot template was created by
temporarily suspending the guest system, a feature that is available over the Bochs
graphical interface and that permits saving the current state of the processor, memory,
and attached devices to hard disk (The Bochs Project, 2013b). Due to programming
errors in the emulating engine, however, user input and output are not processed any
longer when the simulation is resumed at a later time. For this reason, all image-related
activities were automated without requiring any further manual intervention. For each
snapshot template, a special hypercall from the host to the guest system indicated
the imaging solution to assess. Once a test run had been completed, the snapshot was
reverted, and the simulation was restarted from the initial system state for the remaining
evaluation candidates. As such, the performance results of the different products with
respect to a specific snapshot template were directly comparable. A summary of the
evaluation procedure is given in Figure 4.4. In total, we conducted 270 experiments (90
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per tested RAM size) for the three acquisition utilities. In dependence of the available
memory capacity, between 4.37 GB and 12.37 GB of free hard disk space were required
for the created log file.3 Taking the externally and internally generated snapshots into
account as well (5 in total), about 6.87 GB to 22.37 GB of free space were therefore
needed for every experiment.

4.3.2 Results

Correctness

The physical address space of a computer is not only used by the operating system
and executed applications, but also shared by hardware devices for memory-mapped
I/O (MMIO) operations (see Figure 4.5). When generating a forensic snapshot, these
areas of memory need to be taken into consideration, too. Specifically, an acquisition
solution should identify and zero out MMIO regions in the image file if the respective
addresses cannot be accessed. The recommended method for the first task is invok-
ing the undocumented MmGetPhysicalMemoryRanges function that indicates the memory
structure as it is seen by Windows (Russinovich, 1999). In our tests, both win32dd and
mdd initially determined the size of the address space incorrectly. For instance, mdd cal-
culates the size of memory (in pages) based on the output of the GlobalMemoryStatusEx

function which, unfortunately, does not include information about the MMIO space.
Consequently, when iterating through the address space, these regions are ignored, and
a smaller snapshot is produced. What is worse, because the image file is written sequen-
tially instead of logically, the offset mapping of subsequently accessible memory areas
is corrupted. For analysis techniques that rely on offset interpretation in the evidence
extraction phase of the investigation, this may be a significant problem.

With respect to win32dd, the error has been fixed in later (closed source) versions of
the software (see Suiche, 2009a), the publicly available version of mdd is, however, still
affected. In order to adequately test both products, we have therefore developed patches
that address the issue, so that all considered solutions eventually produced snapshots
that truly equaled the size of memory. One peculiarity of Bochs is, however, that the
top of the guest’s physical address space is always shortened by 16 pages (65,536 bytes).
Thus, for a machine with 512 MB of memory for instance, the total number of pages
corresponds to 131,056 (536,805,376 bytes) instead to 131,072 (536,870,912 bytes). We
believe this may be due to some internal configuration, contacting a Bochs developer
did not help shed light on this issue yet though.

The results of our experiments are presented in Table 4.2.4 As can be seen, all imaging
utilities were proven to achieve a correctness rate over 99.3%, i.e., the solutions are

3 An entry in the log file occupied 12 bytes, i.e., roughly between 391 million (for 512 MB of RAM) and
1.107 billion (for 2,048 MB of RAM) atomicity-related memory operations were observed on average
during an imaging process.

4 All results are average values, based on 30 test runs for each imager and per memory size.
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Figure 4.5: Sample Architecture of a Physical Address Space
(Russinovich, 2008)

capable of reliably acquiring the contents of memory. For a small number of pages (see
Rows 2, 6, and 10 of Table 4.2), the comparison of the generated snapshot with our
external image indicated minor differences. As we have pointed out in Section 4.2.2,
these differences lead back to little inaccuracies in our measurement approach, rather
than to a malfunction in the imaging software. In most cases, the respective changes
were limited to a few bytes per page (typically less than 20). For win32dd, however, more
than 25% of one memory page was updated in each test run. We have not investigated
the exact reason for this behavior yet, but we assume the location may be used for a
program buffer.

If a memory region could not be read successfully, all utilities zeroed out the correspond-
ing parts in the snapshot. Surprisingly, errors were not only signaled for the memory
space of hardware devices as expected, but also for various pages of the operating sys-
tem. Again, the exact reasons for this behavior still need to be examined in more detail.
Likewise, it is still unclear at the time of this writing why the execution of WinPMEM
led to a significantly higher number of read access violations (98-99 pages) in comparison
to its competitors.
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512 MB 1,024 MB 2,048 MB

Number of pages in the address space 131,056 262,128 524,272

win32dd

Number of correctly imaged pages 130,269 260,572 521,183
(99.40%) (99.41%) (99.41%)

Number of pages with observed differences 19 20 17
Number of bytes changed in total 1,446 1,484 1,388
Number of indicated read errors (incl.
MMIO)

768 1,536 3,072

mdd

Number of correctly imaged pages 130,286 260,590 521,198
(99.41%) (99.41%) (99.41%)

Number of pages with observed differences 1 1 1
Number of bytes changed in total 1,074 1,075 1,076
Number of indicated read errors (incl.
MMIO)

769 1,537 3,073

WinPMEM

Number of correctly imaged pages 130,188 260,492 521,100
(99.34%) (99.38%) (99.39%)

Number of pages with observed differences 1 1 1
Number of bytes changed in total 14 14 14
Number of indicated read errors (incl.
MMIO)

867 1,635 3,171

Table 4.2: Results for the Correctness Evaluation of
Different Memory Acquisition Applications

Atomicity

In our experiments, the level of potential atomicity violations rapidly increased with the
size of installed memory (see Table 4.3). While we monitored potential snapshot incon-
sistencies between 37.29% and 39.55% of the pages on a machine with 512 MB of RAM,
the number of violations jumped up to more than 75% for memory capacities of 2 GB.
We believe that the major influencing factor for this steep rise is time, assuming the
respective load on the system remains constant: As it takes imagers longer to complete
their operations on computers with larger amounts of memory, concurrently running ap-
plications also have a longer time span to access areas that have already been duplicated
and, in the next step, modify regions that are possibly not yet part of the snapshot. In
short, with longer imaging periods, it gets obviously more and more difficult to keep the
image file free from “smearing” (see also Figure 4.6).

At the time of this writing, it is still an open research problem in what cases and in
how far concurrent activity during the acquisition process actually has an impact on the
“outcome” of a later analysis. On the other hand, a significant degree of unatomicity
is counterintuitive to classic perceptions of “forensic soundness” (see our discussion in
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512 MB 1,024 MB 2,048 MB

Number of pages in the address space 131,056 262,128 524,272

win32dd

Number of pages unaffected by concurrent 81,979 115,763 133,871
activity (62.55%) (44.16%) (25.54%)
Number of pages affected by potential ato- 49,077 146,365 390,401
micity violations (37.45%) (55.84%) (74.46%)

mdd

Number of pages unaffected by concurrent 82,180 113,199 127,648
activity (62.71%) (43.18%) (24.35%)
Number of pages affected by potential ato- 48,876 148,929 396,624
micity violations (37.29%) (56.82%) (75.65%)

WinPMEM

Number of pages unaffected by concurrent 79,217 113,697 127,964
activity (60.45%) (43.37%) (24.41%)
Number of pages affected by potential ato- 51,839 148,431 396,308
micity violations (39.55%) (56.63%) (75.59%)

Table 4.3: Results for the Atomicity Evaluation of
Different Memory Acquisition Applications
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Figure 4.6: Minimum Level of Proven Atomicity for
Different Imagers and Memory Sizes

Section 3.4), and it is imaginable that the admissibility of evidence that is clearly based
on a highly inconsistent source may be questioned in a trial. Investigators should keep
these aspects in mind when using software utilities for the acquisition of a computer’s
RAM.
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Integrity

In contrast to the degree of atomicity, the level of integrity the created snapshots satisfied
increased with growing amounts of available memory. On average, between 27.373% and
28.587% of the data were subject to change in the course of the imaging period on a
machine with 512 MB of RAM. Roughly about 47% to 49% of all pages were affected. As
opposed to this, on a system with 2 GB of memory, only between 17.905% and 18.447%
of the data were modified, even though the number of affected pages slightly went up
in most cases. This development was expected, because on a system with constant load
but higher memory capacities, proportionally less amounts of space are required for
the operating system and running applications. In comparison to former tests by other
authors for alternative products and approaches (Walters and Petroni, 2007; Schatz,
2007a), our results are similar. For higher capacities, the level of change is smaller, but
with approximately one fifth of the size of the address space still significant. This effect
is likely to aggravate again, however, once concurrent activity gets more intense, and the
system load reaches its peak.

Regarding the impact of an acquisition utility, between 0.87 and 1.33 MB of memory
are changed after loading the respective solution into RAM. As we have pointed out in
Section 4.2.2, these values represent an upper bound though, rather than an accurate
estimation. In sum, however, all tested applications seem quite light-weight and reduce
external dependencies on other software components to a minimum. A summary of our
experiments and the corresponding results are listed in Table 4.4. The percentage of
bytes that remained unchanged in the course of the imaging period is depicted for the
different products and memory sizes in Figure 4.7.

512 MB 1,024 MB 2,048 MB

Number of pages in the address space 131,056 262,128 524,272

win32dd

Number of pages remaining consis- 68,842 138,407 265,586
tent over the imaging process (52.53%) (52.80%) (50.66%)
Number of pages changed during 62,214 123,721 258,686
the imaging process (47.47%) (47.20%) (49.34%)
Bytes of memory remaining consis- 389,382,288 869,675,703 1,762,918,568
tent over the imaging process (72.537%) (80.999%) (82.095%)
Bytes of memory changed during 147,423,088 204,000,585 384,499,544
the imaging process (27.463%) (19.001%) (17.905%)
Number of pages changed after load-
ing the acquisition program

1,361 1,325 1,362

Bytes of memory changed after
loading the acquisition program

990,792 924,691 1,024,498

Table continues on the following page.
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mdd

Number of pages remaining consis- 69,625 140,621 266,684
tent over the imaging process (53.13%) (53.65%) (50.87%)
Number of pages changed during 61,431 121,507 257,588
the imaging process (46.87%) (46.35%) (49.13%)
Bytes of memory remaining consis- 389,867,381 872,074,311 1,759,805,581
tent over the imaging process (72.627%) (81.223%) (81.950%)
Bytes of memory changed during 146,937,995 201,601,977 387,612,531
the imaging process (27.373%) (18.777%) (18.050%)
Number of pages changed after load-
ing the acquisition program

1,964 1,977 1,969

Bytes of memory changed after
loading the acquisition program

1,287,561 1,288,320 1,399,336

WinPMEM

Number of pages remaining consis- 66,305 137,669 266,588
tent over the imaging process (50.59%) (52.52%) (50.85%)
Number of pages changed during 64,751 124,459 257,684
the imaging process (49.41%) (47.48%) (49.15%)
Bytes of memory remaining consis- 383,347,294 861,257,118 1,751,276,845
tent over the imaging process (71.413%) (80.216%) (81.553%)
Bytes of memory changed during 153,458,082 212,419,170 396,141,267
the imaging process (28.587%) (19.784%) (18.447%)
Number of pages changed after load-
ing the acquisition program

1,338 1,307 1,341

Bytes of memory changed after
loading the acquisition program

992,730 911,888 992,381

Table 4.4: Results for the Integrity Evaluation of
Different Memory Acquisition Applications

4.4 Discussion

4.4.1 Black-Box vs. White-Box Testing

As we have already explained, our evaluation platform relies on a white-box testing
approach, i.e., we have to slightly adapt the source code of the acquisition program and
insert several hypercalls that indicate specific events such as the beginning and end of the
imaging process. Unfortunately, as we have pointed out in Chapter 2, various solutions
are closed source and are frequently commercially distributed. Prominent examples
include Memoryze (Mandiant, 2011), FTK Imager (AccessData, 2012), and FastDump
(HBGary, 2013). With respect to these applications, we have initially attempted to
pursue a black-box testing approach, i.e., measuring the quality of an utility despite
lacking explicit knowledge of its internal mode of operation. For this purpose, we used
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Figure 4.7: Level of Integrity Satisfied for
Different Imagers and Memory Sizes

inline code overwriting techniques to transfer execution to small code caves identified in
the respective binary files. The code caves contained instructions to trigger a hypercall
and initiate communication with the instrumentation interface. However, the latter
method is unreliable for several reasons: First, it is unsure whether sufficiently large areas
of free space can be found for the hypercall instructions in every case. Second, in order
to get accurate measurement results, it is necessary to insert two hypercalls preferably
close to the acquisition routine. This, in turn, would require reverse engineering of a
substantial part of the executable though, a process that can be quite cumbersome and
is usually legally prohibited.

We also attempted to reduce the number of hypercalls and recognize the imaging process
solely based on memory access patterns. In practice, however, this procedure did not
prove useful either. We therefore believe that our current implementation of white box
testing is best suited for our needs, even though we were capable of evaluating only a
small number of products available on the market to date so far. We hope, however,
that further vendors will provide us with the source code of their solutions, so that these
utilities can be assessed as well.

4.4.2 Limitations of the Platform

Our platform still has to deal with a number of weaknesses and limitations at the time
of this writing: First, due to some internal program structures, the platform is un-
fortunately only able to evaluate 32-bit applications. In addition, using Bochs as the
underlying emulation engine restricts the size of memory to 2 GB. This is a significant
limitation, as even RAM sizes in modern desktop computers are frequently larger, and
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it would be particularly interesting to assess imagers with respect to the 4 GB bound-
ary. As we have also pointed out, while we can measure the correctness of a memory
image quite accurately, we are only able to quantify the minimum level of atomicity a
snapshot satisfies based on the upper bound of potential atomicity violations. Likewise,
we can only roughly estimate the impact of the acquisition program by matching the
state of memory at time τ with the state of memory shortly before beginning an imaging
operation. For the latter metric, a more suited alternative thus needs to be found.

4.4.3 Operational Capabilities of Memory Acquisition Software

With respect to our discussion concerning the characteristics of memory acquisition
approaches given in Chapter 2, it is important to balance the operational capabilities of
acquisition applications as well as their advantages and weaknesses. Our tests have shown
that the performance of the evaluated solutions is quite similar. Forensic investigators
may therefore choose the product they find most appealing for their work, assuming
the default technique for generating a raw snapshot via the \\.\Device\PhysicalMemory

section object is not subverted by malicious software, and more sophisticated imaging
methods, e.g., via the MmMapIOSpace function (see Section 4.1.2), are not required. On
the other hand, while imaging software can likely be used in most scenarios (including
incident response), a potentially large number of atomicity and integrity violations has
to be accepted.

Taking the previous arguments into consideration, relying on approaches that guaran-
tee a higher level of atomicity may thus be a more viable alternative within controlled
environments that permit specific, pre-incident preparatory measures. As pointed out
in earlier parts of this thesis, suited options are, for instance, the CrashOnCtrlScroll
functionality of the operating system (Microsoft Corporation, 2011) or the System Man-
agement Mode (SMM) approach illustrated by Wang et al. (2011a). To the best of
our knowledge though, especially the latter method has not been extensively tested in
practice yet.

4.5 Further Development and Evaluation Possibilities

As we have explained in Section 4.3.1, all of our tests were initiated from an idle system
state. For assessing the quality of an acquisition utility more extensively, it is neces-
sary to simulate different system loads as well and, in particular, monitor the level of
atomicity and integrity changes. Experiments should also be conducted on various op-
erating systems, including both server and desktop versions, and on systems that have
deliberately been infected with malicious applications.

Using Bochs as the basis for our solution was a suboptimal choice in retrospect. Even
though we were able to implement a rudimentary instrumentation interface quite quickly,
customizing the emulator to our needs and creating a working prototype of the platform
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took significant efforts. This is mainly due to poor user documentation that is incomplete
in most parts and only very marginally covers technically more complex concepts. In
addition, the readability of the Bochs source code is greatly affected by a vast number of
references to program macros. As it is even stated in the official developer manual, many
macros have “inscrutable names”, and “[o]ne might even go as far as to say that Bochs
is macro infested”, so that “too much stuff happens behind the programmer’s back”
(The Bochs Project, 2013c). Last but not least, the functionality of suspending and
resuming a simulation is deeply flawed internally. For this reason, many of our original
approaches for running a memory acquisition test had to be redesigned. For better long-
term maintainability, we therefore recommend porting the platform to a more stable and
mature environment such as QEMU (Bellard, 2012).

As we have seen, the level of atomicity and integrity a snapshot satisfies can be sig-
nificantly influenced due to concurrent activity in the course of the imaging period.
While violations of these factors may be in direct contradiction to classic perceptions
of “forensic soundness” (see Section 4.3.2), the actual consequences of such violations
with respect to a subsequent investigation are still mostly unclear. For example, it has
yet to be found out in what cases and at what level inconsistency leads to significantly
different analysis results. Finding answers to these questions will be an interesting field
of research in the near future.

4.6 Summary

In this chapter, we have presented a platform for evaluating forensic memory acquisition
software with respect to the three factors correctness, atomicity, and integrity. These
factors determine the quality of a RAM snapshot and are measured using a white-
box testing approach, i.e., we must be provided with the source code of the respective
solution. With the help of a number of hypercalls that are inserted close to image-related
code parts, we can then signal important events and operations. A highly customized
version of the x86 emulator Bochs intercepts these notifications and creates a protocol
of the imaging process. In a preliminary study, we have assessed the performance of
three acquisition applications, namely win32dd, mdd, and WinPMEM, for memory sizes
between 512 MB and 2 GB. For this task, we have analyzed 270 snapshots of systems
in an idle state. Our study revealed that not all products were initially capable of
generating a copy of the entire physical address space. Even worse, the affected solutions
produced image files with mismatching data offsets. Because an analysis of these files
would possibly lead to false results in a later investigation, we have patched the different
utilities so that the problem was fixed, and correct snapshots were eventually generated.

One interesting observation we made in our evaluation was that the level of atomicity
decreased with growing memory sizes. We argued that with larger amounts of memory
and, thus, a longer time that is needed to complete the acquisition process, keeping the
image file free of inconsistencies gets more and more difficult due to concurrent activity.
In contrast, on a system with constant load, proportionally less areas of memory are
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subject to change, and the level of integrity a snapshots satisfies increases. In sum, the
performance of the tested acquisition utilities (after fixing the respective programming
errors) did not significantly differ. This is not surprising, because all solutions internally
access the \\.\Device\PhysicalMemory section object in kernel space to create a copy
of the volatile storage. It is important to keep in mind, however, that these operations
may be intercepted by malicious software to either prevent imaging completely or present
a modified view of system RAM. Examining the performance of imaging applications
within a hostile environment and in the presence of an intelligent adversary that actively
pursues anti-forensic measures will thus be an important area for research in the future.

In the following chapter, we will illustrate strategies as well as techniques for analyzing
volatile information and extracting valuable pieces of evidence from a snapshot of a
computer’s RAM.
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Chapter 5

Forensic Memory Analysis

After a forensic copy of physical memory has been generated with one of the techniques
we have illustrated in Chapter 2, an in-depth analysis of the acquired data can begin.
Primitive approaches that are described in the literature solely rely on extracting text
fragments from an image of a computer’s RAM. For this purpose, simple command line
utilities such as strings or grep may be used. In a second step, the captured data may
then be examined more closely to retrieve, for instance, stored usernames, passwords,
and other valuable artifacts from the snapshot (see Stover and Dickerson, 2005; Zhao
and Cao, 2009; Karayianni and Katos, 2011). This methodology is easy to apply, yet it is
also noisy, causes a huge overhead, and leads to a large number of false positives. Beebe
and Clark (2007, p. S49) argue that “[f]requently, investigators are left to wade through
hundreds of thousands of search hits for even reasonably small queries [...] – most of
which [...] are irrelevant to investigative objectives”.

Even in case basic string searches produce quite accurate results, they typically do not
take into account the context of the respective information and, as a consequence, are
of limited help to the investigation process. For example, as Savoldi and Gubian (2008,
p. 16) point out, “the retrieval of a potentially compromising string (e.g. ‘child porn’)
certainly provides evidence if found in the memory assigned to a process l[a]unched by
the user, but it would be likely rejected by jury if that memory belonged to a piece of
malware”. In addition, Hejazi et al. (2009, p. S123) note that the “existence of unknown
sensitive data in the memory is the main important limitation of this method”. Thus, a
forensic analyst may, e.g., only look for specific keywords, but at the same time, disregard
“names, addresses, user IDs, and strings that are not present in the list the investigator is
looking for while they are present in the memory dump and are of paramount importance
for the investigative case”. Taking these aspects into consideration, simple text analysis
procedures are therefore not sufficiently suited for forensic investigations. Although
more efficient solutions have been developed over the last years, we will not explain
them further in the remainder of this thesis, because they rather fall in the research area
of information retrieval (IR) and text mining. Good introductions to these topics can be
found in the work of Beebe and Clark (2007) as well as Roussev and Richard III (2004)
though.

As a viable alternative to string searching tasks, practitioners recommend a more struc-
tured approach for finding valuable traces in memory. The main focus is thereby set on
identifying what types of data the snapshot consists of, how these types are defined, and
where they are located. Relevant pieces of information may generally be contained both
in the system as well as user address space, either directly in RAM or in the local page
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file, and include (Hoglund, 2008; Sutherland et al., 2008):

❼ the list of currently and previously running processes,

❼ cryptographic keys,

❼ artifacts of the system registry,

❼ established network connections and network-related data such as IP addresses and
port information,

❼ referenced files, and

❼ system state- and application-related data, e.g., the command history as well as date
and timestamp information.

The process for restoring and analyzing the individual artifacts will be the central subject
of this chapter.

Outline of the Chapter

The remainder of this chapter is outlined as follows: In Section 5.1, we describe fun-
damental techniques, strategies, and concepts for inspecting memory snapshots. These
explanations need to be well understood because they form the foundation for detecting
sophisticated malicious applications, a task we will illustrate in more detail in Chapter 6.
In Section 5.2, we discuss how memory investigations may be significantly facilitated with
the help of powerful analysis frameworks. In particular, we briefly depict the architecture
and functionality of the Volatility Framework (Volatile Systems, LLC, 2008, 2013a), a
popular open source solution that has received broad attention in the forensic community
in the past and is regarded as the de-facto standard for memory-based examinations to
date. We conclude with a short summary of the most important findings in Section 5.3.

5.1 Approaches for Extracting and Analyzing Forensic Artifacts

5.1.1 Process Analysis

An essential part of a forensic investigation is verifying the integrity of the target operat-
ing system as well as the application environment and distinguishing legitimate software
components from possibly infected and compromised program parts. With respect to
this, the identification and sound examination of running processes becomes “a basic se-
curity task that is a prerequisite for many other types of analysis” (Dolan-Gavitt et al.,
2009, p. 2). To obtain the list of currently executing processes, researchers attempt to
recover the respective elements either logically or physically. We will give an overview
of both procedures in the following sections.
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Logical Process Enumeration

The primary objective when trying to enumerate processes logically is reconstructing
a view on resources as they were originally seen by the operating system. For this
purpose, an initial _EPROCESS object needs to be found. The kernel-level _EPROCESS

structure serves as an internal representation for a Windows process (Russinovich et al.,
2009). A simplified version of the structure is sketched in Figure 5.1. As can be easily
seen, an _EPROCESS object contains several members that are of immediate importance
to an investigator, for instance, two timestamps (CreateTime, ExitTime) that indicate
the creation and destruction of the element. Please note, however, that in dependence
of the operating system version and the corresponding service pack level, the layout of
the object as well as the offset addressing can significantly vary.

A crucial field of the _EPROCESS block is the ActiveProcessLinks member, a doubly-
linked list that points to the next (respectively, previous) _EPROCESS element. Thus, by
following the individual pointers, it is possible to reconstruct the process list. Burdach
(2005) was first in describing the outlined procedure for memory-based investigations.
He also illustrated an algorithm for retrieving the PsActiveProcessHead symbol, an im-
portant kernel variable that points to the beginning of the ActiveProcessLinks list. His
suggestions formed the foundation for several early memory analysis programs, e.g.,
memparser (Betz, 2006) or KnTTools (Garner, 2007). In a later work, Zhang et al.
(2009, 2010) proposed finding the PsActiveProcessHead symbol via the Kernel Processor
Control Region (KPCR). As we have explained in Chapter 4, the KPCR stores processor-
specific information and includes a separate block, the Kernel Processor Region Control
Block (KPRCB) that, for instance, saves CPU-related statistics as well as scheduling
information about the current and next thread (see also Russinovich et al., 2009).

A distinct advantage of the KPCR and KPRCB is that they can be found comparatively
trivially: In Microsoft Windows XP, they are located at fixed addresses (0xFFDFF000 and
0xFFDFF120, respectively). In later versions of the Microsoft Windows product family,
however, the base addresses are dynamically computed. Because the KPCR is self-
referencing (see offset 0x1C in Figure 5.2), and the KPRCB starts at offset 0x120, a sim-
ple signature can be generated to efficiently locate the structures in a memory image (see
Aumaitre, 2009; Schatz, 2010). Once these operations are completed, the process list can
then be successfully restored as follows (Barbosa, 2005; Ionescu, 2005): The KPCR con-
tains an interesting field called KdVersionBlock that points to the _DBGKD_GET_VERSION64

structure.1 This structure, in turn, references the undocumented _KDDEBUGGER_DATA64

structure. As Dolan-Gavitt (2008b) points out, “[t]he _KDDEBUGGER_DATA64 structure is
used by the kernel debugger to easily find out the state of the operating system” and
“contains the memory addresses of a large number of kernel variables”, including the
PsActiveProcessHead variable that, as we have already explained, specifies the top of the
ActiveProcessLinks list. A summary of these steps is depicted in Figure 5.2.

1 Cohen (2012a) notes that in recent versions of Microsoft Windows this link is no longer main-
tained. He therefore proposes an alternative algorithm for directly finding the parent structure of
the PsActiveProcessHead symbol in memory, based on a simple signature for a specific member.
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Figure 5.1: Simplified Structure of the _EPROCESS Block

Physical Process Enumeration

One of the major drawbacks of the previously described methods is that member vari-
ables such as the ActiveProcessLinks field of an _EPROCESS block can be subject to ma-
nipulation. Especially more sophisticated malicious applications frequently hide their
traces more carefully and avoid detection by actively removing their components from
the respective system lists. These types of attack are known as Direct Kernel Object
Manipulation (DKOM) (Aquilina et al., 2008; Ligh et al., 2010), and we will see sev-
eral examples for kernel-level rootkits that implement such compromising techniques in
Chapter 6.

The effects of a DKOM attempt are illustrated in Figure 5.3: In the upper picture, three
processes are shown that are correctly linked with each other. The second process in
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Figure 5.2: Retrieving the PsActiveProcessHead Symbol via the
Kernel Processor Control Region (KPCR)

the middle is defined to represent a malicious program, as indicated by the skull icon.
By modifying the forward (FLINK) and back (BLINK) pointers of the adjacent processes
as shown in Figure 5.3b, however, the malicious program is unlinked from the process
list and, thus, effectively hidden from standard system maintenance applications such as
the Task Manager. Because scheduling is performed on a per-thread basis (Russinovich
et al., 2009), the malicious code does still get executed though. In order to cope with
these issues, Schuster (2006d) has proposed physically scanning the acquired image for
occurrences of _EPROCESS blocks. For this task, a signature-based scanner is used that
identifies the unique appearance of a process. In Listing 5.1, a sample signature is
depicted. In the given example, it is checked that the page directory is aligned at a page
boundary, the control structures of the attached thread are contained in kernel space,
and the fields of the _DISPATCHER_HEADER structure match pre-defined values.2 When the
physical memory snapshot has been scanned, the generated result set can be compared
with the output of the standard process list. Any differences and anomalies that are

2 The _DISPATCHER_HEADER structure is part of any synchronizable object, i.e., an object such as a
process or thread that “can be waited for” (Schuster, 2006b).
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Figure 5.3: Manipulation of a Process List with
Direct Kernel Object Manipulation (DKOM)

discovered in this step potentially indicate the presence of a malicious program and
therefore need to be inspected in more detail. Similar strategies are also suggested by
Walters and Petroni (2007) as well as Carr (2006).

It is important to emphasize that in contrast to the logical enumeration method we have
described in the previous section, the signature-based technique can not only recover
resources that are currently in use, but also objects whose life cycle has already ended
but are still present in memory. Likewise, the approach can not only be employed
for finding processes but other elements such as network connections, system services,
or kernel drivers as well. We will illustrate the procedure for restoring these types of
artifacts in a later part of this chapter. On the other hand, it is crucial to point out that
the efficiency of the scanning process significantly depends on the quality of the applied
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1 // Ensure the Page Directory is aligned at a page boundary

2 PageDirectoryTable !=0

3 PageDirectoryTable % 4096 == 0

4

5 // Ensure the control structures of a process ’s thread are

6 // located in kernel space

7 (ThreadListHead.FLink > 0x7FFFFFFF) &&

8 (ThreadListHead.Blink > 0x7FFFFFFF)

9

10 // Ensure the object corresponds to a process (type 3) and

11 // has a fixed size

12 _DISPATCHER_HEADER.Type == 0x03

13 _DISPATCHER_HEADER.Size == 0x1b

Listing 5.1: Example of a Process Signature (Schuster, 2006d)

signatures. As Walters and Petroni (2007, p. 14) argue, “a reliable pattern may rely
on characteristics of an object that are not essential”. Consequently, an adversary may
change the value of a non-essential structure member without affecting the stability
of the underlying operating system. For instance, regarding the signature shown in
Listing 5.1, the Size variable is a non-essential field and can be set to zero. Thereby the
scanner is circumvented, and the respective application is concealed.

To prevent such scenarios, Dolan-Gavitt et al. (2009) have created so-called robust signa-
tures that are solely based on structure members that are critical to system functionality.
A manipulation of such a variable leads to an automatic system crash and, thus, renders
an attack useless. With respect to the _EPROCESS structure, 72 fields (out of 221) suffice
the latter requirement and, therefore, form strong candidates for a process signature.3

However, Haruyama and Suzuki (2012) have recently proven that many memory analy-
sis tools available on the market to date have not adequately considered these valuable
insights yet.

5.1.2 Cryptographic Key Recovery

As we have argued in the introduction of the thesis, due to high availability of (free) en-
cryption technologies, security professionals are likely to encounter an increasing number
of hard disks and other storage media in the future that are especially secured against
unauthorized access. If a suspect is unable or unwilling to share the respective passphrase
with an investigator in such a case, restoring the respective information from volatile
memory may therefore become a central task in the course of a forensic analysis.

Different methods are proposed in the literature for cryptographic key recovery: Har-
greaves and Chivers (2008) describe a linear memory scanning technique that cycles

3 After performing a fuzzing test, the number of strong signature candidates was reduced from 72 fields
to 43 (Dolan-Gavitt et al., 2009).
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through RAM one byte at a time, using a block of bytes as the possible decryption key
for the volume in question. The brute force-oriented procedure does not require a deep
understanding of the underlying operating system and, thus, can be easily generalized
according to the authors. However, it cannot be directly applied if the key is split, i.e.,
is not stored in a contiguous pattern in memory. Shamir and van Someren (1999) seek
for sections of high entropy to locate an RSA key within “gigabytes of data”. The so-
lution exploits the mathematical properties of the cryptographic material. In contrast,
the attack described by Klein (2006a) is based on the observation that both private
keys and certificates are stored in standard formats. By constructing a simple search
pattern, the secret information can be easily extracted from a snapshot of a computer’s
RAM. A pattern-like approach is also pursued by Kaplan (2007). His idea stems from
the fact that, for reasons of security, cryptographic keys should not be stored on hard
disk and, thus, are likely to be found in the non-paged pool of the operating system. The
non-paged pool is a region of virtual memory in the system address space that is never
paged out to secondary storage (Russinovich et al., 2009). One characteristic of pool
memory is that it may be associated with an identifier, the so-called pool tag (Microsoft
Corporation, 2013c). As Kaplan (2007, p. 18) points out, “a cryptosystem-specific sig-
nature, consisting of the driver specific pool tag and pool allocation size are all that is
necessary to extract pool allocations containing key material from a memory dump with
an acceptably small number of false positives”.

Walters and Petroni (2007) outline a different concept that relies on an analysis of
publicly available source code. They identify internal data structures that are responsible
for holding the master key. As Maartmann-Moe et al. (2009, p. S133) point out, Walters
and Petroni “do, however, not describe how to locate the different structures in memory,
and neither do they discuss the fact that some of these may be paged out, thereby
breaking the chain of data structures that leads to the master key if only the memory
dump is available for analysis”. As an alternative, Halderman et al. (2008) therefore
suggest parsing a computer’s memory for key schedules. As we have already explained in
Section 2.2.7, the authors leverage remanence effects in DRAMmodules and launch a cold
boot attack on the target machine. After loading a custom operating system, the volatile
data is extracted, the key material is retrieved, and the hard drive is automatically
decrypted.

The performance of this process has been improved in the works of Heninger and
Shacham (2009). Likewise, Tsow (2009) presents an algorithm that is capable of re-
covering cryptographic information from memory images that are significantly decayed
and is magnitudes faster than the original method. Maartmann-Moe et al. (2009) extend
this research on additional ciphers and illustrate the vulnerability of several well-known
whole-disk and virtual-disk encryption utilities. Even though cold boot attacks have
proven successful for recovering encrypted information, it is important to note that these
methods can be effectively mitigated by implementing cryptographic algorithms entirely
on the microprocessor. A corresponding proof-of-concept application has been published
by Müller et al. (2010) and has been further developed in various other projects (see
Müller et al., 2011, 2012).
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5.1.3 System Registry Analysis

The Windows registry is a central, hierarchically-organized repository for configuration
options of the operating system and third party applications (Microsoft Corporation,
2012b). It is internally structured into a set of so-called hives, i.e., discrete, treelike
databases that hold groups of registry keys and corresponding values (see also Russi-
novich et al., 2009). Most registry hives, for instance, HKLM\SYSTEM or HKLM\SOFTWARE,
are persistently stored in the system32\config folder of the operating system.4 However,
a number of volatile hives, e.g., HKLM\HARDWARE, are solely maintained in RAM and are
created every time the system is booted. While the examination of on-disk registry data
is a quite established procedure for finding possible pieces of evidence in the course of a
forensic investigation (see Carvey, 2011), the only memory-based approach we are aware
of has been documented by Dolan-Gavitt (2008c). In the following, we give a short
overview of the prevailing techniques used in this work.

Architecture of a Registry Hive

A registry hive consists of a so-called base block and a number of hive bins (hbins).
The base block with a fixed size of 4 KB defines the start of the hive and contains a
unique signature (regf) as well as additional meta information. The latter include a
time stamp that saves the time of the last access operation, an index to the first key,
i.e., the RootCell, the internal file name of the hive, and a checksum (see Figure 5.4).
A hive bin is typically 4 KB wide (or a multiple of it) and serves as a container for
cells that, in turn, store the actual registry data. Thus, to read a certain registry
key or value from RAM, it is necessary to locate the correct hive and cell first. With
respect to the former task, it is possible to create a hive-specific signature and scan
the memory snapshot, in correspondence to our explanations regarding the physical
restoration of processes described in Section 5.1.1: Internally, a hive is represented by
a _CMHIVE structure which is allocated from the paged pool of the operating system.
The _CMHIVE structure is referenced by a specific tag (CM10) and embeds a substructure
_HHIVE. The latter contains a member variable at offset 0x000 that stores the constant
string value 0xbee0bee0. With the help of this information, a unique search pattern can
be generated, and the hive can be easily found in memory. Likewise, by following the
respective pointers saved in the HiveList field (offset 0x224), the remaining hives loaded
into RAM may be enumerated. Please note that these steps are similar to the logical
process reconstruction method via the ActiveProcessLinks list outlined in Section 5.1.1.

Locating Registry Keys and Values in Memory

Retrieving pre-defined registry keys or values from a memory image is slightly more
complex: Dolan-Gavitt (2008a) notes that because “space for the hives is allocated out

4 User-specific settings are saved in the file NTuser.dat that is located in the
%SystemDrive%\Documents and Settings\<username> folder.
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Figure 5.4: Structure of a Registry Hive
(Based on Russinovich et al., 2009, p. 271)

of the paged pool, there is no way of guaranteeing that the memory allocated for the
hive will continue to be contiguous”. For this reason, a slightly different strategy needs
to be pursued: A registry cell is internally referenced by a cell index. As indicated in
Figure 5.5, a cell index is split into four components. Similarly to the virtual-to-physical
address translation process explained in Chapter 2, each component must be analyzed
to obtain a virtual address for the cell in question. The first element of a cell index, i.e.,
a one-bit flag, determines whether the cell is part of a stable hive on disk or refers to a
volatile container in memory. Depending on the value of this flag, a different hive storage
map is used. The storage map defines a starting point for the translation process we
will describe in more detail in the following and is saved in a member of the previously
outlined _HHIVE substructure (offset 0x058, see also Russinovich et al., 2009). Thus, once
the storage map of a hive has been found, we can examine the first 10 bits of the cell
index to search the corresponding entry in the hive map directory. This directory saves
pointers to 1,024 different cell map tables. A cell map table, in turn, consists of 512
pointers to registry blocks that contain the individual registry cells with the respective
data. Consequently, to read a specific key or value, it is first necessary to follow the
pointer from the hive map directory to the cell map table and subsequently locate the
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(Dolan-Gavitt, 2008c, p. S28)

correct entry in the table to identify the target bin. For the latter purpose, the next 9
bits of the cell index must be parsed. Using the remaining 12 bits of the cell index in
the last step, the cell with the desired registry data can finally be discovered.

The concepts outlined above have been integrated into the Volatility Framework, a pow-
erful memory analysis application we will describe in more detail in Section 5.2. It is
important to emphasize, however, that portions of a hive are only transferred into RAM
when they are needed (Russinovich et al., 2009). Therefore, as Dolan-Gavitt (2008c,
p. S30) points out, it is possible that “parts of the registry may have never been brought
into memory in the first place” and, thus, “it cannot be assumed that the data found
in memory is complete”. Forensic analysts should keep these aspects in mind when
attempting to investigate registry-related artifacts.

5.1.4 Network Analysis

Malicious applications frequently open pre-defined ports on a machine to permit an
adversary executing arbitrary commands, disabling security mechanisms, or uploading
further attack tools (Aquilina et al., 2008; Ligh et al., 2010). Inspecting network con-
nections and monitoring inbound or outbound network traffic is therefore frequently an
integral part of a forensic analysis. A large number of applications have been devel-
oped in the past for the latter tasks, for example, TCPView (Russinovich, 2011) and
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Figure 5.6: Structure of the _TCPT_OBJECT and _ADDRESS_OBJECT List

FPort (Foundstone, Inc., 2000) that are more suited for incident response situations,
or PyFlag (Cohen, 2008) that especially aims at post-mortem investigations. Since net-
work information is typically maintained in RAM as well, memory-based examinations
are also well capable of extracting valuable pieces of evidence and helping practitioners
gain a better picture of an incident. Network resources can thereby be reconstructed
either logically or by physically scanning the memory image, similarly to the process
recovery-related methods described in Section 5.1.1. In the following, we give a brief
overview of these concepts.

Logical Reconstruction of Network Resources

To logically restore established TCP and UDP connections from a suspicious system,
the two internal lists _TCPT_OBJECT and _ADDRESS_OBJECT need to be parsed. The lists
are defined in the tcpip.sys driver file but are officially undocumented. However, their
format has been successfully reverse engineered by several authors in the past (Ligh
et al., 2010; Okolica and Peterson, 2010b). The structure of the two lists is depicted
in Figure 5.6a and 5.6b.5 As can be seen, objects are linked via the Next member, i.e.,
a pointer to the subsequent element. Thus, by following the individual references until
an element is reached that points to zero (see Figure 5.7), the list of open sockets and
network connections can be retrieved. The top of the _TCPT_OBJECT and _ADDRESS_OBJECT

list is thereby indicated by two global symbols that are located at specific offsets in the
tcpip.sys driver file6.

Please note that the previous descriptions only apply to Microsoft Windows XP operat-
ing systems. On Microsoft Windows 2003, the offsets of member variables are different,

5 For more information, please see the tcpip_vtypes.py file in the volatility\

plugins\overlays\windows folder of the Volatility Framework (Volatile Systems, LLC, 2013a).
6 For more information on the individual offsets, please refer to the network.py file in the volatility\
win32 folder of the Volatility Framework (Volatile Systems, LLC, 2013a).
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and in later Microsoft Windows versions, the respective structures have even been re-
placed by other constructs. More information for restoring network resources on these
platforms can be found in the work of Okolica and Peterson (2011) as well as Wang et al.
(2011b). It is also worth mentioning that the _TCPT_OBJECT and _ADDRESS_OBJECT lists are
not as severely affected by Direct Kernel Object Manipulation attacks as, for instance,
the process-related elements we have illustrated in Section 5.1.1. As Ligh et al. (2010)
point out, it is possible to modify both lists on the one hand, yet these operation lead
to a disruption of the communication process, and connections can no longer be initi-
ated. From a forensic point of view, logical network enumeration methods may therefore
be seen as sufficiently reliable at the time of this writing and permit reconstructing a
genuine view of network activities.

Physical Reconstruction of Network Resources

In addition to the techniques outlined in the previous section, network resources can
also be physically recovered. A major benefit of this approach is that it does not only
offer finding objects that are currently in use, but also elements that are not active
anymore but have not yet been overwritten. A signature-based solution for this task is
suggested by Schuster (2006c). Schuster proposes scanning the non-paged pool of the
operating system to find allocations for listening sockets. His idea relies on the fact
that, when reserving memory in kernel space, the respective regions are marked with a
special identifier, the pool tag, to facilitate later debugging and code verification (see the
description of the ExAllocatePoolWithTag function (Microsoft Corporation, 2013c) and
our explanations regarding kernel pools given in Section 5.1.2). After reverse engineering
the relevant parts in the tcpip.sys driver file, Schuster argues that 368 bytes of memory
are required to set up a network socket. The corresponding allocations are identified by
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the unique string TCPA (in little-endian format).7 With the help of these findings, the
signature body can be easily created, and the RAM image can be searched for socket
definitions. By following a similar procedure, the list of open network connections can
be retrieved, too.

5.1.5 File Analysis

In the course of a forensic analysis, a crucial task for investigators may not only be ex-
amining the individual running processes on the target machine (see Section 5.1.1), but
also verifying other software artifacts that are accessed and referenced by the respective
programs. Of particular importance is, for instance, inspecting the list of dynamically
loaded libraries (DLLs), because adversaries frequently inject malicious modules in the
address space of legitimate applications in order to escalate their privileges or further
compromise the system environment. We will see examples for such attacks in Chap-
ter 6 of this thesis. To reveal these types of manipulations, security professionals may
attempt to reconstruct shared libraries either logically (i.e., restoring the original view
of the operating system) or physically (i.e., scanning the memory image with the help
of signatures), in correspondence to the process- and network-related measures we have
described in the previous sections of this chapter.

Logical File Recovery

The set of dynamically loaded libraries that are associated with a process can be de-
rived from its Process Environment Block (PEB), i.e., a user-space structure that “con-
tains information needed by the image loader, the heap manager, and other Win-
dows system DLLs” (Russinovich et al., 2009, p. 341). As can be seen in Figure 5.8,
the PEB contains a member Ldr of type _PEB_LDR_DATA. This data structure con-
tains three doubly-linked lists, InLoadOrderModuleList, InMemoryOrderModuleList, and
InInitializationOrderModuleList, that store the same information, yet in different or-
der. Each element in one of these lists is of type _LDR_DATA_TABLE_ENTRY and saves a
description for a shared library with its full name, size, and base address. Thus, by
enumerating and comparing the different lists, a maliciously injected DLL can possibly
be identified.

With respect to the previous explanations, it is critical to keep in mind that the PEB and
the associated substructures are located in user mode and, thus, can be easily modified as
various rootkit authors have demonstrated (Darawk, 2005; Kdm, 2004). For this reason,
it is generally recommended to match results with the list of memory-mapped files as they
are defined in the Virtual Address Descriptor (VAD) tree. Virtual Address Descriptors
are kernel-level data structures “the memory manager maintains (...) to keep track of
which virtual addresses have been reserved in the process’s address space” (Russinovich

7 According to Wang et al. (2011b), the tag for socket-related memory allocations has changed in
Microsoft Windows 7 operating systems to TCPE.
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Figure 5.8: Reconstruction of the List of Loaded Libraries
via the Process Environment Block (PEB)

et al., 2009, p. 788). Each time address space is allocated, a VAD with the respective
start and end addresses as well as additional access and control flags is created and
added to a self-balancing tree. A node in this tree is associated with a unique pool tag
and is either of type _MMVAD_SHORT (“VadS”), _MMVAD (“Vad”), or _MMVAD_LONG (“Vadl”)
(Dolan-Gavitt, 2007a; van Baar et al., 2008). The latter two store a pointer to a so-
called control area that, in turn, points to a _FILE_OBJECT structure (see Figure 5.9). In
combination with several status-related flags, this structure holds the full name and size
of a memory-mapped file. Thus, by traversing the VAD tree from top to bottom and
following the individual _CONTROL_AREA and _FILE_OBJECT references, the list of loaded
modules can be restored. In spite of these features, it is important to emphasize that
the VAD tree may also be subject to manipulation, assuming an adversary possesses
system privileges. In this case, it is, for instance, possible to remove a node from the
tree and thereby hide the referenced memory regions without affecting their accessibility
(see Dolan-Gavitt, 2007a). Investigators are therefore advised to carefully check their
analysis results for inconsistencies. In Chapter 6 of this thesis, we will present a software
application that facilitates some of these steps.
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Figure 5.9: Virtual Address Descriptor (VAD) Tree
(Dolan-Gavitt, 2007a, p. S63)

Physical File Recovery

As an alternative to the previous methods, occurrences of _FILE_OBJECT structures can
also be found directly in a memory image. For this purpose, the snapshot needs to be
scanned with a unique signature. Because file objects are created in the non-paged pool of
the operating system, are identified by the File pool tag, and have a minimum block size
of 0x98 bytes (Schuster, 2009b), this is a comparatively easy task. However, one drawback
when solely searching for instances of _FILE_OBJECT structures is that investigators do not
obtain any information concerning the parent process. For this reason, a file object must
be linked with the corresponding _EPROCESS structure in a second step: As can be seen in
Figure 5.10, the _FILE_OBJECT structure is immediately preceded by an _OBJECT_HEADER

structure. This structure contains a member HandleInfoOffset that points to an offset
before the object header. At this memory location, the desired _EPROCESS structure can
be found or, alternatively, a reference to an object handle count database that contains
pointers to several _EPROCESS structures in case a handle to the file is kept open by
multiple processes (Schuster, 2009a; Noone, 2009).

5.1.6 System State- and Application-Specific Analysis

A memory image frequently also includes system state-related information that may be
of great benefit to an investigator. Especially the _EPROCESS block we have illustrated
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Figure 5.10: Linking File Objects to Processes

in detail in Section 5.1.1 is a source of valuable data. For instance, the StartTime and
ExitTime members indicate the start and respective end time of a process and can be
parsed to create forensic timelines. In addition, the periods an application has spent
in system and user mode can be derived from members of the _KPROCESS block, a sub-
structure of the _EPROCESS environment. Schuster (2008b) has proven that these types
of artifacts may be recovered from RAM even after a program has terminated for more
than 24 hours. Furthermore, with the help of the Token member, it is possible to re-
construct the security context of an application. As Russinovich et al. (2009, p. 473)
explain, “a security context consists of information that describes the privileges, ac-
counts, and groups associated with the process or thread”. Of particular interest is the
list of user and group security identifiers (SIDs) that eventually reveal the name of the
user and corresponding group account the executable was run as. More details about
this procedure can be found in the work of Dolan-Gavitt (2008d) and Gurkok (2012).

A different research focus is set by Stevens and Casey (2010). They dissect the structure
of the DOSKEY utility that is integrated into the command shell and permits editing past
commands as well as displaying the command history. The latter is solely maintained in
memory and is only accessible as long as the command prompt is open. As Stevens and
Casey (2010, p. S58) point out, “[i]n practice, this makes recovering the command history
difficult due to its volatile nature and the low likelihood of finding an open command
window during an investigation”, even though major parts “may be recoverable from
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memory for some time after the window has been closed”. The authors generate a
unique signature for various DOSKEY elements and succeed in restoring command history
objects from a number of reference data sets, including intact lists of entered commands.
As these “might contain the only retrievable traces of a deleted file or suspect activity”,
such types of examinations support other system state-oriented investigation methods
and “can provide significant context into how and what occurred on [a] system” (Stevens
and Casey, 2010, p. S57).

Application Analysis

While most approaches we have described so far target operating system structures,
“one of the issues currently faced in the analysis of physical memory is the recovery and
use of application-level data” (Simon and Slay, 2009, p. 996). As Simon and Slay (2010)
argue, these steps become necessary due to the increasing spread of anti-forensic tech-
nologies and a trend towards online and network applications. Research in this area still
remains sparse at the time of this writing though. This fact may possibly be attributed
to the significantly lower lifespan of user-space data (Solomon et al., 2007) and, thus,
smaller opportunities for retrieving valuable pieces of evidence in time. Applications
that have been examined in greater depth mainly comprise instant messaging and Voice
over IP (VoIP) telephony software (e.g., see Gao and Cao, 2010; Simon and Slay, 2010,
2011). In contrast, Olajide and Savage (2011) have investigated memory traces of stan-
dard office programs, while Hauenstein and Vömel (2013) have concentrated on finding
remnants of social networking sites in RAM.

In spite of these insights, White et al. (2012, p. S3) criticize that there is a general “lack
of methodologies for understanding and interpreting (...) application data”, making it
impossible “to extract useful information from the memory of an application (...) without
first undertaking significant reverse engineering of the application itself”. The authors
therefore propose rather conducting “detailed analyses of metadata sources that can be
used to describe the purpose of user space allocations”. More precisely, they perform
an in-depth examination of a process’s Virtual Address Descriptor (VAD) tree as well
as the Process and Thread Environment Block (PEB, TEB). As we have explained in
Section 5.1.5, the kernel-level VAD tree describes the range of memory regions that
are occupied by a process. The PEB and TEB, on the other hand, store context-
and state-specific information in user space. By correlating the respective structures,
White et al. are not only able to enumerate the list of memory-mapped files, but also
recover substantial parts of the process’s execution environment, e.g., its stack and heap,
its runtime parameters, and data about user interface-related elements. Thereby, “the
search space when looking for specific information” can be tremendously reduced (White
et al., 2012, p. S10).
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5.2 Framework-Based Memory Analysis

With respect to the approaches and techniques we have outlined in the previous section,
various memory analysis utilities have been developed in the past that sophistically
solve a certain problem (e.g., see Betz, 2006; Dolan-Gavitt, 2007b; Schuster, 2008c).
However, many of these utilities were originally not designed with a holistic forensic
process in mind, but rather as a proof-of-concept demonstration. As a consequence,
the respective programs typically have their own user interface, must be invoked with
different command line parameters, and generally neglect interprocess communication
with other applications. Furthermore, many tools are OS-dependent and extract pieces
of evidence solely based on hard-coded offsets. Especially the latter aspect becomes
a significant burden as the layout of important system structures, e.g., the _EPROCESS

block, is frequently changed across different Windows versions and service pack levels.
Thus, with new or updated operating systems, the respective solutions quickly become
dated.

In order to cope with these issues, Walters and Petroni (2007) suggest integrating mem-
ory forensics-related investigate methods with the forensic process model illustrated by
Carrier and Spafford (2003). In this model, a security incident leads to a digital crime
scene, and an investigator is advised going through several individual phases to best
preserve, secure, and finally extract and present relevant pieces of evidence. As Walters
and Petroni (2007, p. 2) point out, such a model “allows us to organize the way we think
about, discuss, and implement the procedures that are typically performed during an
investigation” and “forces us to think about (...) how the tools and techniques that are
used during a digital investigation fit together to support the process”. Taking these
ideas into consideration, several memory forensic frameworks were developed in the fol-
lowing years (Chan et al., 2009, 2010; Okolica and Peterson, 2010a). However, only the
Volatility Framework has received broad attention in the forensic community to the best
of our knowledge and is regarded as the de-facto standard memory analysis suite at the
time of this writing (Volatile Systems, LLC, 2008, 2013a). In the following, we will give
a brief overview of its major characteristics. A more thorough description of its mode
of operation will be subject of Chapter 6.

One of the great benefits of the Volatility Framework is its modular architecture. In the
default installation, investigators are already provided with a large number of individual
modules for different purposes, e.g., for process- or file-related tasks.8 However, the base
functionality can also be conveniently extended when necessary through separate plug-ins
that are automatically inserted into the module tree at program startup. Although plug-
ins can theoretically work completely independently from other parts of the application
(except from calling some base functions), many modules implement existing code and
reprocess previous output and results. Due to this design hierarchy, development efforts
are reduced to a minimum, and new features can be added to the framework within

8 A short overview and description of existing modules for the Volatility Framework is available on the
respective project homepage (Volatile Systems, LLC, 2013a).
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a short time. At the time of this writing, Volatility supports most recent versions of
the Microsoft Windows product family, both in the 32- and 64-bit variant, apart from
Windows 8. The latest project release (2.3) permits examining other operating systems
such as Linux, Mac OS, and Android as well. Platform-specific details about data
structures and data types are thereby defined in the form of separate system profiles.
Because these profiles rely on static offsets though, the analysis process can, under
certain circumstances, be thwarted by simply modifying a single byte (see Haruyama and
Suzuki, 2012). Practical countermeasures for such anti-forensic attacks are still greatly
missing, thus, analysts should carefully scrutinize generated reports when investigating
a snapshot of a suspicious system.

5.3 Summary

In this chapter, we have described techniques, strategies, and concepts for analyzing
an image of a computer’s RAM. Irrespectively of the artifact in question, two general
methods for extracting evidence are either logically reconstructing resources as they
were formerly maintained by the operating system or physically scanning the memory
snapshot with the help of signatures. In the latter case, even objects whose life cycle
has ended can be frequently found. By matching the two views, it is also possible to
reveal little inconsistencies that potentially indicate the presence of a threat. We will
see examples for such scenarios in Chapter 6.

As we have pointed out, many utilities for memory analysis-related tasks that were
developed in the past were originally designed rather as a proof-of-concept demonstration
than with a holistic forensic process in mind. Consequently, products were often only
compatible with specific operating system versions and lacked interoperability with other
applications. Due to these characteristics, their applicability in practice was limited. As
a viable alternative, security professionals have therefore proposed the use of forensic
frameworks that better take investigative process models into account. The Volatility
Framework we have introduced in Section 5.2 has gained the widest attention in the
forensic community. Because of its detailed analysis results, it is regarded as the standard
solution for memory examinations to date. Case et al. (2008, p. S65) argue, however,
that “merely swamping the user with all available data [...] falls well short of what
is actually needed” and “is not, by itself, very useful”. Thus, it is also important to
develop suitable visualization techniques and properly present the collected evidence so
that the completion of a case is not unnecessarily stalled. In the following chapter, we
will illustrate how some of these issues can be addressed by automatically correlating
individual findings and highlighting system areas that require particular attention.
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Chapter 6

Using Memory Forensics to Discover Rootkit Infections

In the previous chapter, we have introduced the Volatility Framework, a powerful, free
open source solution for memory analysis-related tasks (Volatile Systems, LLC, 2008,
2013a). Volatility is capable of efficiently processing RAM images of various system
platforms and extracting a large number of forensic artifacts. While generated reports
are rich in information though, they mainly aim at expert investigators who possess an
in-depth knowledge of operating system internals. For less experienced practitioners,
on the other hand, result interpretation is significantly more complex and demanding.
The modular architecture of the framework becomes an additional burden in this case,
because the output of executed modules must be manually matched and brought into
connection. Especially when scanning a computer for malicious software, potential traces
can therefore be easily overlooked. The latter argument is particularly true when dealing
with rootkits, i.e., sophisticated malware species that attempt to thoroughly hide their
presence on a machine and frequently only reveal themselves through subtle peculiarities
during runtime.

In order to cope with these issues, we present the plug-in rkfinder for the popular
DFF suite (ArxSys, 2009) in this chapter. DFF is a graphical investigation framework
that has gained broader attention among security professionals after winning a forensic
workshop challenge in 2010 (Jacob, 2010). Our plug-in integrates major functionality of
the Volatility Framework into the DFF interface and creates an abstract, tree-like view of
the system state. By automatically checking resources for consistency and highlighting
possibly suspicious elements, potential sources of an incident can thus be identified
and addressed more quickly, even by analysts who lack training in these areas. In
contrast to existing rootkit and malware detection applications such as IceSword (Pan,
2005), RootkitRevealer (Cogswell and Russinovich, 2006), or GMER (GMER, 2013),
our software does not need to be executed on a live system but can be launched in
the course of a post-mortem examination. Thereby, forensic best practices such as the
demand for result reproducibility or impact limitation can be taken into account more
carefully (Mocas, 2004). Readers who would like to know more about the performance
of the former technologies, however, are referred to the studies by Freiling and Schwittay
(2007) and Todd et al. (2007).

Outline of the Chapter

In the remainder of this chapter, we will focus on techniques and concepts for discovering
rootkit infections. For this purpose, we first give a brief definition of the rootkit term in
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Section 6.1, illustrate the main characteristics of these threats, and shortly describe the
different classes rootkits are typically categorized into. In addition, we outline common
system manipulation strategies and discuss how these manipulations can be revealed
during a forensic memory analysis. In Section 6.2, we present our rkfinder plug-in for the
DFF framework that facilitates some of the latter tasks. An evaluation of the developed
software is subject of Section 6.3. In Section 6.4, we describe major weaknesses and
limitations of the plug-in and suggest several possibilities for improving its capabilities
and detection rate in the future. We conclude with a short summary of our work in
Section 6.5.

6.1 Background Information

In the following section, we briefly recapitulate major properties of rootkits and introduce
the prevailing rootkit classes that define the basic mode of operation of these threats. An
understanding of the individual classes does not only help estimate the level of potential
system modification that can be achieved by a particular species, but also indicates the
level of effort that is required to detect its presence. An overview of fundamental rootkit
techniques as well as a description of how these techniques can be revealed in the course
of a memory-based analysis are subject of Section 6.1.2.

6.1.1 Rootkits and Rootkit Classes

According to Hoglund and Butler (2005, p. 4), a rootkit “is a set of programs and
code that allows a permanent or consistent, undetectable presence on a computer”.
Taking this definition into consideration, major capabilities of such a program are thus
hiding specific system resources, e.g., files, network connections, or registry keys, from
legitimate system users and, preferably, other, security-related applications. In sum, the
main purpose of a rootkit is helping an attacker maintain access once a computer has
been compromised.

Rootkits are typically categorized into different classes, depending on the system layer
they operate on (Farmer and Venema, 2005a; Carvey, 2007; Davis et al., 2010):

❼ Application-level or user-space rootkits run in non-privileged mode on ring 3 of the
x86 processor architecture, i.e., they have limited access to hardware resources. In
the past, this type of malicious software simply replaced or modified trusted (user-
space) binaries with malicious content. In contrast, a common technique on Microsoft
Windows operating systems to date is to intercept specific function calls, e.g., to the
FindFirstFile function for searching files, in order to manipulate data processing or
filter results. Because these operations are performed on a high system layer though,
application-level rootkits are comparatively the easiest to detect, particularly by
programs being rooted deeper in the system core. A typical representative of this
species is the widely spread Hacker Defender (HolyFather, 2005).

88



6 Using Memory Forensics to Discover Rootkit Infections

❼ Library-level rootkits, e.g., NTIllusion (Kdm, 2004) or Vanquish (XShadow, 2005),
frequently run on ring 3 of the x86 processor architecture as well. As opposed to
application-level rootkits, they solely target specific system components though, e.g.,
the standard user-mode library kernel32.dll. As the code of these files is injected
into every process, a large number of programs can be compromised at the same time
with only little effort.

❼ Kernel-level rootkits such as FU (Butler, 2005) or FUTo (Silberman and C.H.A.O.S.,
2006) typically comprise a malicious device driver and aim at the lowest layer of
the operating system. Once in kernel mode, system structures can be substantially
modified, because the respective code is executed in privileged mode on ring 0 of the
x86 processor architecture with full access permissions. Due to these characteristics,
this type of threat can severely affect the integrity of a machine. On the other hand,
kernel-level rootkits are usually tightly bound to a platform and must be carefully
designed because even the slightest programming error may lead to a system crash
that potentially raises suspicion.

Please note that two other classes of rootkits, virtualized and firmware-based rootkits,
are frequently distinguished in the literature as well (Hoglund and Butler, 2005). As
these types of threats are not in the focus of our work and potentially require special
hardware for detection (Petroni et al., 2004), they are not further considered in the scope
of this thesis though.

6.1.2 Common Rootkit Strategies and Techniques

Rootkits may choose from a variety of system manipulation techniques in order to present
a modified view of the computer’s state to the user. In the previous chapter, we have
already described Direct Kernel Object Manipulation (DKOM) and malicious library in-
jection attacks. In the former case, core operating system structures are directly changed
in memory. A typical example we have illustrated is unlinking specific _EPROCESS objects
from the internal ActiveProcessLinks list. Thereby, individual processes can be effec-
tively hidden from common system administration programs such as the Task Manager.
In the case of a library injection attack, on the other hand, a malicious DLL is inserted
into the address space of a legitimate application, e.g., by calling the LoadLibrary API
function. Because the list of loaded libraries is maintained in a substructure of the user-
level Process Environment Block (PEB, see Section 5.1.5), the respective information is
particularly easy to subvert. Rootkits can employ several other system compromising
strategies as well though. In the following sections, we will give a brief overview of the
most prominent ones and discuss how these can be discovered during memory analysis.

Hooking

One of the most widely adopted mechanisms for observing or adapting the program
flow of an application is installing a so-called hook on an infected machine. A hook
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intercepts calls to certain system functions and temporarily transfers execution to a
custom routine, the hooking function, that is under control of an attacker. With the
help of the hooking function, parameters and return values can then be modified in the
next step. For instance, the Hacker Defender rootkit monitors calls to the Windows API
functions EnumServicesStatus and EnumServicesStatusEx to prevent pre-defined system
services from showing up in the service list (HolyFather, 2005). For this purpose, the
prologue of the respective functions is overwritten inline (directly in memory) with an
unconditional jump to the hooking procedure. By calling a special trampoline function,
the original instructions can be restored later, and the remainder of the original function
code is run.

In a forensic investigation, the previous operations are trivial to detect by disassembling
the prologue of the functions in question and checking them for relative jumps to an
external resource. With a similar approach, less common hooking techniques that target
the import (IAT) or export address table (EAT) of an executable can be revealed as
well. More details about this process can be found in the work of Ligh et al. (2010).

Manipulation of the Service Control Manager

Kernel-level rootkits frequently load their malicious driver into the system core by tem-
porarily setting up a rogue system service that is executed with elevated privileges. When
a service is created, an entry to the HKEY_LOCAL_MACHINE\System\CurrentControlSet\Ser-
vice key in the Windows registry is added by default though. In order to cover their
traces, rootkits therefore commonly delete said entry once the service has been started.
As a side effect of this operation, the service cannot be stopped via system administra-
tion programs such as the Microsoft Management Console (MMC) anymore either (Ligh
et al., 2010). However, it can still be easily enumerated by running a simple search query
over the command line interface (I.M.Weasel, 2006).

To cope with the latter issue, more sophisticated species additionally modify the internal
service database. This database is maintained by the Service Control Manager (SCM,
services.exe) and consists of objects of type _SERVICE_RECORD that are connected with
each other through a doubly-linked list (see offset 0x000 in Figure 6.1). Thus, to properly
hide a service, it is sufficient to remove the respective record from the list, similarly to
the process manipulation attack described in Section 5.1.1. Nonetheless, the structure
itself is still physically kept in memory and, consequently, can be found by scanning the
address space of the services.exe instance. For this purpose, a unique signature needs
to be generated. As each service record includes a tag field with the constant value sErv

at offset 0x018, this is a trivial task though.

6.2 Finding Traces of System Infections with rkfinder

To facilitate the identification of potentially suspicious elements in the course of a
memory-based analysis, we have designed rkfinder, a plug-in for the popular Digital
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Figure 6.1: Internal Structure of a System Service
(Based on Ligh et al., 2010, p. 663)

Forensics Framework (DFF) suite (ArxSys, 2009). As we have already indicated at
the beginning of this chapter, DFF is a free, open source investigative platform and
has gained a good reputation among researchers and practitioners alike after winning
a forensic challenge in 2010 (Jacob, 2010). In comparison to similar products such as
PyFlag (Cohen, 2008), DFF has a “clean, simple GUI” and can be efficiently operated
even by novice investigators (Altheide and Carvey, 2011, pp. 221-222). Furthermore, the
framework offers a modular architecture and, thus, can be easily extended when needed.
Our rkfinder plug-in makes use of this capability and integrates various components of
the Volatility Framework into the graphical DFF interface. Thereby, analysts are able to
comfortably examine memory snapshots of a suspicious system and get a comprehensive
overview of the system state within a short time.

In the following section, we illustrate the functionality of DFF in more detail and explain
how our plug-in is integrated into the framework. A description of rkfinder’s mode of
operation is subject of Section 6.2.2.

6.2.1 Functionality and Extension of DFF

The DFF platform is internally divided into three layers (ArxSys, 2012): The core
layer provides fundamental functions that are required to execute the different software
modules and process their respective output. Part of this layer is the Virtual File Sys-
tem (VFS), a hierarchy that is responsible for organizing the analyzed data. Information
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Figure 6.2: Integration of the rkfinder Plug-In in the DFF Architecture

that is associated with the VFS is represented in the form of nodes. By default, a node
consists of a name and size attribute, but can be extended to include further details. For
instance, the rkfinder plug-in defines a process node with various attributes that store
the name, identifier as well as start and end times of an executable.

Tightly linked with the core is the plug-in layer that allows extending the framework
with specific features. For this purpose, individual modules need to be written, either in
the Python or C++ programming language. Modules inherit basic node manipulation
methods, e.g., for reading or changing specific values, from a parent class and can be
easily “stacked” to create different levels of abstraction. For example, the rkfinder plug-
in is capable of automatically dumping portions of memory that may contain malicious
shellcode. With the help of a second module, e.g., hexedit, a user can then examine the
extracted memory regions in more detail if desired. Results are finally presented on the
user interface layer, i.e., the graphical component of the framework. The user interface
permits structuring, aggregating as well as filtering extracted pieces of evidence and,
thus, explicitly supports the documentation and presentation phase described in classic
forensic process models (Casey, 2011).

Our rkfinder plug-in is designed as a separate module that mainly operates on the plug-
in and user interface layer (see Figure 6.2). Therefore, it is able to run independently
from other parts of the DFF software. In particular, as the heart of the platform is left
untouched, the plug-in can be executed on any operating system the original code can
run on, i.e., both on versions of the Microsoft Windows as well as Linux product family.
The module-specific approach of the plug-in also ensures quick installation and future
maintenance, because the respective files only need to be copied to the DFF working di-
rectory. On the other hand, the internal functionality of rkfinder is largely encapsulated.
Thus, after loading a memory image, the investigation process may be started with a
single click, and a summary report is automatically generated. As rkfinder especially
targets practitioners with lesser developed forensic expertise, these characteristics are
of great benefit. A more in-depth description of its mode of operation is subject of the
next section.
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6.2.2 Rkfinder’s Mode of Operation

Rkfinder implements cross viewing techniques for rootkit detection, i.e., possibly suspi-
cious elements are discovered by examining the computer’s state from different angles
and checking results for inconsistencies. The approach is based on the assumption that
anomalies that are identified in this process frequently indicate the presence of a threat,
because it is difficult for malicious software to consistently subvert operating system
structures and evade both post-mortem and live investigative measures. Internally, rk-
finder invokes various modules of the Volatility Framework in the background and au-
tomatically associates extracted artifacts. For this purpose, the object hierarchy of the
application is imported into DFF in a first step. By hooking the calculate method, i.e.,
a generic helper function that must be implemented by each module and is responsible
for executing module-specific tasks, we are then able to monitor memory analysis-related
operations and obtain the respective module output for further investigation within DFF.

The modules that are required for detecting the common rootkit deception strategies we
have described in the previous chapter and Section 6.1.2 are summarized in Table 6.1.
As can be seen, indicators for system infections are discovered by both restoring log-
ical system structures and physically scanning the image file. A comparison of these
layers leads to the first cross view we have implemented in rkfinder. For instance, to
generate the entire list of running processes on the machine, we match the output of
the pslist and pslinks modules. While the former one helps recover the elements of
the ActiveProcessLinks list, the latter module searches a memory snapshot for instances
of _EPROCESS objects. As we have explained in Section 5.1.1, any discrepancy between
these two sources strongly suggests a Direct Kernel Object Manipulation (DKOM) at-
tack. Such methods are actively employed by kernel-level rootkits, e.g., FU (Butler,
2005) or FUTo (Silberman and C.H.A.O.S., 2006). One pitfall when parsing results,
however, is that data are frequently returned inconsistently and, therefore, need to be
carefully validated in order to avoid false positives. Likewise, although certain rootkit
techniques such as user-space hooks can be revealed quite comfortably (see Section 6.1.2),
the corresponding hidden resources may be more difficult to detect and can be easily
overlooked unless they are appropriately highlighted. For example, the Hacker Defender
rootkit intercepts various Windows API functions to conceal pre-defined elements from
system maintenance programs at runtime (HolyFather, 2005). In a post-mortem analy-
sis, these measures are no longer effective though. Consequently, the respective objects
are regularly displayed in forensic applications and, thus, are harder to distinguish from
legitimate artifacts, especially if an attacker tries to obscure (file) names and attributes.
In this case, finding all traces of an incident can be a cumbersome and challenging task,
particularly for less experienced practitioners.

In order to cope with the latter issue, rkfinder is capable of considering reports of a
basic live response in its analysis. These reports can include information gained with
standard process or network administration tools, e.g., the Task Manager or the built-in
netstat utility. Ideally, the programs are run shortly after the snapshot of the computer’s
RAM has been acquired. Thereby, data pollution due to concurrent activity is reduced
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Module Name Description

apihooks
Searches the memory image for possibly installed malicious Windows
API hooks (see Section 6.1.2).

connections

Enumerates the list of open network connections by locating the
tcpip.sys driver file in memory and iterating the _TCPT_OBJECT list
(see Section 5.1.4).

connscan

Physically scans the snapshot with the help of signatures for
_TCPT_OBJECT structures to find open network connections (see Sec-
tion 5.1.4).

dlllist

Obtains the list of loaded libraries by analyzing the list of
LDR_DATA_TABLE_ENTRY structures that are referenced in the Process
Environment Block of a process (see Section 5.1.5).

filescan
Physically scans the memory image with the help of signatures for
_FILE_OBJECT structures to find open files (see Section 5.1.5).

malfind

Parses the Virtual Address Descriptor (VAD) tree of a process to
identify memory pages that possibly contain malicious shellcode (see
Section 5.1.5).

modscan

Physically scans the memory dump with the help of signatures for
LDR_DATA_TABLE_ENTRY structures to find loaded (kernel) modules (see
Section 5.1.5).

modules

Obtains the list of loaded kernel drivers by analyzing the list of
LDR_DATA_TABLE_ENTRY structures, starting from the global symbol
PsLoadedModuleList (see Section 5.1.5).

pslist
Iterates members of the ActiveProcessLinks to enumerate the list of
running processes (see Section 5.1.1).

psscan

Physically scans the memory image for _EPROCESS structures to gen-
erate the list of (currently and previously) running processes (see
Section 5.1.1).

sockets

Enumerates the list of open sockets by locating the tcpip.sys driver
file in memory and iterating the _ADDRESS_OBJECT list (see Sec-
tion 5.1.4).

sockscan
Physically scans the memory image with the help of signatures for
_TCPT_OBJECT structures to find open sockets (see Section 5.1.4).

svcscan

Physically scans the address space of the Service Control Manager
with the help of signatures for _SERVICE_RECORD structures to find
hidden services (see Section 6.1.2).

thrdscan

Physically scans the memory image for _ETHREAD structures to cre-
ate the list of (currently and previously) running threads (see Sec-
tion 5.1.1).

threads

Applies various heuristics, e.g., matching the ExitTime field with
other fields of an _ETHREAD structure, to determine the list of run-
ning threads (see Ligh, 2011a).

vadinfo

Obtains information about a node in the Virtual Address Descrip-
tor (VAD) tree, including the VAD flags that, for instance, define the
access permissions for the respective pages (see Section 5.1.5).

Table 6.1: List of Volatility Framework Modules that are Integrated in rkfinder
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(a) System Process View with Automatic High-
lighting of Suspicious Elements

(b) Meta Information View with Detailed In-
formation about a Selected Item

Figure 6.3: Visual Analysis of Threats with rkfinder

to a minimum, and the risk of introducing false positives is decreased. As we will see in
Section 6.3, by matching the results of a live analysis with a post-mortem investigation,
a second cross view layer is created that helps discover many common rootkit species
found “in the wild” today.

Once all operations are completed, findings are summarized in a tree-like pane of the
graphical DFF interface. In the left pane, different categories of objects can be chosen.
For example, in Figure 6.3a, the extracted process hierarchy of an examined system
is shown. When clicking on a node, users can obtain further information about the
threads, loaded libraries, and open network connections that are associated with an ap-
plication. Additional meta information about an executable are displayed in the right
pane of the interface, e.g., its command line, the start and end time, the number of
references (handles) to files and other resources, as well as the name and identifier of
the parent structure. Items that are of particular interest or deserve closer attention are
automatically highlighted. In the depicted example, rkfinder detected inconsistencies for
the two processes nc.exe and hxdef100.exe. These processes are automatically marked
in red and, thus, immediately make a user aware of a potential problem. Clicking on
the first item reveals that a (hidden) socket was opened on port 1234 of the system
(see Figure 6.3b). In contrast, the second process represents the main component of the
Hacker Defender rootkit that is concealed under normal circumstances at runtime, but
has been successfully discovered by rkfinder with the help of cross viewing techniques.
Based on these results, an investigator can subsequently analyze, for instance, the in-
dividual threads that were started by the two programs or request a report about the
memory regions malicious instructions were inserted into.
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Apart from the process-specific view, rkfinder also offers a network, services, and system
library perspective that allows quick browsing through pieces of evidence. Thereby,
users are able to gain a comprehensive overview of the system state within a short time.
Because all suspicious objects are finally listed in a separate category, even investigators
with lesser developed forensic expertise are able to comfortably examine and address
critical system areas that have potentially been infected by a threat. In comparison to
the original, command line-based unrelated output of the Volatility Framework, this is
a major benefit.

6.3 Evaluation and Discussion of the Detection Performance

We have evaluated our software in a preliminary study with the help of different memory
images acquired from six rootkit-infected machines. All machines were running a default
installation of Microsoft Windows XP (SP 2) and were set up within a virtual (VMware-
based) environment. This configuration permitted suspending a system at any time and
easily duplicating the created RAM snapshot for later analysis (see our explanations
regarding virtual machines in Section 2.2.3). To simulate a realistic attack, we copied a
number of security- and network-related applications to each system. For instance, we
installed netcat (Giacobbi, 2006), a simple utility for sending and receiving data over a
network connection, and created a basic listening service on a local port. The rootkits
were configured to hide all runtime information and resources involved, provided the
respective capability was offered by the malicious software.

Once a system had been infected, we temporarily stopped its execution process and
obtained a snapshot of its physical memory. Immediately after the acquisition phase,
we briefly resumed the machine and launched a custom script that invoked certain op-
erating system commands to determine, for example, the list of running processes, open
network connections, and installed services. The output of these commands was saved
to a file and, together with the previously generated memory image, transferred to a
trusted workstation. The image was then opened in DFF, and the rkfinder plug-in was
started. As described in Section 6.2, rkfinder correlated the output of various modules of
the Volatility Framework and matched the external, post-mortem analysis view with the
internal view of the operating system. Thereby, system inconsistencies could be effec-
tively revealed. Primary objective of our evaluation was assessing in how far rkfinder –
in cooperation with the Volatility Framework – was capable of identifying and properly
visualizing all rootkit-related manipulations. Precisely, a rootkit was considered as being
discovered when the respective system modifications and affected artifacts were correctly
highlighted in the DFF interface. As we have argued in the previous section, we believe
that indicating the sources of a potential system infection is particularly helpful for in-
experienced practitioners. A detailed study of our software with respect to this target
group is, however, still missing at the time of this writing.
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6.3.1 Analysis Results

In the following, we present the results of our analysis. In Table 6.2, the list of consid-
ered rootkits is shown. The different species represent examples of the rootkit classes
we introduced in Section 6.1.1 and are commonly found “in the wild” to date (Davis
et al., 2010). As can be seen, all threats are able to hide at least individual processes.
Most rootkits, however, implement additional capabilities such as concealing network
connections, loaded drivers, or entries in the system registry. In the course of a foren-
sic analysis, these manipulations should be revealed to a preferably high degree. The
corresponding detection results with respect to our plug-in are listed in Table 6.3. A
checkmark (X) denotes that a (hidden) resource could be successfully discovered. In
contrast, a dash (-) denotes that the system modification remained unnoticed. In case
a rootkit was incapable of hiding a specific object, the entry in the respective column
was labeled as n/a.

We now discuss the results shown in Table 6.3 more thoroughly: Generally speaking,
rkfinder could successfully identify all modifications apart from maliciously inserted reg-
istry keys. The latter functionality, although planned, is not included in our software
yet, because it is possible that portions of the registry are either paged out to disk or
have not been transferred into memory at a given point in time (see our explanations
in Section 5.1.3). For this reason, more testing is required from our part to verify the
reliability of this feature. Furthermore, even though FU, FUTo, and Hacker Defender
were assumed to effectively hide system drivers according to their documentation, these
operations failed for all three rootkits, and the items were regularly displayed in system
maintenance programs and, thus, in the module list of our plug-in as well. Because the
external and internal view did not yield any differences, however, rkfinder was not able
to detect any anomalies. Therefore, the respective items could not be highlighted as
being suspicious. The same is true for NTIllusion that did neither succeed at concealing
the netcat process from standard task management programs nor removing the injected
library from the corresponding doubly-linked lists in the Process Environment Block (see
Section 5.1.5). Again, due to the missing mismatch between the external and internal
perspective, these elements were not marked as suspicious even though they were in-
cluded in rkfinder’s list of running processes and loaded libraries. In spite of this, it is
noteworthy that other authors (Freiling and Schwittay, 2007; Dolan-Gavitt, 2007a) have
reported NTIllusion to work as expected. Further testing, e.g., with different versions
of the software, is therefore required to properly assess the behavior of the threat.

Concerning the system manipulation techniques outlined in Chapter 5 and Section 6.1.2,
it is interesting to verify if and to what degree the individual rootkit methods could
be discovered: Direct Kernel Object Manipulation was implemented in two kernel-level
species, FU and FUTo. These operations could be revealed by traversing the corre-
sponding linked lists of objects and comparing the individual elements with the results
of signature-based scanners. For this purpose, rkfinder correlated the output of several
Volatility modules, e.g., pslist and psscan (see Section 6.2.2), and successfully detected
the presence of both rootkits. In contrast, marking the maliciously injected library of
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Rootkit Type

Supports

Process

Hiding

Supports

Registry

Key

Hiding

Supports

Socket

Hiding

Supports

Service

Hiding

Supports

Driver

Hiding

BH-Rootkit-NT K X - X - -

FU K X - - - X

FUTo K X - - - X

Hacker Defender U X X X X X

NTIllusion L X X X - -

Vanquish L X X - X -

Table 6.2: List of Evaluated Rootkits

(Note: A rootkit of type K refers to a kernel-level rootkit, a rootkit of type U to a user-level rootkit,
and a rootkit of type L to a library-level rootkit.)

Rootkit
Process

Detection

Registry

Key

Detection

Socket

Detection

Service

Detection

Driver

Detection

BH-Rootkit-NT X n/a X n/a n/a

FU X n/a n/a n/a -

FUTo X n/a n/a n/a -

Hacker Defender X - X X -

NTIllusion - - X n/a n/a

Vanquish X - n/a X n/a

Table 6.3: Detection of Rootkit-Manipulated Objects

the NTIllusion rootkit as suspicious failed, because a comparison of the loaded module
list with resources defined in the Virtual Address Descriptor tree (see Section 5.1.5) did
not reveal any inconsistencies. With respect to the second library-level rootkit Van-
quish, this procedure proved fruitful, however. Rkfinder also succeeded in identifying
the malicious code parts the two threats injected into memory pages.

Two rootkits, Hacker Defender and Vanquish, are known to install custom services that
are hidden from the Service Control Manager. With the help of the svcscan module
that is part of the Volatility Framework, these modifications were correctly recognized,
and the corresponding services were discovered. Last but not least, hooking attempts
were actively pursued by four out of six rootkits, i.e., Hacker Defender, NTIllusion,
Vanquish, and the kernel-based BH-Rootkit-NT. In our evaluation, rkfinder was capable
of finding all hooks that were mentioned in the respective manuals. As we will point out
in Section 6.4.1, however, a hooked function does not necessarily indicate the presence
of a threat. For this reason, investigators should examine the respective list with care.
A final summary of the individual detection rates is given in Table 6.4.
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Rootkit Technique Employed by Detection Rate

DKOM FU, FUTo 2/2

Library Injection, NTIllusion, Vanquish 1/2
Code Injection 2/2

Service Manipulation Hacker Defender, Vanquish 2/2

Hooking
BH-Rootkit-NT, Hacker Defender, NTIllusion,
Vanquish

4/4

Table 6.4: Detection Rates for Different Rootkit Techniques

6.4 Discussion

In the following, we briefly depict major weaknesses and limitations of rkfinder that
should be taken into consideration when running the plug-in in practice. In Section 6.4.2,
we discuss several possibilities for further extending the capabilities of the software and
improving its detection performance in the future.

6.4.1 Weaknesses and Limitations

In the development process of the rkfinder plug-in, strong emphasis was put on correctly
highlighting system modifications as well as suspicious elements, while reducing the
number of false positives to a minimum. Although we were capable of successfully
detecting common rootkits, the software still has to struggle with several weaknesses
and limitations that have to be better addressed in the future: First of all, as we have
indicated in the previous section, hooked functions that are found on a machine are
not necessarily a sign of a system infection but may be installed by legitimate, security-
related applications. In fact, Freiling and Schwittay (2007, p. 15) argue that “identifying
malicious hooks can sometimes be difficult, because a lot of software, especially Antivirus
software, uses benign hooking”.

Moreover, even though we managed to discover the injected library of the Vanquish
rootkit by parsing the Virtual Address Descriptor tree, Dolan-Gavitt (2007a) has pointed
out that the structure is susceptible to Direct Kernel Object Manipulation. Such anti-
forensic techniques may significantly affect the progress of an investigation and falsify
results. Oddly enough, however, malicious applications that do not actively cover their
traces are the hardest species to mark as suspicious in the end, because the cross view
approach does not lead to any inconsistencies. In this case, an investigator must manually
analyze the reports of the plug-in and identify sources of a system infection without
additional program support.

Last but not least, it is important to keep in mind that, similarly to other detection
programs, the rkfinder software can reflect a deceptive picture of a computer’s state in
case the presence of a threat remains unnoticed. From a psychological point of view,
these false negatives are especially dangerous, because users may incorrectly perceive the
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level of system security as satisfactory and, as a result, possibly react less sensitively to
future anomalies. Even though our methodology of matching the internal and external
view has proven capable of identifying common rootkits present “in the wild” to date,
we have also mentioned other classes of malware, for instance, virtualized rootkits such
as Blue Pill (Rutkowska, 2006), that would be impossible to reveal with our plug-in. In
such a situation, consulting more experienced forensic analysts is advisable.

6.4.2 Further Development and Evaluation Possibilities

So far, the performance of rkfinder has unfortunately only been assessed with a lim-
ited number of rootkits. Even though the considered samples are frequently involved
in attacks on Microsoft Windows platforms (Carvey, 2007; Davis et al., 2010), they are
mostly dated, and their behavior is well documented in the literature. For this rea-
son, the study should be significantly extended, and more modern and sophisticated
species should be included in the evaluation. Researchers have shown that renowned
threats such as Stuxnet (Falliere et al., 2011) or Flame (Laboratory of Cryptography
and System Security, 2012) can be successfully discovered with the help of the Volatility
Framework (Ligh, 2011b, 2012), and it is expected that these capabilities can be inte-
grated into our plug-in as well. In fact, by adopting malware classification mechanisms
as they are offered by solutions such as Yara (Alvarez and Wiacek, 2013), it would
be possible to examine other types of malicious software as well, e.g., trojan horses or
backdoors. Thereby, rkfinder could evolve to a more generic solution.

With respect to the development process of the plug-in, it is necessary to implement ad-
ditional detection features. In particular, the software should be able to parse in-memory
registry data, e.g., the well-known run keys such as HKLM\Microsoft\Windows\CurrentVer-
sion\Run that are commonly manipulated by malware to automatically load applications
at system start (see Carvey, 2011). Furthermore, discovery rates may be increased by
better taking certain heuristics into account. For instance, Ligh et al. (2010) have pro-
posed analyzing the execution priority of threads to distinguish suspicious behavior from
legitimate system activity. Other suggestions describe verifying the parent-child hier-
archy of processes or the list of access privileges. On the other hand, these types of
consistency checks greatly bear the risk of introducing new false positives. For this rea-
son, the respective program components should be carefully tested before being used in
a forensic investigation.

6.5 Summary

In this chapter, we have presented rkfinder, a plug-in for the popular open source investi-
gation platformDFF. Rkfinder integrates major functionality of the Volatility Framework
into the graphical DFF interface. By processing, correlating, and filtering the respec-
tive module output, the plug-in is able to discover and automatically highlight potential
traces of a system compromise, given a memory snapshot of the machine in question.
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Thereby, analysts can quickly get a comprehensive overview of the system state and gain
a solid foundation for addressing a threat in the course of a first response. Due to these
characteristics, rkfinder particularly aims at users with solely little forensic expertise.

In a preliminary study, we have evaluated the software based on six rootkit samples that
are frequently faced in practice to date. The rootkits operated on different operating
system layers and were capable of manipulating system structures in both user as well
as kernel space. With the help of several cross viewing techniques, we could reveal
these manipulations to a high degree. However, weaknesses of the software are still its
inability to successfully parse the Windows registry and correctly distinguish malicious
from legitimate function hooks as, for instance, they are installed by diverse security
applications. By addressing these issues in later versions of rkfinder, the detection quality
of the plug-in can be further improved, and post-mortem memory investigations can be
performed even more thoroughly.
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Chapter 7

Synopsis and Conclusion

As we have seen in the previous chapters, a myriad of valuable information are con-
tained in volatile memory that may significantly help an investigator complete a case.
The different artifacts are extremely fragile, however, and can be easily destroyed or
overwritten by cutting power to the machine or executing commands on the system.
To avoid unintentional data loss, particular attention must therefore be paid to prop-
erly securing pieces of evidence in the first step. In Chapter 2 of this thesis, we have
given an overview of available technologies for these tasks. Existing solutions include,
for instance, special PCI cards that are capable of creating a snapshot of a computer’s
RAM when an external switch is activated. Since those cards must be installed and set
up prior to their use though, they are only practical in controlled environments. As a
viable alternative, we have illustrated possibilities for duplicating the address space via
hardware buses, e.g., the IEEE 1394 (FireWire) interface. The respective techniques are
easy to apply even in incident response situations, yet they are also susceptible to manip-
ulation as a publication by Rutkowska (2007) has shown. Similar concerns hold true for
software-based imagers that rely on functions provided by the target operating system.
Because imaging utilities must be executed in parallel to other applications, produced
memory snapshots are typically not completely consistent either. On the other hand,
other proposals such as injecting a second, miniature OS into the kernel or performing
a cold boot attack on the host suffer from certain limitations and drawbacks as well. In
sum, none of the existing approaches we have described is immaculate. For this rea-
son, analysts need to carefully balance the characteristics and benefits of the individual
methods with regard to a given scenario.

In order to assess acquisition technologies more thoroughly, we have introduced and
formalized three criteria that determine the quality of a forensic memory snapshot in
Chapter 3. Specifically, a snapshot is defined to be correct with respect to a set of
addressable memory regions if it solely contains the “true” values of these regions at the
time the snapshot was taken. In contrast, a snapshot is said to be atomic if it is free of
the signs of concurrent activity. By the level of integrity, we refer to the stability of values
stored in memory during the time of the imaging period. With the help of the three
criteria, we have evaluated the performance of selected acquisition solutions in Chapter 4.
For this purpose, we have developed an extensive testing platform that, for the first time,
allows an in-depth and repeatable examination of imaging utilities. Our platform is built
upon the Bochs x86 PC emulator (The Bochs Project, 2013a) and generates a detailed
protocol of all relevant operations. In a preliminary study, we have analyzed a total of
270 RAM images and have shown that two out of three considered evaluation candidates
were initially unable to copy the physical address space in its entirety. We have fixed
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the affected program components so that correct snapshots were eventually produced.
We could also prove that even on idle systems, software-based imagers create forensic
snapshots with a significant degree of inconsistency. However, it is an open research
problem at the time of this writing whether or not these inconsistencies truly have an
impact on later phases of an investigation.

In Chapter 5 we described procedures for analyzing forensic images. Precisely, we ex-
plained methods, concepts, and strategies for reconstructing the list of processes, open
network connections, and referenced files. In addition, we discussed approaches for ex-
tracting cryptographic keys and remnants of the Microsoft Windows registry. As we
have pointed out, artifacts can be successfully recovered in many cases by either restor-
ing a logical view on resources, i.e., as they were originally seen by the operating system,
or by physically scanning the memory dump for object structures. A comparison of
the logical and physical perspective in a second step even permits identifying potential
discrepancies in the system state that may indicate a malware infection.

Common system manipulation techniques as they are typically implemented in more
sophisticated species such as rootkits were illustrated in Chapter 6. Examples included
Direct Kernel Object Manipulation (DKOM), malicious library injection, and function
call hooking in order to change the execution path of an application or filter results.
We also introduced rkfinder, a plug-in for the popular forensic framework DFF (ArxSys,
2009), that integrates major functionality of the Volatility Framework (Volatile Systems,
LLC, 2008, 2013a) into a comfortable graphical interface. Rkfinder employs various cross
viewing algorithms for checking the integrity of a machine from different angles. Because
suspicious elements are automatically highlighted, even users without expert knowledge
in malware analysis are able to quickly recognize and address system areas that require
particular attention. In sum, with the material presented in this thesis, practitioners
have a solid basis for efficiently acquiring and examining volatile information in the
course of a forensic investigation. For novice academic researchers, on the other hand,
our insights may serve as a starting point for their own works. An overview of possible
future research directions is subject of the following section.

7.1 Opportunities for Future Research

7.1.1 Anti and Anti-Anti Memory Forensics

As our evaluation of software-based imagers has shown in Chapter 4, acquisition solutions
may contain logic errors and are therefore not capable of correctly duplicating the phys-
ical address space in all cases. With investigators more and more realizing the value of
volatile information, however, attempts to actively stall or even block the imaging process
in the first place will increase on the side of cyber criminals as well. Simple anti-forensic
measures may include, for instance, controlling access to the \\.\Device\PhysicalMemory
section object as outlined by Bilby (2006). In a recent publication, Stüttgen and Co-
hen (2013) have demonstrated that most imaging utilities available on the market to
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date can be easily compromised by manipulating the return values of undocumented
API functions the respective programs internally rely on. Even worse, because function
calls are not adequately checked, some applications crash and, thereby, destabilize the
entire system. Stüttgen and Cohen (2013, p. 2) conclude, “when facing determined and
skilled adversaries, (...) the current generation of forensic memory acquisition tools are
ill-equipped”.

Taking these aspects into consideration, it is necessary to study the weaknesses of existing
products in more detail and identify suitable defense mechanisms for possible attacks
in a second step. For instance, with their miniature hypervisors that transparently
transform an operating system into a virtualized guest, Martignoni et al. (2010) and Yu
et al. (2012) have indicated possibilities for successfully coping with kernel-level threats
in the course of the imaging period. In contrast, standard memory analysis frameworks
can still be defeated comparatively trivially (see Haruyama and Suzuki, 2012). We
believe that trying to improve the resilience of current technologies is an area that is
well worth exploring.

7.1.2 Memory Forensics on Other System Platforms

In the scope of this thesis, we primarily described memory acquisition and analysis on
machines running Microsoft Windows. In fact, the product family of Windows operating
systems has been in the sole focus of researchers for a long time, while the intricacies
of other platforms were utterly neglected. However, with the growing market share of
Apple computers (Net Applications, 2013), investigators are likely to face an increasing
number of Mac OS -based systems. Likewise, Linux operating systems and their deriva-
tives are still the premier choice within server environments (E-Soft Inc., 2009). Data
structures that are important for memory forensics-related activities on these systems
have only been partially identified yet and still need to be examined in more detail. The
same holds true for Android and iOS systems that are usually pre-installed on mobile
phones or tablet PCs. Especially the former have caught broad interest among security
professionals more recently, yet existing procedures mainly illustrate a collection of best
practices and frequently only refer to specific product vendors or versions (Vidas et al.,
2011). Establishing a more scientific methodology for the investigation of these devices
will therefore be an interesting field of research in the future. A good overview of the
current state of the art can be found in the works of Hoog (2011) and Sylve et al. (2012).

7.1.3 Virtual Machine Introspection

As part of a forensic memory analysis, raw data of the snapshot must be transformed
into a structured and meaningful format. For example, in order to restore the process
list, it is first necessary to locate the PsActiveProcessHead symbol in memory and subse-
quently enumerate the members of the ActiveProcessLinks list (see Section 5.1.1). For
this purpose, the original virtual address space of the operating system has to be rebuilt.
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7 Synopsis and Conclusion

Once the latter operations have been completed, even more information about the sys-
tem state can be extracted. The process of deriving semantic knowledge from low-level
entities is known as “bridging the semantic gap” (Chen and Noble, 2001) and is highly
relevant for other digital forensic disciplines as well. One niche that has gained particu-
lar attention in the last years is Virtual Machine Introspection (VMI), i.e., “inspecting
a virtual machine from the outside for the purpose of analyzing the software running
inside it” (Garfinkel and Rosenblum, 2003, p. 2). As we have argued in Chapter 2, with
the increasing use of Internet-hosted services, securing evidence in virtual environments
will become more important, too. Dolan-Gavitt et al. (2011b) have pointed out that
experiences in memory investigations will be vital for these tasks. However, while re-
searchers succeeded in automating VMI operations to a significant degree (Dolan-Gavitt
et al., 2011a; Inoue et al., 2011a), especially the problem of inconsistent static auditing
remains open that occurs when analysts attempt examining a machine in non-quiescent
mode (Nance et al., 2009). Likewise, for anti-forensic attacks on VMI applications (see
Bahram et al., 2010), suitable countermeasures have yet to be found.

7.1.4 Development of Adequate Data Aggregation, Presentation, and

Visualization Concepts

Last but not least, as we have argued in an earlier work, “while research in the area
of memory forensics has mainly concentrated on identifying, finding, and extracting
important data fragments to date, properly correlating and documenting the respective
information has been widely neglected” (Vömel and Lenz, 2013, p. 123). Garfinkel (2010,
p. S68) also criticizes that “[t]oday’s tools were designed to help examiners find specific
pieces of evidence, not to assist in investigations” and that these tools “can (sometimes)
work with (...) several terabytes of data, but (...) cannot assemble terabytes of data into
a concise report”. For these reasons, it is necessary to improve current presentation and
visualization concepts in order to better support analysts with the completion of a case.
With the rkfinder plug-in illustrated in Chapter 6, we have already exemplified how
information from different sources may be aggregated to create a more concise picture
of a computer’s state. Teelink and Erbacher (2006), on the other hand, have outlined
a method for processing mass data and discovering suspicious elements and outliers
with the help of abstract tree maps and different color schemes. Finally, Beebe (2009,
p. 29) has suggested more focusing on temporal instead of hierarchical relationships
when examining forensic artifacts. We believe that such approaches may be adopted for
memory analysis-related tasks as well and will lead to the development of even more
powerful solutions in the future.
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Vömel, Stefan; Freiling, Felix C. (2012). Correctness, Atomicity, and Integrity: Defin-
ing Criteria for Forensically-Sound Memory Acquisition. Digital Investigation, Vol-
ume 9(2), pp. 125–137, 2012.
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